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Abstract

Genome-wide association studies (GWAS) have now identified thousands of noncoding loci 

associated with human diseases and complex traits, each of which could reveal insights into 

biological mechanisms of disease1. Many of the underlying causal variants are thought to 

affect enhancers2,3, but we have lacked accurate maps of enhancers and their target genes 

to interpret such variants. We previously developed the Activity-by-Contact (ABC) Model to 

predict enhancer-gene connections and demonstrated that it can predict the results of CRISPR 

perturbations across several cell types4. Here, we apply this ABC Model to create enhancer-gene 

maps in 131 cell types and tissues, and use these maps to interpret the functions of GWAS 

variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique 

genes, including a class of 577 genes that appear to influence multiple phenotypes via variants in 

enhancers that act in different cell types. For inflammatory bowel disease (IBD), causal variants 

are >20-fold enriched in predicted enhancers in particular cell types, and ABC outperforms other 

regulatory methods at connecting noncoding variants to target genes. Guided by these variant-to-

function maps, we show that an enhancer containing an IBD risk variant regulates the expression 

of PPIF to tune mitochondrial membrane potential in macrophages. Together, our study reveals 

insights into principles of genome regulation, illuminates mechanisms that influence IBD, and 
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demonstrates a generalizable strategy to connect common disease risk variants to their molecular 

and cellular functions.

Each GWAS association could provide insight into a biological mechanism underlying 

human disease risk1,5. Yet, identifying these mechanisms has proven challenging. GWAS 

associations often include dozens of variants in linkage disequilibrium with one another 

that tag a single causal variant. Most causal variants do not directly alter protein-coding 

sequences and instead occur in noncoding gene regulatory elements such as enhancers2,3, 

which can influence gene expression over long distances6,7. Finally, common diseases 

appear to involve contributions from multiple cell types, and many enhancers appear to 

act in specific cell types or states8. As such, connecting a GWAS association to function 

requires distinguishing among many possible variants, target genes, and cell types1,5.

Recent developments have set the stage for addressing these challenges. To distinguish 

among multiple possible variants at a locus, recent studies have applied statistical fine-

mapping to prioritize likely causal variants for thousands of GWAS signals9–11, including 

identifying 93 noncoding credible sets for IBD9. To link noncoding variants to their target 

genes and cell types, we recently developed the Activity-by-Contact (ABC) Model to 

identify enhancers in a particular cell type and predict their target genes based on data 

about chromatin state and 3D contacts4. Together, these advances suggest a new approach to 

connect GWAS signals to their target genes and cell types.

Here, we build ABC enhancer-gene maps in 131 biosamples and apply these maps 

to analyze fine-mapped genetic variants associated with 72 diseases and complex traits 

(Extended Data Fig. 1). ABC maps link 5,036 GWAS signals to predicted functions, with 

improved accuracy compared to existing approaches. By tracing the path from variant to cell 

type to target gene, we nominate new regulatory mechanisms for IBD and identify genes 

likely to influence multiple diseases through effects in different cell types, including at the 

10q22.3 IBD risk locus. Together, our study demonstrates a generalizable strategy to build 

regulatory maps of the genome to connect genetic associations to molecular mechanisms of 

disease.

ABC enhancer-gene maps in 131 biosamples

We used the ABC Model to construct genome-wide maps of enhancer-gene connections 

across 131 human biosamples, including 74 distinct primary cell types, tissues, and cell 

lines from the ENCODE Project8 and other sources (Supplementary Tables 1,2, Extended 

Data Fig. 1). For each biosample, we calculated ABC scores for each gene and chromatin 

accessible element within 5 Mb by multiplying estimates of enhancer activity and 3D 

enhancer-promoter contact frequency. Candidate element-gene pairs that exceeded a chosen 

threshold were defined as “enhancer-gene connections”, and elements predicted to regulate 

at least one gene as “ABC enhancers” (Methods).

Across 131 biosamples, we identified 6,316,021 enhancer-gene connections for 23,219 

expressed genes and 269,539 unique enhancers. In a given biosample, ABC identified an 

average of 48,441 enhancer-gene connections for 17,605 unique enhancers, comprising ~2.9 
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Mb of enhancer sequence (~12% of chromatin-accessible regions, 0.11% of the mappable 

genome, Supplementary Table 2, Extended Data Fig. 2). On average, each ABC enhancer 

was predicted to regulate 2.7 genes, each gene was predicted to be regulated by 2.8 ABC 

enhancers (Extended Data Fig. 2), and only 19% of enhancer-gene connections were shared 

between pairs of biosamples (Extended Data Fig. 3).

We validated these predictions by comparison to a compendium of CRISPR perturbations 

that included 5,755 tested element-gene pairs in 11 cell types and states (including 

previous data4,12 plus additional CRISPRi-FlowFISH experiments we performed here; 

Supplementary Tables 3, 4). ABC performed well at classifying regulatory connections (area 

under the precision-recall curve (AUPRC) = 0.64), and outperformed other methods, similar 

to our previous observations using a subset of this CRISPR data4 (Extended Data Fig. 4, 

Supplementary Table 5).

Enrichment of GWAS variants in enhancers

To assess the utility of these maps in connecting disease variants to functions, we first 

quantified the enrichment of GWAS variants in ABC enhancers (Supplementary Table 6). 

Leveraging our previous fine-mapping analyses9, we examined 24,922 fine-mapped variants 

with posterior inclusion probability (PIP) >= 10% for 72 diseases and traits, focusing on 

credible sets that did not contain any coding or splice site variant (Methods, Extended Data 

Fig. 5a).

Fine-mapped GWAS variants showed striking enrichments (up to 48-fold) in ABC enhancers 

in cell types relevant to each trait (Fig. 1a). These enrichments were stronger in ABC 

enhancers than in previously defined enhancer regions (Fig. 1a, Extended Data Fig. 5b–d), 

and in some cases showed evidence of allele-specific H3K27ac signals (Methods).

For example, fine-mapped variants for IBD were significantly enriched in ABC enhancers 

in 65 biosamples (Fisher’s exact test PBonferroni < 0.001; “enriched biosamples”), including 

56 of the 66 biosamples corresponding to immune cell types/cell lines and gut tissue (Fig. 

1a; Supplementary Table 6). The most enriched biosample showed 21-fold enrichment and 

corresponded to activated dendritic cells, which are known to play an important role in the 

initiation of inflammation in IBD13,14.

Across all signals for these 72 traits, ABC enhancers contained 40% of the 2,520 noncoding 

variants with PIP >= 95%, compared to 7.5% of all common noncoding variants (Fig. 1b, 

Extended Data Fig. 5e,f). For IBD and 12 blood cell traits, which have better coverage of 

relevant cell types in our dataset, ABC enhancers contained 46% of 732 noncoding variants 

with PIP >= 95% (Fig. 1c). Importantly, this analysis likely underestimates the proportion of 

causal variants residing in ABC enhancers because we still lack appropriate data for many 

relevant cell types. We anticipate that a majority of causal noncoding GWAS variants will 

reside in ABC enhancers when ABC maps are expanded to include hundreds of additional 

cell types (Extended Data Fig. 5e).
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Evaluating gene predictions

We next used ABC to connect noncoding GWAS signals to target genes. For each trait, we 

intersected fine-mapped variants (PIP >= 10%) with ABC enhancers in enriched biosamples, 

and assigned each credible set to the target gene with the highest ABC score (“ABC-Max”) 

(Supplementary Note 1).

For example, the 1q32.1 IBD risk locus had been previously fine-mapped to identify two 

independent credible sets (Extended Data Fig. 1b)9. Both credible sets include noncoding 

variants with PIP >= 10% that overlap ABC enhancers in monocytes stimulated with 

bacterial lipopolysaccharide (LPS), the biosample with the second highest enrichment for 

IBD (Fig. 1a). For both credible sets, ABC-Max predicted that these enhancers regulate 

multiple genes in the locus, but the gene with the highest ABC score was IL10, a key 

anti-inflammatory cytokine known to be important for IBD14 (Extended Data Fig. 6a).

To evaluate ABC-Max and other previous predictions, we examined a set of 64 genes 

previously linked to IBD based on coding variants or evidence from experimental models14 

(Supplementary Tables 8, 9). We analyzed the 37 noncoding credible sets within 1 Mb of 

one of these genes, and tested how often ABC-Max or other methods prioritized the known 

gene above all other genes in the locus (median genes per locus: 15; range: 4–67). We 

visualized performance using a precision-recall plot, where recall is the fraction of credible 

sets for which the known gene is identified (sensitivity), and precision is the fraction of 

predicted genes corresponding to known genes (positive predictive value) (Fig. 1c).

As a baseline, we tested the heuristic of assigning each GWAS credible set to the closest 

gene — a method that is widely used to annotate GWAS loci15,16 and has been shown to 

assign ~70% of metabolite GWAS loci to genes with plausible biochemical functions17. 

Connecting the lead variant to the closest gene correctly identified the known IBD gene for 

30 of 37 credible sets (81% precision, Fig. 1c). A similar approach, “closest transcription 

start site (TSS)”, identified the known IBD gene in 27 of 37 cases (73% precision, Fig. 1c, 

Supplementary Note 2).

We next evaluated other approaches to connect regulatory variants to disease genes, 

including predictions based on eQTL signals18–21, 3D contacts27, gene set enrichment22, 

or other enhancer-gene maps23–30 (Methods). Most of these approaches achieved lower 

precision and recall than closest gene (Fig. 1c).

Finally, we evaluated ABC-Max. Of the 37 credible sets, 18 included a variant that 

overlapped an ABC enhancer in an enriched biosample, and ABC-Max identified the known 

gene in 17 of 18 cases (94% precision, 49% recall) (Fig. 1c). Thus, ABC-Max identifies 

a high-confidence set of genes at these IBD GWAS loci, with higher precision than other 

enhancer maps. While ABC-Max had lower recall than closest gene, the fraction of loci 

with a prediction will likely increase upon expanding the ABC maps to include additional 

relevant cell types in the gut.

Because this curated gene set may harbor certain biases, we conducted additional analyses 

to benchmark ABC-Max for IBD and other traits (Supplementary Note 2). We found that 
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ABC-Max selected genes at IBD loci that showed stronger gene set enrichments compared 

to other approaches (Extended Data Fig. 6b), often selected the gene with the closest TSS 

(Extended Data Fig. 6c), and strongly enriched for identifying high-confidence genes for an 

independent set of 10 quantitative blood traits (17-fold enrichment, Extended Data Fig. 6d). 

Together, these analyses demonstrate that ABC maps can accurately connect fine-mapped 

variants to target genes for IBD and other complex traits.

We made several observations that help to explain the good performance of ABC-Max 

(Supplementary Note 2). Most notably, assigning each credible set to the gene with the 

strongest ABC score (“ABC-Max”; precision = 94% for known IBD genes) performed far 

better than assigning each credible set to all genes linked to an IBD variant (“ABC-All”; 

precision = 17%) (Extended Data Fig. 6e). This was because individual variants often 

overlapped ABC enhancers that were predicted to regulate multiple genes (median: 3, range: 

1–17), with the known gene having the highest ABC score (e.g., Extended Data Fig. 6a). 

Choosing the gene with the highest score was also important for optimal performance of 

other prediction methods, such as those based on eQTLs (Extended Data Fig. 6e). This 

complexity appears to be a fundamental feature of mammalian gene regulation: cis-eQTL 

studies indicate that noncoding variants often regulate multiple genes31, and CRISPR 

experiments have identified individual enhancers that regulate up to 8 genes in cis4,32. Our 

observations are consistent with a model where, while variants often affect the expression of 

multiple genes, only a subset of these effects are likely relevant to disease (Supplementary 

Note 1)33.

Regulatory mechanisms at GWAS loci

Having demonstrated that ABC identifies cell types and genes relevant to specific 

phenotypes, we next applied ABC-Max to GWAS signals for 72 diseases and traits. ABC-

Max made a prediction for 5,036 noncoding credible sets, nominating a total of 4,976 fine-

mapped variants that overlapped enhancers linked to 2,249 unique genes (Supplementary 

Table 10). The distance from the noncoding variant in the ABC enhancer to the TSS of the 

predicted target gene ranged from <1 Kb to 1.1 Mb (median: 13 Kb), and 1,139 of 5,036 

predictions involved a gene that was not the closest (Fig. 2a).

