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ABSTRACT

The recent resurgence of deep learning (DL) has dramatically influenced the medical imaging field. Medical image anal-
ysis applications have been at the forefront of DL research efforts applied to multiple diseases and organs, including
those of the lungs. The aims of this review are twofold: (i) to briefly overview DL theory as it relates to lung image
analysis; (ii) to systematically review the DL research literature relating to the lung image analysis applications of
segmentation, reconstruction, registration and synthesis. The review was conducted following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses guidelines. 479 studies were initially identified from the literature
search with 82 studies meeting the eligibility criteria. Segmentation was the most common lung image analysis DL
application (65.9% of papers reviewed). DL has shown impressive results when applied to segmentation of the whole
lung and other pulmonary structures. DL has also shown great potential for applications in image registration, recon-
struction and synthesis. However, the majority of published studies have been limited to structural lung imaging with
only 12.9% of reviewed studies employing functional lung imaging modalities, thus highlighting significant opportuni-
ties for further research in this field. Although the field of DL in lung image analysis is rapidly expanding, concerns over
inconsistent validation and evaluation strategies, intersite generalisability, transparency of methodological detail and
interpretability need to be addressed before widespread adoption in clinical lung imaging workflow.

INTRODUCTION Whilst the fundamental theory was posited several decades
Respiratory diseases constitute significant global health ago,’ DL gained international interest in 2012 when

challenges; five respiratory diseases are among the most
common causes of death. 65million people suffer from
chronic obstructive pulmonary disease (COPD) and
339 million from asthma.? There are 1.8 million new lung
cancer cases diagnosed annually and 1.6million deaths
worldwide, making it the most common and deadliest
cancer on the planet.’ Lung imaging is a critical compo-
nent of respiratory disease diagnosis, treatment planning,
monitoring and treatment assessment. Acquiring lung
images, processing them and interpreting them clinically
are crucial to achieving global reductions in lung-related
deaths. Traditionally, the techniques employed to quantita-
tively analyse these images evolved from the disciplines of
computational modelling and image processing; however,
in recent years, deep learning (DL) has received significant
attention from the lung imaging community.

DL is a subfield of machine learning that employs artifi-
cial neural networks with multiple deep or hidden layers.

AlexNet, a type of neural network referred to as a convo-
lutional neural network (CNN), won the ImageNet Large
Scale Visual Recognition Challenge. That paper has been
cited over 47,000 times and triggered a renaissance in DL
research.” Subsequently, CNNs, and DL more generally,
began to impact the medical imaging field profoundly.
Development of fully convolutional networks such as
V-Net and ConvNet demonstrated how deep-layered archi-
tectures could provide valuable functions in solving some
of the field’s most critical applications, including common
image analysis tasks.*” Increased computational power due
to the reduced cost of graphical processing units (GPUs)
and publicly available annotated imaging data sets have
since led to rapid developments and applications.®

This review assesses the current literature on DLs role in
lung image analysis applications, discusses critical limita-
tions for clinical adoption, and sets out a roadmap for
future research.
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Figure 1. Simplified diagrams of the processes of forward propagation (left) and backpropagation (right) for a neural network
with two hidden layers. The neural network is represented as a series of nodes, each of which contains a weight and bias. The
weight and bias are combined using the activation function to produce an activation that impacts the strength of connections
within the network. Once an input has been passed through the network, it is compared to a desired output, such as an expert
segmentation of an anatomical region of interest, to produce a loss. This loss is used to propagate changes to weights and biases,
hence, changing the strength of connections for the subsequent example. The continued repetition of this two-step process is

known as network training.

Forward propagation

Input layer Hidden layers Output layer

>

Direction of forward propagation
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THEORY

Artificial neural networks

An artificial neural network (ANN), inspired by biological
neurons, can be thought of as a series of connected nodes
containing weights and biases which are combined using an
activation function to produce an activation; the activation
determines the strength of connections within the network.
At the heart of DL is optimisation; an ANN learns by opti-
mising weights and biases for a generalisable solution. This
optimisation occurs in a two-step process of forward prop-
agation and backpropagation. A basic diagram of an ANN
with two hidden layers and generalised examples of forward
propagation and backpropagation are shown in Figure 1. The
use of hidden layers in the network allows more freedom for
the weights and biases to be optimised. Forward propagation
refers to the process of feeding an example to the network
during training where the output of the neural network is
compared to a desired output and a loss is calculated using
a loss function. Backpropagation uses this loss to propagate
changes in weights and biases throughout the network; thus by
continually providing new examples, known as iterations, the
model is optimised to approximate the function between the
input and output domains. Figure 2 provides a glossary of the
key technical terms used in this review.

The structure of a DL network is known as an architecture.
In the medical imaging field, three key architectures, namely,

l f = direction and magnitude of weight update |
1

Backpropagation

Input layer Hidden layers Output layer

Direction of backpropagation

a (activation) = g(Xw + b) for input X and activation function g

CNNs, recurrent neural networks (RNNs) and generative
adversarial networks (GANs) are particularly prevalent. These
structures are outlined in Figure 3. Understanding specific
architectures such as V-Nets and GANs requires an in-depth
understanding of complex linear algebra and matrix manipu-
lation and is beyond this review’s scope; the interested reader
is directed to several excellent papers on the subject.®'?

Preprocessing

Before images are fed into a neural network, they are frequently
processed, often by accentuating differences between fore-
ground and background voxels, to enhance performance and/
or reduce training time. DL theory suggests that in high-
dimensional matrices, local minima are very unlikely; instead,
saddle points are more common due to the improbable like-
lihood that every dimension produces a minimum at the
same location. These techniques can decrease the likelihood
that the algorithm reaches a shallow saddle point, thereby
causing slower optimisation. This is achieved through regu-
larisation techniques and limiting outlier intensities. Cropping
is regularly used to restrict the processing to voxels within
the patient,'! or coarse, manually drawn bounding boxes.'?
Table 1 summarises commonly used preprocessing techniques
in the DL lung image analysis literature. In CNNs, other tech-
niques such as batch normalisation, have been shown to reduce
training time, acting as secondary regularisation techniques to
minimise outliers and improve performance.®>%
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Figure 2. Glossary of key technical terms related to deep learning and image analysis. ANN, artificial neural network.

Term

Definition

Artificial neural network

Activation function

Data augmentation

Data split

Deep learning

Epoch

Iteration

K-fold cross-validation

Layer

Loss function

Model

Network architecture

Reconstruction
Registration
Regularisation

Segmentation

Synthesis

Transfer learning

Validation

A type of artificial intelligence algorithm, inspired by biological neurons, that form a network
of connected nodes with various activations.

A non-linear function applied to a node in an ANN, taking an input combined with the weight
and bias of the node to produce an activation. Common activation functions are the sigmoid an
the ReLU functions.

The process of creating new data by manipulating the original data. For example, modified
versions of the original images can be generated by flipping, rotating and/or deforming them ir
order to create more images in the training set.

Datasets in deep learning are often divided into training, validation and testing sets. The trainin
set is used to iteratively determine optimal model parameters. The validation set is used to
adjust model parameters during training. Once optimum parameters have been reached, model
performance is evaluated on a previously unseen testing set.

A subfield of machine learning that employs ANN’s with multiple deep or hidden layers to
learn representations of data based on a desired