These predictions provide a resource for identifying genes, pathways, and regulatory 

properties at GWAS loci. For example, ABC-Max made predictions for 47 noncoding IBD 

credible sets, nominating 43 unique genes (4 genes were linked to 2 independent signals 

in the same locus, Fig. 2b, Supplementary Tables 10, 11). Many of these genes have 

previously reported functions in immunity and inflammation, and were enriched for genes 

in the interferon gamma pathway (6 genes; 12-fold enrichment), lymphocyte activation 

(11 genes; 7-fold enrichment), and regulation of transcription from RNA polymerase II 

promoter (21 genes; 5-fold enrichment) (Fig. 2b). ABC-Max also identified genes that 

were not the closest or previously annotated gene, such as at the 22q13 IBD locus, which 

has been annotated as corresponding to TAB1/MAP3K7IP134,35. Here, ABC-Max linked 

variants in two independent credible sets to platelet derived growth factor beta (PDGFB) 

in mononuclear phagocytes (MNPs; e.g., monocytes, macrophages, and dendritic cells), 

supporting a causal role for PDGF signaling in IBD36 (Fig. 2c). We also identified intergenic 
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IBD risk variants linked to LRRC32 and RASL11A (Supplementary Note 3, Extended Data 

Fig. 7), and variants located in introns of ANKRD55 and ZMIZ1 linked to different nearby 

genes (see below).

Cell-type specific links to disease

Identifying the cell type in which a gene influences disease can provide additional insights 

into disease etiology. We characterized the cell-type specificity of ABC predictions, and 

found that ABC enhancers containing fine-mapped variants were active in a median of only 

4 biosamples, compared to 120 biosamples for the promoters of their target genes (Fig. 3a).

For IBD, the cell-type specificity of ABC-Max predictions identified cases where a variant 

was predicted to act only in specific cell lineages or stimulated immune cell states (Extended 

Data Fig. 8a, b), and allowed grouping genes by cell type to improve the detection of 

enriched gene sets (Extended Data Fig. 8c). At one IBD locus (5q11.2), we identified 

a single fine-mapped IBD risk variant (rs7731626, PIP = 28%) that overlapped an ABC 

enhancer and was linked to IL6ST only in T cell subsets and fetal thymus tissue, even 

though IL6ST is expressed in most cell types. Using CRISPRi perturbations, we confirmed 

that this predicted enhancer regulates IL6ST in a T cell line but not in 3 other B-cell or 

monocytic cell lines (Extended Data Fig. 8d).

Such cell-type specific effects appeared to lead to cases where a single gene could affect 

multiple traits. For example, IKZF1 encodes a transcription factor involved in several 

stages of hematopoietic differentiation, and was linked by ABC to IBD and 11 other traits 

via different variants in 18 credible sets, including variants associated with erythrocyte, 

monocyte, or neutrophil count that overlapped ABC enhancers in erythroblasts, monocytes, 

or CD34+ hematopoietic progenitors, respectively (Extended Data Fig. 9a). In total, we 

identified 577 genes that were each linked by ABC-Max to different traits through different 

variants (Fig. 3b, Supplementary Table 12), and where the predicted variants overlapped 

ABC enhancers in different sets of biosamples. These 577 genes appeared to have complex 

enhancer landscapes: they had (i) more predicted ABC enhancer connections (median 466 

across all cell types versus 261 for other genes), (ii) more ABC enhancer connections 

per cell type in which the gene was expressed (median 4.8 versus 3.3), and (iii) more 

surrounding noncoding sequence (median 301 Kb versus 128 Kb distance to the closest 

neighboring TSSs, independent of ABC predictions) (Fig. 3c, Extended Data Fig. 9b,c). 

These observations suggest that genes with complex enhancer landscapes are more likely 

to influence multiple traits, which may reflect constraints on their precise cell-type specific 

transcriptional control37.

From association to function at 10q22.3

To explore how ABC maps might accelerate experimental studies to characterize individual 

GWAS loci, we examined the IBD risk locus at chromosome 10q22.3, where ABC 

prioritized an unexpected gene. A single high-probability variant (rs1250566, PIP = 19%), 

located in an intron of ZMIZ1, overlapped an ABC enhancer in several immune cell 

types, including MNPs (Fig. 4a,b). Although this locus has previously been annotated as 
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corresponding to ZMIZ115,34,38, ABC-Max linked this variant to a different nearby gene, 

PPIF. PPIF has a higher ABC score than ZMIZ1 because the variant is in more frequent 3D 

contact with the promoter of PPIF than with the promoter of ZMIZ1 (by a factor of 2.3).

To obtain evidence that variation in the predicted PPIF enhancer could affect IBD risk, 

we used CRISPRi-FlowFISH4 to perturb each of the 163 accessible elements in a 712 Kb 

region around PPIF in four human immune cell lines, with and without stimulation with 

appropriate immune ligands. We identified 14 enhancers that regulated PPIF expression in at 

least one of these conditions (Extended Data Fig. 10a,b, Supplementary Table 4). Only one 

of these 14 enhancers contained a fine-mapped IBD variant (the enhancer initially predicted 

by ABC-Max), and this enhancer had a particularly strong effect on PPIF expression (up to 

43% effect in THP1 cells in unstimulated and LPS-stimulated conditions, two-sided t-test P 
< 10−111) (Fig. 4c, Extended Data Fig. 10b–e).

PPIF encodes cyclophilin D, a ubiquitously expressed protein that regulates metabolism, 

reactive oxygen species signaling, and cell death by controlling the mitochondrial 

permeability transition and mitochondrial membrane potential (Δψm)39. Accordingly, we 

tested whether the PPIF enhancer containing the IBD variant might tune Δψm in THP1 cells. 

We infected cells with a pool of CRISPRi gRNAs targeting the PPIF enhancer and promoter, 

stained cells with MitoTracker Red (a fluorescent dye with signal that increases with Δψm), 

sorted cells into 3 bins based on their level of fluorescence, and sequenced the gRNAs 

in each bin to infer their effects on Δψm (Extended Data Fig. 10f). CRISPRi targeting of 

the PPIF enhancer or promoter indeed increased Δψm in THP1 cells in LPS-stimulated, 

but not unstimulated, conditions (Fig. 4d, Extended Data Fig. 10g–h), consistent with the 

expected direction of effect of PPIF. These experiments indicate that this enhancer can tune 

the metabolic state of mitochondria in cells responding to inflammatory stimuli. Notably, 

changes in Δψm have been previously linked to inflammatory responses in macrophages40, 

suggesting a path by which tuning PPIF expression could affect IBD risk.

Interestingly, PPIF has an extremely complex enhancer landscape (top 0.3% of genes with 

the most ABC enhancer-connections, Fig. 3c), and the PPIF locus also harbors GWAS 

signals for 39 other diseases and traits in addition to IBD (Extended Data Fig. 10a). 

By comparing these variants to our CRISPRi data, we found a distinct enhancer that 

regulated PPIF only in GM12878 lymphoblastoid cells and contained a variant associated 

with lymphocyte count and multiple sclerosis (Extended Data Fig. 10b–d). Together, these 

observations suggest that cell-type specific transcriptional regulation of PPIF may influence 

risk for multiple complex diseases and traits (Supplementary Note 4).

Discussion

This work creates genome-wide maps of >6 million enhancer-gene connections that 

illuminate the functions of disease variants. We leverage these maps to identify new genes 

and pathways for IBD, nominate genes that control different traits through effects in 

different cell types, and identify a role for an enhancer of PPIF in tuning mitochondrial 

function in macrophages. We have also prospectively applied ABC maps to identify 

a variant that regulates TET2 in hematopoietic progenitors to influence risk for clonal 
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hematopoiesis41. By dramatically narrowing the search space of possible variants, cell types, 

and target genes at any given GWAS locus, ABC maps should accelerate variant-to-function 

studies for many diseases. To facilitate such studies, these maps are available at https://

www.engreitzlab.org/abc/.

Our study has several limitations that highlight areas for future work (Supplementary Note 

5). (i) ABC does not perfectly predict the effects of distal enhancers, and does not capture 

other types of transcriptional or post-transcriptional regulatory elements. (ii) Many of these 

ABC maps involve analysis of epigenomic data from a single individual and therefore 

miss enhancers present only in certain genotypes or environments. (iii) Assessing the 

performance of gene predictions requires good sets of gold-standard genes, which remain 

limited and may contain biases (e.g., toward the closest gene, or toward genes that tolerate 

coding variation). (iv) ABC-Max assumes a single causal gene per variant, but enhancers 

containing disease variants often appear to have highly pleiotropic effects. Systematic 

experimental studies will be required to explore whether some variants act through effects 

on multiple genes and cell types.

In summary, our approach illuminates a path toward creating a comprehensive map of 

enhancer regulation in the human genome. By refining computational models such as ABC 

and collecting the needed epigenomic data, it should be possible to create an accurate map 

of enhancers and their target genes in cis across thousands of cell types and states in the 

human body. These maps would provide a foundational reference for identifying disease 

genes and cell types. Such a project is becoming feasible, and will be an essential resource 

for understanding gene regulation and the genetic basis of human diseases.

Methods

Immune cell lines

We generated epigenomic data to build the ABC Model and/or performed CRISPRi 

experiments in the following human immune cell lines: THP1 (monocytic-like cell line, 

acute monocytic leukemia), BJAB (B cell-like cell line, EBV-negative inguinal Burkitt’s 

lymphoma), GM12878 (EBV-immortalized lymphoblastoid cell line), U937 (monocytic-like 

cell line, histiocytic lymphoma), and Jurkat (T cell-like, T cell leukemia).

Cell culture.—We maintained cells at a density between 100K and 1M per ml (250K–

1M per ml for GM12878) in RPMI-1640 (Thermo Fisher Scientific, Waltham, MA) with 

10% heat-inactivated FBS (15% for GM12878, HIFBS, Thermo Fisher Scientific), 2mM 

L-glutamine, and 100 units/ml streptomycin and 100 mg/ml penicillin by diluting cells 

1:8 in fresh media every three days. Cell lines were regularly tested for Mycoplasma, and 

authenticated through comparison of epigenomic data to published datasets.

Stimulation conditions for ABC maps and CRISPRi experiments.—We 

stimulated BJAB cells with 4 μg/ml anti-CD40 (Invitrogen-140409-82) and 10 μg/ml 

anti-IgM (Sigma-I0759) for 4 hours. We stimulated Jurkat cells with 5 μg/ml anti-CD3 

(Biolegend-317315) and 100 ng/ml phorbol 12-myristate 13-acetate (PMA, Sigma-P1585) 

for 4 hours. We stimulated THP1 cells with 1 μg/ml bacterial lipopolysaccharide (LPS) from 
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E. coli K12 (LPS-EK Invivogen tlrl-peklps) for 4 hours. We stimulated U937 cells with 200 

ng/ml LPS for 4 hours.

Stimulation conditions for ABC maps across extended timecourse in THP1 
cells.—For THP1 cells, we generated epigenomic data examining a longer time-course, by 

stimulating with PMA (100 ng/mL) for 12 hours, then removing PMA and adding LPS (1 

μg/mL) and profiling at 0, 1, 2, 6, 12, 24, 48, 72, 96, and 120 hours after addition of LPS. 

Because THP1 cells adhere when stimulated with PMA (changing into a more macrophage-

like state), we harvested cells by taking out the media, washing twice, adding TrypLE 

for 5 minutes at 37°C, then supplementing with 100 μL of media, removing cells from 

the round-bottom plate and pelleting. These data were used to generate ABC predictions 

included in the 131 biosamples.

Epigenomic profiling of immune cell lines

To build ABC maps in human immune cell lines, we generated ATAC-seq and H3K27ac 

ChIP-seq data in BJAB, Jurkat, THP1, and U937 cells, with and without stimulation with the 

ligands described above.

ATAC-seq.—We applied ATAC-seq as previously described42, with modifications. Briefly, 

we washed 50,000 cells once with 50 μl of cold 1x PBS and added 50 μl of Nuclei Isolation 

EZ Lysis Buffer (SIGMA NUC101-1KT) to resuspend gently, immediately centrifuging at 

500xg for 10 minutes at 4°C. The lysis buffer was decanted away from the nuclei pellet. 

Afterwards, we resuspended the nuclei in 100 μl of Nuclei Isolation EZ Lysis Buffer again 

and centrifuged at 500xg for 5 minutes at 4°C and re-decant the lysis buffer, which we 

found to decrease mitochondrial reads although at the cost of library complexity. We then 

resuspended the nuclear pellet in 50 μl of transposition reaction mix (25 μl Buffer TD, 2.5 

μl TDE1 (Illumina 15028212); 7.5 μl water, 15 μl PBS, to increase salinity which we found 

to increase signal-to-noise) and incubated the mix at 37°C for 30 minutes in a PCR block. 

Immediately following the transposition reaction, we split the 50 μl reaction volume into 

two and we added 25 μl of guanidine hydrochloride (Buffer PB, Qiagen 28606) to each as 

a chaotropic agent to stop the reaction and dissociate the proteins and transposase from the 

DNA. Keeping one of the reactions as backup, we proceeded with one by adding 1.8X SPRI 

beads (Agencourt A63881), waiting 5 minutes for the DNA to associate to the beads, and 

then washing the beads twice using 80% EtOH. We then eluted the DNA from the beads 

using 10 μl of water and added to it 25 μl NEBNext HiFi 2x PCR MasterMix (NEB M0541), 

with 2.5 uL of each of the dual-indexed Illumina Nextera primers (25 μM). We amplified 

the PCR reaction to 15 cycles, as previously described. We purified amplified libraries and 

removed adapters using two clean-ups with 1.8x volume SPRI (Agencourt A63881). We 

sequenced these libraries on an Illumina HiSeq 2500. We filtered, aligned, and processed the 

data to generate BAM files as previously described32.

H3K27ac ChIP-seq.—We generated and analyzed ChIP-seq data from 5 million cells 

in each cell line and stimulation state, following protocols previously described43. Before 

harvesting for ChIP-seq, cells at 1 million cells per mL were replenished by a 1:2 (v/v) 

split in fresh media and allowed to grow for 4 hours. 10 million cells were harvested from 
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each cell type at 500K cells/mL and washed 2x in cold PBS. Cells were resuspended in 

warm PBS with 1% formaldehyde (Cat #28906, Thermo Scientific) and incubated at 37°C 

for 10 minutes. Crosslinking was quenched by adding glycine to a concentration of 250 

mM and incubating for 5 minutes at 37°C. Cells were placed on ice for 5 minutes, then 

washed 2x in ice-cold PBS and snap-frozen in liquid nitrogen and stored. Later, crosslinked 

cells were lysed in 1 mL cell lysis buffer (20 mM Tris pH 8.0, 85 mM KCl, 0.5% NP40) 

and incubated on ice for 10 minutes. The nuclear pellet was isolated by spinning the 

cell lysis mix at 5,600xg at 4°C for 3.5 minutes and discarding the supernatant. Nuclear 

pellets were lysed by adding 1 mL nuclear lysis buffer (10 mM Tris-HCl pH 7.5 ml, 1% 

NP-40 alternative (CAS 9016-45-9), 0.5% Na Deoxycholate, 0.1% SDS) with protease 

inhibitors on ice for 10 minutes. The chromatin-containing nuclear lysate was sonicated 3x 

using a Branson sonifier (ON 0.7s, OFF 1.3s, TIME 2 minutes, WATTS 10–12), with 1 

minute rest between sonifications. Sonicated chromatin was spun down at maximum speed. 

300 μL of the clarified supernatant was diluted 1:1 with ChIP dilution buffer (16.7 mM 

Tris-HCl pH 8.1, 1.1% Triton X-100, and 167 mM NaCl, 1.2 mM EDTA, 0.01% SDS). To 

immunoprecipitate H3K27ac, 3 μl of H3K27ac monoclonal antibody (Cat #39685, Active 

Motif) was added to each sample and rotated overnight at 4°C. The following morning, 50 

uL of a 1:1 mix of Protein A (Cat #10008D, Invitrogen) and Protein G Dynabeads magnetic 

beads (Cat #10004D, Life Technologies) were washed with blocking buffer (PBS, 0.5% 

Tween20, 0.5% BSA with protease inhibitors), resuspended in 100 μl blocking buffer, and 

added to each sample. The samples were rotated end-over-end for 1 h at 4°C to capture 

antibody complexes, then washed as follows: once with 200 μl Low-Salt RIPA buffer (0.1% 

SDS, 1% Triton X-100, 1 mM EDTA, 20 mM Tris-HCl pH 8.1, 140 mM NaCl, 0.1% Na 

Deoxycholate), once with 200 μL High-Salt RIPA buffer (0.1% SDS, 1% Triton X-100, 1 

mM EDTA, 20 mM Tris-HCl pH 8.1, 500 mM NaCl, 0.1% Na Deoxycholate), twice with 

200 μL LiCl buffer (250 mM LiCl, 0.5% NP40, 0.5% Na Deoxycholate, 1 mM EDTA, 10 

mM Tris-HCl pH 8.1), and twice with 200 μl TE buffer (10 mM Tris-HCl pH 8.0, 1 mM 

EDTA pH 8.0). Chromatin was then eluted from the beads with 60 μl ChIP elution buffer 

(10 mM Tris-HCl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.1% SDS). Crosslinking was 

reversed by adding 8 μL of reverse cross-linking enzyme mix (250 mM Tris-HCl pH 6.5, 

62.5 mM EDTA pH 8.0, 1.25 M NaCl, 5 mg/ml Proteinase K (Cat #25530-049, Invitrogen), 

62.5 μg/ml RNase A (Cat #111199150001, Roche)) to each immunoprecipitated sample, 

as well as to 10 μl of the sheared chromatin input for each sample brought to volume of 

60 μl ChIP elution buffer. Reverse crosslinking reactions were incubated 2 h at 65°C and 

cleaned using Agencourt Ampure XP SPRI beads (Cat #A63880, Beckman Coulter) with a 

2x bead:sample ratio. Sequencing libraries were prepared with KAPA Library Preparation 

kit (Cat #KK8202, KAPA Biosystems). ChIP libraries were sequenced using single-end 

sequencing on an Illumina Hiseq 2500 machine (Read 1: 76 cycles, Index 1: 8 cycles), to a 

depth of >30 million reads per ChIP sample.

Curation of published epigenomic data

Supplementary Table 2 lists the data sources for each ABC biosample, and Supplementary 

Table 1 describes the epigenomic datasets generated for this study.
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ENCODE.—We downloaded BAM files for DNase-seq and H3K27ac ChIP-seq 

experiments from the ENCODE Portal on July 17, 201744. We selected hg19-aligned 

BAM files that were marked as “released” by the ENCODE Portal and were not 

flagged as “unfiltered”, “extremely low spot score”, “extremely low read depth”, “NOT 

COMPLIANT”, or “insufficient read depth”.

Roadmap.—We downloaded BAM files for DNase-seq and H3K27ac ChIP-seq from the 

Roadmap Epigenomics Project (http://egg2.wustl.edu/roadmap/data/byFileType/alignments/

consolidated/) on July 12, 201745.

Other studies.—We downloaded FASTQ files for DNase-seq, ATAC-seq, and ChIP-seq 

data from 13 other studies (Supplementary Table 2), and processed them using our custom 

pipelines as described below.

Merging cell types.—We created a list of cell types across all sources for which we 

had at least one chromatin accessibility experiment (DNase-seq or ATAC-seq) and one 

H3K27ac ChIP-seq experiment. In cases where the same cell types were included in data 

from the Roadmap Epigenome Project and also from the ENCODE Portal, we used the 

processed data from Roadmap. In some cases, we combined data from multiple sources 

(e.g., ENCODE data and our own datasets) to expand the number of cell types considered. 

As a result of this merging, some “cell types” in our dataset represent data from a single 

donor and experimental sample, whereas others involve a mixture of multiple donors and/or 

experimental samples.

Processing of ATAC-seq and ChIP-seq data

We aligned reads using BWA (v0.7.17)46, removed PCR duplicates using the 

MarkDuplicates function from Picard (v1.731, http://picard.sourceforge.net), and filtered 

to uniquely aligning reads using samtools (MAPQ >= 30, https://github.com/samtools/

samtools)47. The resulting BAM files were used as inputs into the ABC Model.

Activity-by-Contact model predictions

We used the Activity-by-Contact (ABC) model (https://github.com/broadinstitute/ABC-

Enhancer-Gene-Prediction) to predict enhancer-gene connections in each cell type, based 

on measurements of chromatin accessibility (ATAC-seq or DNase-seq) and histone 

modifications (H3K27ac ChIP-seq), as previously described4. In a given cell type, the ABC 

model reports an “ABC score” for each element-gene pair, where the element is within 

5 Mb of the TSS of the gene. (We previously found that the exact window used does 

not significantly affect performance; here, we used 5 Mb to maintain consistency with our 

previous study)4.

Briefly, for each cell type, we:

1. Called peaks on the chromatin accessibility dataset using MACS2 with a lenient 

p-value cutoff of 0.1
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2. Counted chromatin accessibility reads in each peak and retained the top 150,000 

peaks with the most read counts. We then resized each of these peaks to be 500 

bp centered on the peak summit. To this list we added 500 bp regions centered on 

all gene TSS’s and removed any peaks overlapping blacklisted regions (version 

1 from https://sites.google.com/site/anshulkundaje/projects/blacklists)8,48. Any 

resulting overlapping peaks were merged. We call the resulting set of regions 

candidate elements.

3. Calculated element Activity by first counting reads in each candidate element 

in chromatin accessibility and H3K27ac ChIP-seq experiments, and then taking 

the geometric mean of the two assays. Chromatin accessibility and H3K27ac 

ChIP-seq signals in each candidate element were quantile normalized to the 

distribution observed in K562 cells.

4. Calculated element-promoter Contact using the average Hi-C signal across 10 

human Hi-C datasets as described below.

5. Computed the ABC Score for each element-gene pair as the product of Activity 

and Contact, normalized by the product of Activity and Contact for all other 

elements within 5 Mb of that gene.

Average Hi-C—To generate a genome-wide averaged Hi-C dataset, we downloaded KR 

normalized Hi-C matrices for 10 human cell types4. For each cell type we:

1. Transformed the Hi-C matrix for each chromosome to be doubly stochastic.

2. We then replaced the entries on the diagonal of the Hi-C matrix with the 

maximum of its four neighboring bins.

3. We then replaced all entries of the Hi-C matrix with a value of NaN or 

corresponding to KR normalization factors < 0.25 with the expected contact 

under the power-law distribution in the cell type.

4. We then scaled the Hi-C signal for each cell type using the power-law 

distribution in that cell type as previously described.

5. We then computed the “average” Hi-C matrix as the arithmetic mean 

of the 10 cell-type specific Hi-C matrices. This Hi-C matrix (5 

Kb resolution) is available here: ftp://ftp.broadinstitute.org/outgoing/lincRNA/

average_hic/average_hic.v2.191020.tar.gz

The averaged Hi-C contacts correlate well with cell-type specific Hi-C contacts (e.g., R2 

= 0.91 for K562 cells, Supplementary Fig. 1). We have previously shown that the ABC 

Score is able to make accurate cell-type specific enhancer-gene predictions using this 

averaged Hi-C dataset, and outperforms other approaches that use loops or distance instead 

of quantitative contact frequency (see Fulco et al 20194). We also find here that using 

averaged Hi-C data performs similarly to using cell-type specific promoter capture Hi-C 

data (Extended Data Fig. 4d).
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Promoter Capture Hi-C—In some evaluations of the performance of the ABC model 

to CRISPR data (Extended Data Fig. 4e–h), we used ABC predictions where the contact 

component of the ABC Score is derived from the raw counts in PC-HiC experiments. The 

PC-HiC data was processed as follows:

1. We downloaded PC-HiC raw count data from the BLUEPRINT consortium49.

2. Contacts from restriction fragments which overlap baited promoter regions were 

linearly adjusted based on the total number of detected contacts for the baited 

region(s).

3. We re-binned the data from restriction fragment sites to 5kb resolution.

4. To fill in missing values for very short-range contacts, we imputed contact 

data between the baited restriction fragment and itself using the power-law 

distribution.

The Contact for an enhancer-gene pair is assigned as the counts observed in the PC-HiC 

experiment corresponding to the baited fragment overlapping the gene promoter and the 

5-Kb bin overlapping the element.

Estimating promoter activity—In each cell type, we assign enhancers only to genes 

whose promoters are “active” (i.e., where the gene is expressed and that promoter 

drives its expression). We defined active promoters as those in the top 60% of 

Activity (geometric mean of chromatin accessibility and H3K27ac ChIP-seq counts). 

We used the following set of TSSs (one per gene symbol) for ABC predictions, 

as previously described4: https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction/

blob/v0.2.1/reference/RefSeqCurated.170308.bed.CollapsedGeneBounds.bed. We note that 

this approach does not account for cases where genes have multiple TSSs either in the same 

cell type or in different cell types.

For computing global statistics of ABC enhancer-gene connections (Extended Data Fig. 

2), we considered all distal element-gene connections (“distal elements” here refers to 

chromatin-accessible regions that are not promoters of protein-coding genes) with an ABC 

score >= 0.015 and within a distance of 2 Mb.

Processing ABC predictions for variant overlaps

For intersecting ABC predictions with variants, we took the predictions from the ABC 

Model and applied the following additional processing steps: (i) We considered all distal 

element-gene connections with an ABC score >= 0.015 (see Extended Data Fig. 4; lower 

threshold than our previous study4 to increase recall and identify gain-of-function variants 

that increase enhancer activity), and all distal or proximal promoter-gene connections with 

an ABC score >= 0.1 (based on our previous experimental data4). (ii) We shrunk the 

~500-bp regions by 150-bp on either side, resulting in a ~200-bp region centered on the 

summit of the accessibility peak. This is because, while the larger region is important 

for counting reads in H3K27ac ChIP-seq, which occur on flanking nucleosomes, DNA 

sequences important for enhancer function, such as transcription factor footprints, are most 

often found in the central nucleosome-free region50. In practice, this adjustment does not 
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substantially affect the enrichment of fine-mapped IBD variants (Extended Data Fig. 5d). 

(iii) We included enhancer-gene connections spanning up to 2 Mb — greater than the 

maximum distance of the longest-range enhancer-gene connection we have identified in 

CRISPR experiments to date (~1.8 Mb).

CRISPRi-FlowFISH

We applied CRISPRi-FlowFISH to very sensitively test the effects of distal elements on 

gene expression4. Briefly, CRISPRi-FlowFISH involves targeting putative enhancers with 

many independent guide RNAs (gRNAs; median = 45) in a pooled screen using CRISPR 

interference (CRISPRi), which alters chromatin state via recruitment of catalytically dead 

Cas9 fused to a KRAB effector domain. After infecting a population of cells with a gRNA 

lentiviral library, we estimate the expression of a gene of interest. Specifically, we: (i) use 

fluorescence in situ hybridization (FISH, Affymetrix PrimeFlow assay) to quantitatively 

label single cells according to their expression of an RNA of interest; (ii) sort labeled cells 

with fluorescence-activated cell sorting (FACS) into 6 bins based on RNA expression; (iii) 

use high-throughput sequencing to determine the frequency of gRNAs from each bin; and 

(iv) compare the relative abundance of gRNAs in each bin to compute the effects of gRNAs 

on RNA expression. CRISPRi-FlowFISH provides ~300 bp resolution to identify regulatory 

elements; has power to detect effects of as low as 10% on gene expression; and provides 

effect size estimates that match those observed in genetic deletion experiments4.

Here, we applied CRISPRi-FlowFISH to comprehensively test all putative enhancers in 

a ~700-Kb region around PPIF, and to validate additional selected enhancers (for 12 

additional genes) that contained variants associated with IBD or other immune diseases 

or traits. For CRISPRi-FlowFISH experiments for PPIF, we designed gRNAs tiling across 

all accessible regions (here, defined as the union of the MACS2 narrow peaks and 250-bp 

regions on either side of the MACS2 summit) in the range chr10:80695001-81407220 

in any of the following cell lines (+/− stimulation as described above): THP1, BJAB, 

Jurkat, GM12878, K562, Karpas-422, or U937. For CRISPRi-FlowFISH experiments for 

other genes, we included gRNAs targeting the promoter of the predicted gene and selected 

enhancer(s) nearby. We excluded gRNAs with low specificity scores or low-complexity 

sequences as previously described4. We generated cell lines expressing KRAB-dCas9-IRES-

BFP under the control of a doxycycline-inducible promoter (Addgene #85449) and the 

reverse tetracycline transactivator (rtTA) and a neomycin resistance gene under the control 

of an EF1α promoter (ClonTech, Mountain View, CA), as previously described12. For each, 

we sorted polyclonal populations with high BFP expression upon addition of doxycycline. 

For GM12878 cells, we used an alternative lentiviral construct to express the rtTA with 

a hygromycin resistance gene, as GM12878 appeared resistant to selection with neomycin/

G418.

We performed CRISPRi-FlowFISH using ThermoFisher PrimeFlow (ThermoFisher 

88-18005-210) as previously described, using the probesets listed in Supplementary Table 

13. To ensure robust data, we only included probesets with twofold signal over unstained 

cells, and required an uncorrected knockdown at the TSS of >20%. We analyzed these 

data as previously described4. Briefly, we counted gRNAs in each bin using Bowtie51 to 
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map reads to a custom index, normalized gRNA counts in each bin by library size, then 

used a maximum-likelihood estimation approach to compute the effect size for each gRNA. 

We used the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (implemented in 

the R stats4 package) to estimate the most likely log-normal distribution that would have 

produced the observed guide counts, and the effect size for each gRNA is the mean of its 

log-normal fit divided by the average of the means from all negative-control gRNAs. As 

previously described, we scaled the effect size of each gRNA in a screen linearly so that 

the strongest 20-guide window at the TSS of the target gene has an 85% effect, in order 

to account for non-specific probe binding in the RNA FISH assay (this is based on our 

observation that promoter CRISPRi typically shows 80–90% knockdown by qPCR)4. We 

averaged effect sizes of each gRNA across replicates and computed the effect size of an 

element as the average of all gRNAs targeting that element. We assessed significance using 

a two-sided t-test comparing the mean effect size of all gRNAs in a candidate element to all 

negative-control guides. We computed the FDR for elements using the Benjamini-Hochberg 

procedure and used an FDR threshold of 0.05 to call significant regulatory effects.

Comparison of ABC predictions to genetic perturbations

We evaluated the ability of the ABC Score and other enhancer-gene prediction methods 

to predict the results of genetic perturbations using a precision-recall framework. For this 

analysis the true positives are the experimentally measured element-gene pairs which are 

statistically significant and for which perturbation of the element resulted in a decrease 

in gene expression. For these comparisons, (i) we only considered experimentally tested 

elements in which the element is not within 500bp of an annotated gene transcription start 

site; (ii) for perturbations using CRISPRi we excluded pairs in which the element resides 

within the gene body of the assayed gene; (iii) we excluded non-significant pairs for which 

the power to detect a 25% change in gene expression was < 80%; and (iv) we only included 

pairs for which the gene is protein-coding (although the ABC model can make predictions 

for non-coding genes, many of the other predictions methods we compare to do not make 

predictions for such genes).

For each experimentally measured element-gene-cell-type tuple, we intersected this tuple 

with the tuple in the predictions database corresponding to the same cell type, same gene 

and overlapping element. In cases in which the genomic bounds of an experimentally tested 

element overlap multiple predicted elements, we aggregated the prediction scores using an 

aggregation metric appropriate to each individual predictor (for ABC we used ‘sum’, for 

correlation- or confidence-based predictors we used ‘max’). Similarly, if the predictor did 

not make a prediction for a particular tuple, it received an arbitrary quantitative score less 

than the least confident score for the predictor (for ABC we used 0, for other predictors we 

used 0, −1, 1 as appropriate). Supplementary Table 5 lists the experimental data merged with 

the predictions.

In the cases in which an enhancer-gene prediction method did not make cell-type specific 

predictions, we evaluated the predictions against experimental data in all cell types 

(Extended Data Fig. 4e). We calculated the area under the precision-recall curve (AUPRC) 
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for predictors, or, if the predictor was defined at only one point, we multiplied the precision 

by the recall.

Similarity of ABC Predictions among replicates and biosamples

We evaluated the reproducibility of ABC predictions derived from replicate epigenetic 

experiments. For each biosample in which independent biological replicate experiments 

for both ATAC-Seq (or DNase-Seq) or H3K27ac ChIP-Seq were available, we generated 

ABC predictions for replicates 1 and 2 separately. In order to facilitate the reproducibility 

analysis, when computing the ABC Scores for replicate 2, we used the candidate enhancer 

regions from replicate 1. (Using different sets of candidate regions can confound computing 

reproducibility. For example, the procedure to define candidate regions (peak calling, 

extending and merging) could call two separate ~500bp regions in one replicate, but merge 

them into a ~1-kb region in the second replicate due to minor differences in the peak 

summits between replicates. In such a case the ABC Score of the ~1-kb region would be 

equal to the sum of the ABC Scores of the 500-bp regions.)

We then evaluated the quantitative reproducibility of the predictions (Extended Data Fig. 

3c) and the number of predictions shared between replicates (Extended Data Fig. 3d). We 

observed that on average 85% of enhancer-gene predictions in one replicate are shared 

in the other replicate (at an ABC Score threshold of 0.015). The fraction of shared 

connections between biological replicates increased as the ABC score cutoff increased: 95% 

of connections called in replicate 1 at a higher confidence threshold of 0.02 were also called 

in replicate 2 (at the default threshold of 0.015).

We also evaluated the extent to which the reproducibility of ABC predictions depends on 

the reproducibility of the underlying epigenetic data. For each biosample, we computed the 

correlation between the ATAC-Seq (or Dnase-Seq) or H3K27ac ChIP-Seq signals in the 

candidate regions for that biosample. As expected, we observed that the fraction of shared 

ABC predictions between replicates increased as the correlation of the underlying epigenetic 

data increased (Extended Data Fig. 3e).

We used a similar calculation to compare ABC predictions across cell types and biosamples. 

For each pair of biosamples we computed the fraction of predicted enhancer-gene 

connections shared between the pair. For this analysis we used the shrunken ABC elements 

(~200bp, see above) and considered two connections to be shared if the elements overlapped 

at least 1 bp and predicted to regulate the same gene.

Genetic data and fine-mapping

We downloaded summary statistics for IBD, Crohn’s disease (CD), and ulcerative colitis 

(UC) (European ancestry only)52 from https://www.ibdgenetics.org/downloads.html. We 

obtained fine-mapping posterior probabilities and credible sets from Huang et al.9, and 

analyzed the top two conditionally independent credible sets in each locus. We also analyzed 

variants from IBD GWAS loci that were not fine-mapped in this study52,53; for each such 

locus, we analyzed all 1000 Genomes variants in LD with the lead variant (r2 > 0.2) and 

weighted each variant evenly (probability = 1 / number of variants in LD). We observed 

similar results for cell type enrichments with or without including these non-fine-mapped 
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sets. Throughout this text, analyses of “IBD” signals are defined as signals associated with 

CD, UC, or both.

We obtained fine-mapping results and summary statistics for 73 other traits based on 

an unpublished analysis (Jacob Ulirsch, Masahiro Kanai, and Hilary Finucane) that 

analyzed data from the UK Biobank (Application #31063; fine-mapping available at https://

www.finucanelab.org/data). In this analysis, up to 361,194 individuals of white British 

ancestry with available phenotypes and variants with INFO > 0.8, minor allele frequency 

(MAF) > 0.01%, and Hardy-Weinberg equilibrium (HWE) p-value > 1e-10 were included in 

the GWAS. Covariates for the top 20 PCs, sex, age, age2, sex*age, sex*age2, and dilution 

factor where applicable were controlled for in the association studies. Quantitative traits 

were inverse rank transformed and associations were estimated using BOLT-LMM54 for 

quantitative traits and SAIGE55 for binary traits. In-sample dosage LD was computed 

using LDStore56, and phenotypic variance was computed empirically. Fine-mapping was 

performed using the Sum of Single Effects (SuSiE) method57, allowing for up to 10 causal 

variants in each region. Prior variance and residual variance were estimated using the default 

options, and single effects (potential 95% CSs) were pruned using the standard purity filter 

such that no pair of variants in a CS could have r2 > 0.25. Regions were defined for each 

trait as +/− 1.5 Mb around the most significantly associated variant (with this window 

chosen based on LD structure in the human population), and overlapping regions were 

merged. Variants in the MHC region (chr6: 25–36 Mb) were excluded as were 95% CSs 

containing variants with fewer than 100 minor allele counts. Coding (missense and predicted 

loss of function) variants were annotated using the Variant Effect Predictor (VEP) version 

8558. For analysis with ABC, we excluded neuropsychiatric traits (for which we expect 

existing enhancer-gene maps will not include the appropriate cell types), traits with no 

entirely noncoding GWAS signals, and analyzed only the variants that SuSIE assigned to 

belong to 95% credible sets (cs_id != −1).

For all traits, except where specified, we considered only the “noncoding credible sets” 

— i.e., those that did not contain any variant in a coding sequence or within 10 bp of a 

splice site annotated in the RefGene database (downloaded from UCSC Genome Browser on 

24/06/2017)59. We note that predictions for all credible sets, both coding and noncoding, are 

reported in Supplementary Table 10 to facilitate future analyses.

Defining enriched biosamples for each trait

For a given trait, we intersected variants with PIP >= 10% in noncoding credible sets with 

ABC enhancers (or other genomic annotations). For each biosample, we calculated a P-value 

using a binomial test comparing the fraction at which PIP >= 10% variants overlapped ABC 

enhancers with the fraction at which all common variants overlap ABC enhancers in that 

cell type. We calculated the latter using common variants in 1000 Genomes as described in 

the S-LDSC section. For each trait, we defined a biosample as significantly enriched for that 

trait if the Bonferroni-corrected binomial P-value was < 0.001.
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Comparison of enrichment of fine-mapped variants in enhancer regions

We compared the enrichment of fine-mapped variants in ABC enhancers and other enhancer 

definitions (Extended Data Fig. 5c). We analyzed each of the previous studies from Fig. 1c 

reporting cell-type specific enhancer-gene predictions, and also ChromHMM enhancers in 

blood cells downloaded from the BLUEPRINT Project60,61.

Stratified linkage disequilibrium score regression (S-LDSC)

We compared cell type enrichments observed for fine-mapped variants to those observed 

with stratified linkage disequilibrium score regression (S-LDSC), which considers not only 

variants in genome-wide significant GWAS loci but also in sub-significant loci. To do so, we 

used S-LDSC to assess the enrichment of disease or trait heritability in ABC enhancers, 

considering all variants across the genome62. We analyzed the ABC enhancer regions 

as defined above, and ran LD score regression using the baselineLD_v1.1 model using 

the 1000G_EUR_Phase3_baseline file (downloaded from https://data.broadinstitute.org/

alkesgroup/LDSCORE/; defined as variants in 1000 Genomes with minor allele count >5 

in 379 European samples). For comparison, we also analyzed heritability enrichment in all 

other accessible regions for each trait. Specifically, we took the list of MACS2 peaks (FDR 

< 0.05), removed those that overlapped ABC enhancers, and used these regions in S-LDSC.

Partitioning the genome into disjoint functional categories

To compare the frequency of variants occurring in ABC enhancers as opposed to other 

functional elements such as coding sequences and splice sites (Extended Data Fig. 5f), we 

partitioned the genome into the following functional categories, using the RefGene database 

(downloaded from UCSC Genome Browser on 24/06/2017): coding sequences (CDS), 5’ 

and 3’ untranslated regions (UTR) of protein-coding genes, splice sites (within 10 bp of 

a intron-exon junction of a protein-coding gene) of protein-coding genes, promoters (±250 

bp from the gene TSS) of protein-coding genes, ABC enhancers in 131 biosamples, other 

accessible regions in the same biosamples not called as ABC enhancers, and other intronic 

or intergenic regions. These categories may overlap; a disjoint annotation was created by 

assigning each nucleotide to the first of any overlapping categories in the order above 

(e.g., nucleotides in both coding sequences and ABC enhancers were counted as coding 

sequences).

Overlap with H3K27ac QTLs

We downloaded H3K27ac data in monocytes and T cells from the Blueprint Project, and 

analyzed allele-specific signals called by the WASP method as previously described63. 

We examined variants associated with allelic effects on H3K27ac where FDR < 0.05 and 

the variant was located within the associated peak. Of 52 fine-mapped IBD variants that 

overlapped ABC enhancers in any T-cell or myeloid biosample, 10 variants had genome-

wide significant allelic effects on H3K27ac ChIP-seq (3.6-fold enrichment versus other 

common variants that overlap ABC enhancers in T cells or myeloid cells). For example, we 

found significant allelic effects for rs11643024 in T cells (linked by ABC to Suppressor of 

Cytokine Signaling 1 (SOCS1) located 93 Kb away) and for rs9808651 in monocytes (linked 
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by ABC to ERG, located 32Kb away). This analysis indicates that some prioritized causal 

variants have allelic effects on enhancer activity.

Evaluating gene prediction methods

Curated genes for inflammatory bowel disease.—We analyzed a list of IBD disease 

genes curated by Graham and Xavier (2020).14 To evaluate methods to connect noncoding 

GWAS variants to genes, we analyzed credible sets within 1 Mb of exactly 1 of these known 

genes that did not contain any protein-coding or splice site variants. In cases where the gene 

was curated based on evidence from coding variation, we examined nearby conditionally 

independent noncoding signals, which might act via regulatory effects on the same gene that 

carries the coding variant.

Gene set enrichment for IBD predictions.—As a second approach for comparing 

methods for identifying causal genes in IBD GWAS loci, we examined the extent to which 

the predicted genes were enriched for any gene sets. To do so, we downloaded curated and 

Gene Ontology gene sets from the Molecular Signatures Database64. We analyzed all 93 

noncoding IBD credible sets. For each gene set, we tested whether it was enriched in the 

genes predicted by a given method, using the set of all genes within 1 Mb of IBD credible 

sets as the background, excluding HLA genes. For Extended Data Fig. 6b, we applied 

this approach to each of the methods described in Fig. 1c, selected the 5 gene sets with 

the highest enrichment that also had at least five identified genes and hypergeometric test 

P-value < 10−4. We plotted a CDF of the enrichments for each of the methods across the 

union of the top 5 gene sets identified by any of the methods.

Likely causal gene for blood traits.—We identified genes carrying fine-mapped coding 

variants with high posterior probability (PIP >= 50%) associated with one of 10 blood 

cell traits (Baso, Eosino, Hb, LOY, Lym, MCH, Mono, Neutro, RBC, WBC), for which 

our ABC maps and other previous predictions include many of the relevant cell types. 

We used the Variant Effect Predictor (VEP)58 to identify protein-truncating variants and 

damaging missense variants. Because of the large number of total genome-wide significant 

associations, many loci had multiple known genes within 1 Mb of the signal, which may or 

may not point to the same gene. Accordingly, we examined noncoding credible sets where 

exactly 1 gene within 1 Mb carried such a coding variant, and where that gene was not more 

than the tenth closest gene to the variant with the highest PIP. To compute the enrichment 

for ABC and other methods in identifying such genes, we calculated: Enrichment = (# true 

positive predictions / # predictions) / (# positive genes in the considered credible sets / # all 

genes near the considered credible sets).

Comparisons to alternative variant-to-gene predictions

We compared ABC-Max to previously published results from alternative methods to link 

regulatory variants to disease genes.

eQTL Colocalization (Open Targets Platform).—OpenTargets.org performed 

colocalization analysis between IBD GWAS signals52,53 and eQTLs and pQTLs using 

coloc15. This analysis involved QTL datasets from a variety of sources including 
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dozens of human tissues and many immune cell types, including from the eQTL 

Catalogue65. We downloaded colocalization results from ftp://ftp.ebi.ac.uk/pub/databases/

opentargets/genetics/190505/v2d_coloc/ on February 1, 2020, and examined genes showing 

colocalization with an eQTL or pQTL in any biosample. We considered genes with coloc 

h4 probability >= 0.9, and h4/h3 ratio >= 2. We used the coloc h4 probability to rank genes 

within each locus.

eQTL Colocalization (JLIM).—Chun et al. tested colocalization of IBD GWAS signals 

with eQTLs in CD4+ T cells, CD14+ monocyte, and LCLs18. We obtained their colocalized 

genes from Table 2. We used the JLIM p-value to rank genes within each locus.

TWAS (S-PrediXcan and multiXcan).—Barbeira et al. developed multiXcan and 

compared GTEx v7 eQTLs to IBD summary statistics20. We downloaded Dataset 6 and 

compared genes within each locus using the multiXcan p-value.

Mendelian randomization.—Hauberg et al. used a Mendelian randomization based 

approach (SMR) to connect IBD GWAS signals to effects on gene expression using eQTL 

data from 24 tissues21. We downloaded Table S3 and defined predicted genes in any tissue. 

We used the SMR false discovery rate to rank genes within each locus.

COGS.—Javierre et al. (2016) used promoter-capture Hi-C data in many blood cell types to 

link GWAS variants to target genes49. We downloaded Table S3 (Tab 2) and analyzed genes 

linked with COGS scores >=0.5.

In all cases, we combined predictions of disease genes for IBD, UC, and CD.

Comparisons to previous enhancer-gene predictions

We compared the ABC model to methods using alternative enhancer-gene linking 

approaches. For each of the methods below, we downloaded previous predictions of 

enhancer-gene links, and assessed (i) their ability to predict enhancer-gene regulation in 

CRISPR datasets (Extended Data Fig. 4) and (ii) their ability to identify IBD genes (Fig. 1c, 

Extended Data Fig. 6b). For the latter analysis, we used the predictions from each method 

to overlap fine-mapped variants (PIP >= 10%) with enhancers in any cell type and assigned 

variants to the predicted gene(s).

Promoter-capture Hi-C.—We downloaded Data S1 peak data from Javierre et al. 
(2016)49, representing promoter-capture Hi-C data from 9 hematopoietic cell types, and 

selected the promoter-distal region pairs with CHiCAGO score >= 5. For comparison to 

CRISPR data we used the CHiCAGO score as a quantitative predictor.

DHS-promoter correlation (ENCODE2).—Thurman et al. (2012) linked distal 

accessible elements with gene promoters by looking at correlation of DNase I 

hypersensitivity across 125 cell and tissue types from ENCODE28. We downloaded these 

links from ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/

byDataType/openchrom/jan2011/dhs_gene_connectivity/

genomewideCorrs_above0.7_promoterPlusMinus500kb_withGeneNames_32celltypeCatego
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ries.bed8.gz. GWAS loci with high-confidence fine-mapped variants that overlapped these 

regions were assigned to the linked gene(s).

eRNA-mRNA correlation (FANTOM5).—Andersson et al. (2014) linked transcriptional 

activity of enhancer and transcription start sites using the FANTOM5 CAGE 

expression atlas25. We downloaded these predictions from http://enhancer.binf.ku.dk/presets/

enhancer_tss_associations.bed.

Enhancer-gene correlation (Ernst Roadmap).—Liu, Ernst et al. (2017) correlated 

gene expression with five active chromatin marks (H3K27ac, H3K9ac, H3K4me1, 

H3K4me2, and DNase I hypersensitivity) across 56 biosamples, and then used these 

correlation links to make predictions for the predicted enhancers (regions with the “7Enh” 

ChromHMM state) in 127 biosamples from the Roadmap Epigenome Atlas23,45. We 

downloaded these predictions from www.biolchem.ucla.edu/labs/ernst/roadmaplinking and 

made predictions using the “confidence score”.

Enhancer-gene correlation (Granja single-cell RNA and ATAC-seq).—Granja et 
al. (2019) analyzed single-cell ATAC-seq and RNA-seq data in peripheral blood and bone 

marrow mononuclear cells, CD34+ bone marrow cells, and cancer cells from leukemia 

patients, and correlated ATAC-seq signal in accessible elements with the expression of 

nearby genes24. We downloaded these predictions from https://github.com/GreenleafLab/

MPAL-Single-Cell-2019, and used the correlation in healthy samples as the quantitative 

score. Cell-type specific links were not reported.

EnhancerAtlas 2.0.—Gao et al. (2020) used EAGLE to predict enhancer-gene 

interactions across a number of human tissues and cell lines29. The method calculates a 

score based on six features obtained from the information of enhancers and gene expression: 

correlation between enhancer activity and gene expression across cell types, gene expression 

level of target genes, genomic distance between an enhancer and its target gene, enhancer 

signal, average gene activity in the region between the enhancer and target gene and 

enhancer–enhancer correlation. We downloaded enhancer annotations for 104 cell types 

from http://www.enhanceratlas.org/.

Enhancer-gene correlation (DNase-seq and microarray gene expression).—
Sheffield et al. (2013) correlated DNase I signal and gene expression levels using data 

from 112 human samples representing 72 cell types to identify regulatory elements and to 

predict their targets26. We downloaded these predictions from http://dnase.genome.duke.edu/ 

and used the correlation as the quantitative score. Cell-type specific links were not reported.

JEME.—Cao et al. (2017) computed correlations between gene expression and various 

enhancer features (e.g., DNase1, H3K4me1) across multiple cell types to identify a set of 

putative enhancers27. Then a sample-specific model is used to predict the enhancer gene 

connections in a given cell type. We downloaded the lasso-based JEME predictions in all 

ENCODE+Roadmap cell types from http://yiplab.cse.cuhk.edu.hk/jeme/. We used the JEME 

confidence score as a quantitative score.
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TargetFinder.—Whalen et al. 2016 built a model to predict whether nearby enhancer-

promoter pairs are located at anchors of Hi-C loops based on chromatin features30. We 

downloaded the TargetFinder predictions from https://raw.githubusercontent.com/shwhalen/

targetfinder/master/paper/targetfinder/combined/output-epw/predictions-gbm.csv. For each 

distal element-gene pair in our dataset, we searched to see if the element and gene TSS 

overlapped an enhancer and promoter loop listed in this file. If so, we assigned the pair a 

score corresponding to the ‘prediction’ column from this file; otherwise the pair received a 

score of 0.

Comparisons to previous GWAS gene prediction methods

Finally, we compared to two previous GWAS gene prediction methods:

MAGMA.—We applied MAGMA66 to the summary statistics for IBD52 using the 1000 

Genomes Project reference panel to compute gene-level association statistics and gene-gene 

correlations using the SNP-wise mean gene analysis and a 0 Kb window around the gene 

body for mapping SNPs to genes. For each gene, MAGMA computes a gene p-value from 

the mean chi-square statistic of SNPs in the gene body and its approximate sampling 

distribution. The gene p-value is converted to a z-score using the probit function. The 

resulting z-score reflects the gene-trait association after correcting for linkage disequilibrium 

(LD) among SNPs within the gene body. We assigned each IBD locus to the gene with the 

maximum positive z-score.

DEPICT.—We applied DEPICT, which leverages pathway analysis and cell-type 

enrichment analysis from gene expression datasets to analyze genome-wide significant 

loci and prioritize causal genes22. We applied DEPICT to the summary statistics for each 

trait using the 1000 Genomes Project reference panel and DEPICT’s 14,461 reconstituted 

gene sets to prioritize genes in genome-wide significant loci. First, we performed PLINK 

clumping with a p-value threshold of 5×10−8, r2 threshold of 0.05, and distance threshold of 

500 Kb as recommended by the DEPICT software to identify associated variants. Loci are 

defined by taking all genes that reside within boundaries defined by the most distal variants 

in either direction with LD > 0.5 to the lead variant identified by PLINK clumping. DEPICT 

then scores genes by correlating their membership to reconstituted gene sets to those of 

other genes in genome-wide significant loci and performs a bias adjustment for the scores. 

Finally, to prioritize genes in each locus, we prioritized the single gene in each genome-wide 

significant locus with the most significant p-value.

Cell-type specific gene set enrichments

We assessed whether the cell-type specificity of the ABC predictions for IBD variants 

could aid in identifying gene pathways enriched in IBD GWAS loci. To do so, we defined 

7 cell type categories based on the biosamples available in our compendium and based 

on biological categories relevant to IBD: mononuclear phagocytes, B cells, T cells, other 

hematopoietic cells, fibroblasts, epithelial cells or tissues, and other cells or tissues. We 

then examined the extent to which the genes predicted by ABC in any cell type category, 

or in each individual cell type category, were enriched for gene sets from the Molecular 

Signatures Database64, as described above.
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Assessing pleiotropy across 72 traits

We identified genes linked to multiple traits through different variants. To identify such 

genes, we identified genes that were predicted by ABC-Max to be linked to at least two 

different traits by two different variants, where that gene was not linked to the same two 

traits by any single variant. (i.e., a gene linked to two traits by each of two variants would 

not fit this criteria). Because some of the 72 traits show high genetic correlation, we repeated 

these analyses in a subset of 36 traits that were selected to show pairwise genetic correlation 

below a threshold (|rg| < 0.2), plus IBD. We observed similar effects in this subset of the 

data, where genes linked to multiple traits via different variants were more likely to have 

complex enhancer landscapes and large amounts of nearby noncoding genomic sequence.

Single-guide qPCR validation of e-PPIF

Two non-overlapping guides against PPIF TSS (GCGGCCGAGCGGCTTCCCGT 

and GAACCTGGGCAAGCCAATAA) and e-PPIF (GACTCAAGATACCACCACCGG 

and GATGGCCAGTTTGGGAACGT), along with four non-targeting 

control guides (GAGATGAAAGCGCAGCTAGGG, GGGCGCTTACGCGCGGGCCG, 

GCGCGCGCTAACTGGCGCTA, GATGTGTTGTAACCTCCACT), were cloned into 

sgOpti as previously described12. We generated stable cell lines expressing each sgRNA 

by lentiviral transduction in 8 μg/ml polybrene by centrifugation at 1200 × g for 45 

minutes with 200,000 CRISPRi THP1 cells in 24 well plates. After 24 hours, we selected 

for transduction with 1 μg/ml puromycin (Gibco) for 72 hours then maintained cells in 

0.3 μg/ml puromycin. We plated sgRNA-expressing stable cell lines at 100,000 cells/ml 

in 1 μg/ml doxycycline and harvested cells 48 hours later by lysing in Buffer RLT 

(Qiagen). For each sgRNA, we generated three independent polyclonal cell populations 

through triplicate infections and treated each cell population with doxycycline twice, 

for a total of six biological replicates per sgRNA. We extracted RNA from 20,000 

cells per experiment in Buffer RLT (Qiagen) using Dynabeads MyOne Silane beads 

(Thermo Fisher), treated samples with TURBO DNase (Thermo Fisher), and cleaned 

again with Dynabeads MyOne Silane beads. We used AffinityScript reverse transcriptase 

(Agilent Technologies, Lexington, MA) and random nonamer primers to convert RNA 

to cDNA. We performed qPCR using SYBR Green I Master Mix (Roche) with primers 

for PPIF (AGAACTTCAGAGCCCTGTGC, CATTGTGGTTGGTGAAGTCG) and GAPDH 

(AGCACATCGCTCAGACAC, GCCCAATACGACCAAATCC) and calculated differences 

using the ΔΔCT method.

Assessing the effect of PPIF and e-PPIF on mitochondrial membrane potential.

We synthesized a pool of 105 gRNAs including 40 negative control gRNAs, 9 gRNAs 

targeting the promoter of PPIF, and 5 gRNAs targeting the PPIF enhancer (Agilent 

Technologies, Inc.; see Supplementary Table 14), cloned these gRNAs into CROP-seq-opti 

(Addgene #106280), and transduced THP1 cells at a multiplicity of infection of 0.3 to 

ensure most cells contained 1 gRNA integration.

For untreated and LPS-stimulated conditions, we plated 10M cells per replicate with 1 

μg/mL doxycycline. After 44 hrs, we added 1 μg/mL LPS and harvested cells for staining 4 

hrs later. For the PMA LPS condition, we plated 10M cells per replicate and added 1μg/mL 
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doxycycline for 48 hrs. To differentiate into macrophage-like cells, we added fresh media 

with 20 ng/mL PMA and 1μg/mL doxycycline for an additional 24 hrs, confirming that cells 

adhered to the tissue culture plate. We washed out the PMA and added fresh media with 

1μg/mL doxycycline and incubated cells for 45 hrs to recover and further differentiate cells. 

We then added 100 ng/mL LPS for 3 hrs, harvested cells, washed 3x with cold PBS, and 

proceeded to mitochondrial staining.

We stained cells with MitoTracker Red (200nM, Thermo Fisher, M7512) and MitoTracker 

Green (200nM, Thermo Fisher, M7514 ) according to the manufacturer’s protocol and 

sorted cells into 3 bins according to their ratio of MitoTracker Red (which stains 

mitochondria dependent on Δψm) to MitoTracker Green (which stains mitochondria 

independent of Δψm), excluding a small population of depolarized cells with very low Δψm 

(Extended Data Fig. 10f). We extracted genomic DNA and amplified and sequenced gRNAs 

from cells in each bin as previously described4.

We aligned and counted gRNAs in each bin as described above for FlowFISH experiments. 

For each gRNA, we summed counts across the two biological replicates. We then calculated 

the frequency fold-change in Fig. 4d and Extended Data Fig. 10g by dividing gRNA reads 

per million by the mean value for negative-control gRNAs, and dividing values in each bin 

by the value for Bin 3.

Data Visualization

We developed a web application for interactively exploring ABC enhancer-gene 

connections, by extending HiGlass67, a flexible genome browser toolkit: https://

flekschas.github.io/enhancer-gene-vis/ (Supplementary Fig. 2). The application features 

three linked views: the enhancer view at the top left, the gene view at the bottom left, 

and the DNA accessibility view on the right. The enhancer view supports pan-and-zoom for 

navigation and allows the user to focus on a gene or genomic region. The gene and DNA 

accessibility views are linked to the enhancer view and update automatically. Each view is 

interactive, customizable, and exportable. The design of the user interface and visualizations 

have been refined through several participatory exploration sessions.
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Extended Data

Extended Data Fig. 1. ABC maps connect fine-mapped variants to enhancers, genes, and cell 
types.
(a) Overview of approach.

(b) ABC predictions connect two IBD GWAS signals to IL10. Signal tracks show DNase- or 

ATAC-seq (based on availability of data). Red arrows represent ABC predictions connecting 

variants to IL10. Dashed line shows transcription start site (TSS). Gray bars highlight 

fine-mapped variants that overlap ABC enhancers in at least one cell type. Credible set 1 

contains two variants, both of which overlap enhancers predicted to regulate IL10 in various 
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cell types. Credible set 2 contains four variants, one of which overlaps an enhancer predicted 

to regulate IL10 in monocytes stimulated with LPS.

Extended Data Fig 2. Properties of ABC Predictions
(a) Cumulative fraction of the number of ABC enhancers within each biosample (median = 

17,605).

(b) Cumulative fraction of the number of enhancer-gene connections within each biosample 

(median = 48,441).
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(c) Cumulative fractions of the number of enhancers predicted to regulate each gene across 

all biosamples (black line, median = 2, mean = 2.8) and the mean number of enhancers 

predicted to regulate each gene within each biosample (red line, median = 2.8).

(d) Cumulative fractions of the number of genes regulated by each ABC enhancer across 

all genes and all biosamples (black line, median = 1, mean = 2.7) and the mean number of 

genes regulated by each ABC enhancer within each biosample (red line, median = 2.7).

(e) Cumulative fractions of the genomic distances between the enhancer and the gene 

for each predicted enhancer-gene connection across all genes and all biosamples (black 

line, median = 62,929bp) and the median genomic distance between each enhancer-gene 

connection within each biosample (red line, median = 62,782 bp).

(f) Number of ABC enhancers predicted in 131 biosamples stratified by whether the 

epigenomic data for the biosample is derived from one or multiple donors. We do not 

observe significant differences between these distributions (two-sided Wilcoxon p-value = 

0.10). Boxplot displays median, 25th and 75th percentiles.

(g) Summary of ABC predictions in K562. Plot includes 122,410 non-promoter DHS 

elements in K562. Each element is classified as an ‘ABC Enhancer’ if the element is 

predicted to regulate at least one gene, or ‘Other Accessible Region’ otherwise. Horizontal 

axis represents distance from the element to the closest transcription start site (TSS) of an 

expressed gene. Vertical axis represents the percentile bin of the Activity of the element (in 

terms of DHS and H3K27ac signals) among these 122,410 elements. The coloring of the 

heatmap represents the fraction of elements in the corresponding distance and Activity bins 

that are ABC Enhancers.
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Extended Data Fig. 3. Distinctness and Reproducibility of ABC predictions
(a) Distinctness of predictions across biosamples. Biosample vs. biosample (131 × 131) 

heatmap. The color of the (i,j) pixel in the heatmap represents the fraction of enhancer-gene 

connections (‘EG connections’ – which are defined to be an element-gene pair whose ABC 

Score is greater than 0.015) in biosample i that have a corresponding overlapping prediction 

in biosample j. Two connections are considered overlapping if the predicted genes are the 

same and the enhancer elements overlap. Rows and columns are ordered by hierarchical 

clustering. A median of 19% (median of row medians) of enhancer-gene connections are 

shared across distinct biosamples.

(b) Distribution of shared connections by relatedness of samples. Distribution of the 

fraction of shared connections in (a) stratified by the relatedness of the samples. Each pair 

of biosamples is classified as: ‘Same Cell Line’ which indicates the same cell line under 

different perturbation conditions or from different compendia, ‘Same Primary Tissue Type’ 

which indicates the same tissue type from different compendia, ‘Same Lineage’ which 

indicates samples from the same lineage classification as in (a), Other refers to all other pairs 

of samples.

(c) Quantitative reproducibility of ABC Predictions. ABC Scores computed using 

independent biological replicates of epigenomic data (ATAC-Seq and H3K27ac ChIP-Seq) 

from the BJAB cell line. Each data point is an element-gene pair.
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(d) Fraction of shared enhancer-gene connections between replicates increases as ABC 
Score cutoff increases. X-axis: Cutoff on the ABC Score. Y-axis: For a given cutoff of the 

ABC Score, the fraction of element-gene pairs with an ABC score greater than the cutoff 

in sample 1 that have an ABC score > 0.015 in sample 2. Each biosample is classified as: 

‘Multiple Donors’, which indicates that the epigenetic data for this biosample is derived 

from different donors, or ‘Single Donor’, which indicates that the epigenetic data for this 

biosample is derived from the same donor or cell line. For ‘Single Donor’ biosamples, 

replicates represent independent epigenomic experiments from the same donor or cell 

line; for ‘Multiple Donor’ biosamples, replicates represent epigenomic experiments from 

different donors. Separate curves are computed for each biosample and then the average 

across biosamples is plotted.

(e) Fraction of shared enhancer-gene connections increases as reproducibility of 
underlying epigenetic data increases. Each data point represents a biosample. X-axis: 

geometric mean of correlation of ATAC-Seq (or DNase-Seq) and H3K27ac ChIP-Seq signal 

in candidate regions computed using replicate epigenetic experiments. Y-axis: Fraction of 

EG connections with ABC Score > 0.015 in replicate 1 which also have ABC Score > 0.015 

in replicate 2. Colors as in (d)
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Extended Data Fig. 4. ABC performs well at identifying regulatory enhancer-gene connections in 
CRISPR datasets.
(a) Comparison of enhancer-gene predictors to experimental CRISPR data in 
K562 cells. Each of these predictors makes K562-specific predictions. Curves represent 

continuous predictors. Dots represent binary predictors as follows: (E) Each gene is 

predicted to be regulated only by the element closest to its transcription start site, (G) each 

element is predicted to regulate only the nearest (to TSS) expressed gene, (T) TargetFinder 

method30, (L) elements and genes at opposite ends of HiCCUPS loops derived from Hi-C 

data are predicted as a connection68, (D) an element-gene pair is a predicted positive if and 

only if the element and the gene are contained within the same contact domain68. Red dot 
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on ABC score curve: precision and recall achieved using a threshold on the ABC score of 

0.015. Dashed black line: rate of experimental positives.

(b) Comparison of ABC predictions using a binary distance threshold to experimental 
CRISPR data in K562 cells. “Activity (< X kb)” represents a model in which the score for 

an element-gene pair is the Activity of the element (in terms of DHS and H3K27ac signals) 

multiplied by a binary indicator (1 if the distance is < X Kb, and 0 otherwise). The ABC 

model using quantitative Hi-C outperforms the models based on binary thresholds indicating 

that Hi-C data is a critical component of the ABC model.

(c) Comparison of ABC and other enhancer-gene predictors in full CRISPR dataset. 
Comparison of enhancer-gene predictors to experimental CRISPR data in K562, GM12878, 

NCCIT, BJAB (+/− stimulation), Jurkat (+/− stimulation), THP1 (+/− stimulation) cells and 

primary hepatocytes. For ABC, we used the predictions in the cell type corresponding to 

the CRISPR experiments. Because ABC is the only method that makes predictions in all of 

these cell types, we used this plot to compare ABC to other methods that make predictions 

without cell-type information. We consider each enhancer-gene pair predicted by these 

methods to be a prediction in all cell types.

(d) Comparison of ABC and Ernst-Roadmap predictions. Comparison of enhancer-gene 

predictors to experimental CRISPR data in K562, GM12878, and unstimulated Jurkat, 

BJAB, THP1 cells. Red line represents comparison of ABC scores computed using 

epigenetic data from the same cell type as the CRISPR experiment was performed.To 

compare Roadmap predictions to CRISPR data, we made cell type substitutions because 

the Roadmap predictions did not include BJAB, Jurkat, and THP1 cells: for BJAB CRISPR 

data we compared to predictions in the Roadmap B cell sample (E032); for THP1 data we 

used the Roadmap monocyte sample (E124); and for Jurkat data we used the Roadmap 

T cell sample (E034). To directly compare the performance of ABC and Ernst-Roadmap 

methods in matched cell types, we also calculated ABC performance using the same cell 

type substitutions (green line) – for example CRISPR data in BJAB cells was compared to 

ABC Scores computed using epigenetic data from the Roadmap B cell sample (E032).

(e) Comparison of ABC to Promoter-Capture Hi-C. Comparison of enhancer-gene 

predictors to experimental CRISPR data in K562 and unstimulated BJAB, THP1 and Jurkat 

cells. Red line represents comparison of ABC Scores computed using epigenetic data from 

the same cell type as the CRISPR experiment was performed. To compare promoter-capture 

Hi-C CHiCAGO predictions (purple line) to CRISPR data, we made cell type substitutions 

because PC-HiC data is not available in K562, BJAB, Jurkat, and THP1 cells: for K562 

CRISPR data we compared to CHiCAGO scores in erythroblasts; for BJAB CRISPR data 

we compared to total B cells; for THP1 data we compared to monocytes; and for Jurkat 

data we compared to total CD4+ T cells. To directly compare the performance of ABC 

and PC-HiC methods in matched cell types, we also calculated ABC performance using the 

same cell type substitutions (green lines). The solid green line represents ABC scores where 

the contact component is derived from the average Hi-C dataset used throughout this study. 

The dashed green line represents ABC scores where the contact component is derived from 

the raw counts in PC-HiC experiments (see Methods).

(f-h) Comparison of ABC to Promoter-Capture Hi-C Stratified by distance. These 

panels represent the comparison of the same predictors as in (e) while stratifying the 

experimental dataset in (e) based on the distance between the tested element and gene 
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transcription start site. Of the 4078 element-gene connections in the experimental dataset, 

398 are at a distance of <50kb (of which 94 are experimental positives, 24% positive rate), 

1102 are between 50kb and 200kb (20 positives, 2% positive rate), and 2578 are at a 

distance of >200kb (10 positives, 0.4% positive rate). Given the differences in positive rates 

between the stratifications (indicated by dashed black lines), it is appropriate to compare PR 

curves within each stratification, but it is not appropriate to compare the PR curve of the 

same predictor across stratifications.

Extended Data Fig. 5. Fine-mapped GWAS variants are highly enriched in ABC enhancers.
(a) Number of credible sets analyzed for 72 diseases and complex traits. Light gray shows 

total number of fine-mapped credible sets. Dark gray shows number of such credible sets 

with no coding or splice site variants, and at least one variant with PIP >= 10%. Red shows 

number of credible sets for which ABC-Max makes a prediction (i.e., a variant with PIP >= 
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10% overlaps an ABC enhancer in a biosample that shows global enrichment for that trait). 

See Supplementary Table 7 for trait descriptions and additional statistics.

(b) Enrichment of fine-mapped variants (PIP >= 10%) associated with 4 blood cell traits in 

ABC enhancers in the corresponding blood cell types or progenitors. Enrichment = (fraction 

of fine-mapped variants / fraction of all common variants) overlapping regions in each cell 

type. Numbers of biosamples in each category are shown in parentheses.

(c) Enrichment of fine-mapped IBD variants (PIP >= 10%) in ABC enhancers and other sets 

of previously defined enhancers. Cumulative density function shows distribution across cell 

types.

(d) Enrichment of fine-mapped variants (PIP >= 10%) in ABC enhancers resized in different 

ways. Regions of at least 500-bp (blue line) are used to count reads, as defined previously. 

Regions were then shrunk by 150-bp on each side (minimum size of element = 200 bp) for 

overlapping with variants. Gray lines show alternative sizes, which do not appear to notably 

affect enrichments of fine-mapped variants.

(e) % of noncoding variants across all traits that overlap an ABC enhancer in an enriched 

biosample, as a function of the number of cell types analyzed. Biosamples (131) were 

grouped into 74 cell types/tissues; and analyzed in random order. Black line: mean across 20 

random orderings. Dashed gray lines: 95% confidence intervals.

(f) Fraction of variants or heritability for all 72 traits contained in different categories of 

genomic regions: coding sequences (CDS), untranslated regions (UTR), splice sites (within 

10 bp of an intron-exon junction of a protein-coding gene), promoters (±250 bp from 

the gene TSS), ABC enhancers in 131 biosamples, other accessible regions not called as 

ABC enhancers, and other intronic or intergenic regions. In cases where a variant overlaps 

more than one category, the variant was assigned to the first category that it overlapped 

(i.e., variants in CDS were not also counted in the ABC category, Methods). Left: All 

common variants or heritability (h2, as estimated by S-LDSC in inverse-variance weighted 

meta-analysis across 74 traits). Right: Fraction of variants above a threshold on the fine-

mapping PIP.
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Extended Data Fig. 6. ABC enhancer maps connect GWAS variants to known genes.
(a) ABC predictions for IBD credible sets linked to IL10. Heatmap shows ABC scores for 

each gene within 1 Mb in selected primary immune cell types. Credible Set 1 is linked by 

ABC to multiple genes, but IL10 (red) has the strongest ABC score in any cell type.

(b) Cumulative density plot showing enrichment for gene sets in MSigDB among the genes 

prioritized by each method64. Methods are colored and categories as in Fig. 1c. For each 

method, we first identified the top 5 most enriched significant gene sets in the predictions of 

that method (82 gene sets total). Then, we calculated the levels of enrichment of all 82 gene 

sets in the predictions of each method.
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(c) Comparison of predictions for the 37 IBD credible sets near known genes. Fraction 

predictions shared = (# credible sets where both methods predict the same gene) / (# credible 

sets where both methods make a prediction). For example, 16 credible sets have predictions 

from both ABC-Max and ChromHMM-RNA correlation, and the two methods predict the 

same gene in 14 of 16 credible sets.

(d) Enrichment of likely causal genes for 10 blood traits (defined by common coding 

variants) for various prediction methods. Enrichment reflects the number of correctly 

predicted genes identified divided by the baseline of choosing random genes in each of 

the loci with a prediction.

(e) Precision-recall plot for identifying known IBD genes, comparing additional variations 

on the prediction methods (related to Fig. 1c). For ABC, we compared ABC-Max (assigning 

each credible set to the gene with the maximum ABC score, red circle), ABC-Max 

excluding all immune and gut tissue biosamples (orange circle), and ABC-All (assigning 

each credible set to all genes linked to enhancers, red triangle). For other methods that 

provided quantitative scores, we similarly compared choosing the gene with the best score 

per locus (circles) with choosing all genes above the global thresholds previously reported 

in each study (triangles). In most cases, the best gene per locus outperformed using a global 

threshold.
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Extended Data Fig. 7. ABC-Max predictions at LRRC32 and RASL11A loci.
ABC-Max predictions and chromatin state in primary immune cells and fetal colon tissue 

at 2 IBD loci: (a) LRRC32 and (b) RASL11A. Red marks variants, enhancer-gene 

connections, and target genes identified by ABC-Max. Gray bars highlight the variants 

overlapping ABC enhancers. Vertical dotted lines represent TSSs. “DCs +LPS”: dendritic 

cells stimulated with bacterial lipopolysaccharide for 4 hours.

Nasser et al. Page 37

Nature. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 8. Cell-type specificity of ABC predictions.
(a) A comparison of the number of biosample groups (cell type lineages) in which the gene 

promoter is active versus the number of categories in which a variant is predicted to regulate 

the gene by ABC-Max.

(b) Heatmap of ABC scores for predicted IBD genes in resting and stimulated mononuclear 

phagocytes (from epigenomic data in monocytes69 and dendritic cells70). IRF4 and PDGFB 

(bold) are two examples where ABC predictions are specific to a particular stimulated state 

(+LPS) and are not observed in unstimulated states.
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(c) Enrichment for top gene sets identified when performing enrichment analysis among 

the 23 IBD genes predicted by ABC-Max in mononuclear phagocytes (MNPs, dark gray), 

versus when performing the same analysis among the 43 IBD genes predicted in any 

biosample (light gray). The enrichment for a given gene is calculated as the ratio of the 

frequency at which ABC-predicted genes belong to the gene set, compared to the frequency 

at which all genes within 1 Mb of these loci belong to the gene set (Methods).

(d) A variant in an intron of ANKRD55 is predicted by the ABC Model to regulate IL6ST 
in thymus. Gray bar highlights the variant overlapping the predicted ABC enhancer. Vertical 

dotted lines represent TSSs. Red arc at top denotes ABC-Max prediction. Red arc at bottom 

denotes that CRISPRi of the highlighted enhancer significantly affects the expression of 

IL6ST only in Jurkat cells.

Extended Data Fig. 9. Genes linked by ABC to different traits via different variants.
(a) ABC links IKZF1 to 2 traits via variants in 18 credible sets. Red boxes mark enhancers 

predicted to regulate IKZF1. Thick black line marks the IKZF1 TSS. Black dots mark 

fine-mapped noncoding variants (PIP >= 10%) associated with one or more traits linked to 

IKZF1 by ABC-Max.
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(b) Genes linked to different traits via different variants have more complex enhancer 

landscapes. Cumulative distribution plots show the (left) number of ABC enhancer-gene 

connections in all 131 biosamples, and (right) the distance between the TSSs of the two 

closest neighboring genes on either side of a gene, for each gene linked by ABC-Max to 

zero traits, one trait, or two or more traits through different variants.

(c) The complexity of a gene’s enhancer landscape is correlated with the odds of the 

gene being linked to multiple GWAS traits. X-axis shows the Wald odds ratio that a 

gene is connected to multiple GWAS traits, comparing genes in the top decile versus all 

other deciles of the corresponding enhancer complexity metric. The 3 enhancer complexity 

metrics are defined for each gene: the total number of enhancers linked to the gene by ABC 

in any biosample, the number of enhancers linked to a gene per biosample in which the 

gene’s promoter is active, and the genomic distance to the closest neighboring TSS on either 

side of the gene. Dot: mean of top decile genes (n = 1,838) versus all others (n = 16,550). 

Whiskers: 95% CI.
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Extended Data Fig. 10. Enhancers and variants connected to PPIF.
(a) ABC predictions for variants near PPIF. Black dots represent either (i) fine-mapped 

variants (PIP >= 10%) for IBD and UK Biobank traits, or (ii) lead variants for any 

phenotype from the GWAS Catalog16 (the latter to show the approximate locations of 

signals for traits for which fine-mapping is not yet available). “IBD” label points to 

rs1250566. “MS” (multiple sclerosis) label points to rs1250568 (fine-mapped in2). Red 

boxes mark enhancers predicted to regulate PPIF. Thick back lines mark TSSs. Thin black 

lines mark selected variants.
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(b) CRISPRi-FlowFISH data for PPIF in 7 immune cell lines and stimulated states. 

Red boxes mark distal enhancers (CRISPR gRNAs lead to a significant decrease in the 

expression of PPIF). Dark gray box marks the gene body of PPIF, where CRISPRi cannot 

accurately assess the effects of putative regulatory elements4.

(c) Chromatin accessibility in 5-kb regions around the PPIF enhancer (e-PPIF). Signal tracks 

show ATAC-seq (for THP1 and BJAB) or DNase-seq (for GM12878 and Jurkat) data in 

reads per million. Arrows show locations of variants associated with MS and lymphocyte 

count (Lym, rs1250568) and with IBD (rs1250566), which overlap with enhancers that 

regulate PPIF in distinct sets of cell types.

(d) Effect of each tested gRNA on PPIF expression, as measured by CRISPRi-FlowFISH 

(Methods). Dots: gRNAs whose effect estimate is >0% (black) or <0% (red). Red bars 

show regions where gRNAs have a significant effect on gene expression (FDR < 0.05), as 

compared by a two-sided t-test to negative control gRNAs.

(e) Effects of 8 individual gRNAs on PPIF expression in THP1 cells, as measured by 

CRISPRi and qPCR (Methods). PPIF expression is normalized to expression of GAPDH and 

to cells expressing negative control, non-targeting gRNAs (Ctrl). Error bars: 95% confidence 

intervals of the mean (n = 6 replicates per gRNA).

(f) Schema of pooled CRISPRi screen to examine the effects of PPIF and e-PPIF on 

mitochondrial membrane potential (Δψm). Cells expressing a pool of gRNAs were stained 

with MitoTracker Red and MitoTracker Green and sorted into 3 bins of increasing 

Red:Green ratios. gRNAs from cells in each bin were PCR-amplified, sequenced, and 

counted.

(g) Effects of CRISPRi gRNAs (targeting e-PPIF, PPIF promoter, or negative controls 

(Ctrl)) on Δψm, quantified as the frequency of THP1 cells carrying those gRNAs with 

low or medium versus high MitoTracker Red signal (corresponding to Bins 1, 2, and 3, 

respectively; superset of data in Fig. 5d). We tested THP1 cells in unstimulated conditions, 

stimulated with LPS, and differentiated with PMA and stimulated with LPS (Methods). 

Error bars: 95% confidence intervals for the mean of 40, 9, and 5 gRNAs for Ctrl, PPIF, and 

e-PPIF, respectively. Two-sided rank-sum P = 0.0163 (*), 0.00426 (**), or 0.000356 (***) 

versus Ctrl.

(h) Ratios of MitoTracker Red (mitochondrial membrane potential) to MitoTracker 

Green (mitochondrial mass) signal in THP1 cells at baseline, stimulated with LPS, and 

differentiated into macrophages with PMA and stimulated with LPS in biological duplicate 

(from left to right, n = 8044, 99683, 99982, 99968, 99886, and 99878; replicates were 

cultured, stimulated, stained, and flow sorted independently). Box represents median and 

interquartile range; whiskers show minimum and maximum. Stimulation with either LPS 

alone or both PMA and LPS leads to a reduction in red:green signal, indicating a reduction 

in mitochondrial membrane potential normalized to mitochondrial mass.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ABC maps connect fine-mapped variants to enhancers, genes, and cell types.
(a) Enrichment of fine-mapped IBD variants (PIP >= 10%) in ABC enhancers (left) and all 

other accessible regions (right) in each of 131 biosamples. MNPs: mononuclear phagocytes. 

Box: median and interquartile range. Whiskers: observation less than or equal to quartile +/− 

1.5 * IQR.

(b) Fraction of noncoding variants above a given PIP threshold that overlap an ABC 

enhancer in any biosample. Black line: weighted average across 72 traits. Traces are shown 

for PIP thresholds above which there are at least 5 variants. Dashed line: fraction of all 

common noncoding variants that overlap ABC enhancers.

(c) Precision-recall for connecting noncoding IBD credible sets to known IBD genes14, 

considering 37 credible sets with 1 known gene within 1 Mb (Methods). Precision: fraction 

of identified genes corresponding to known genes. Recall: fraction of the 37 known genes 

identified. Where quantitative scores were available (e.g., colocalization probability), plot 

presents the performance of choosing the gene with the best score per locus (see also 

Extended Data Fig. 6b).
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Figure 2. Connecting variants to target genes
(a) Histograms of the (left) distances from the predicted variant to the TSS of the ABC-Max 

target gene and (right) distance rank of the gene in the locus. Data includes predictions for 

all 72 traits.

(b) ABC-Max predictions for 47 noncoding IBD credible sets linking to 43 unique genes (4 

genes are linked to 2 sets each). Heatmap: ABC scores in 6 biosample categories (maximum 

value within each category). Red scale: ABC score. Blue scale: log10 genomic distance 

from variant to gene TSS. Black boxes indicate that the gene is the closest to the lead 

SNP, was implicated in IBD risk based on coding variation or experimental evidence about 
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gene function14, was identified by prior eQTL colocalization or TWAS analyses, or is in an 

enriched gene set (Methods).

(c) ABC-Max predictions and chromatin state at the PDGFB locus. Red color denotes 

variants, enhancer-gene connections, and target genes identified by ABC-Max. Gray bars: 

variants in two credible sets overlap ABC enhancers. Vertical dotted lines: TSSs.
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Figure 3. Cell-type specificity of ABC predictions
(a) Histogram of the number of biosamples in which (red) a variant-gene connection 

is predicted by ABC-Max (i.e., an ABC enhancer regulates the target gene in a given 

biosample) and (gray) the promoter of the targeted gene is active (Methods).

(b) Histogram of the number of GWAS signals per gene (unique credible sets with no 

overlapping variants with PIP >= 10%, Methods). Model at top depicts a gene linked to 

different traits via different variants. Circles: enhancers. Black arrows: gene. Colored arrows: 

ABC predictions. Triangles: variants.

(c) Number of predicted enhancer-gene connections (per biosample in which the promoter 

of a gene is active), for genes linked by ABC-Max to zero traits, one trait by one or more 

variants, or two or more traits via different variants. Labels: two genes described in text.
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Figure 4. An enhancer regulates PPIF expression and mitochondrial function.
(a) An IBD risk variant (rs1250566) overlaps an enhancer predicted to regulate PPIF. Signal 

tracks: ATAC-seq or DNase-seq. Gray bar: enhancer containing rs1250566. Dashed lines: 

TSSs. Red arcs at top: ABC-Max predictions. Red arcs at bottom: CRISPRi leads to a 

significant decrease in PPIF expression.

(b) 1224-bp region at the PPIF enhancer (e-PPIF). Accessibility: DNase- or ATAC-seq 

from primary immune cells (DCs=dendritic cells, Mo=monocytes). Conservation: phastCons 

100-mammal alignment. Red bar: region targeted with CRISPRi gRNAs.

(c) Effects of CRISPRi at e-PPIF on the expression of PPIF in immune cell lines in resting 

and stimulated (stim) conditions. Error bars show 95% confidence intervals of the mean. 
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*: two-sided t-test PBenjamini-Hochberg < 0.05 for 164 CRISPRi gRNAs targeting e-PPIF 

compared to 814 negative control (Ctrl) gRNAs (adjusted P values from left to right: 4.68 × 

10−101, 4.86 × 10−112, 0.019, 0.044, 1.48 × 10−71).

(d) Effects of CRISPRi gRNAs (targeting e-PPIF, PPIF promoter, or negative controls (Ctrl)) 

on Δψm, quantified as the frequency of THP1 cells carrying those gRNAs with low versus 

high MitoTracker Red signal (see Extended Data Fig. 10f–h). We tested THP1 cells in 

unstimulated conditions, stimulated with LPS, and differentiated with phorbol 12-myristate 

13-acetate (PMA) and stimulated with LPS (Methods). Error bars: 95% confidence intervals 

for the mean of 40, 9, and 5 gRNAs for Ctrl, PPIF, and e-PPIF, respectively. Two-sided 

rank-sum P = 0.0163 (*), 0.00426 (**), or 0.000356 (***) versus Ctrl.
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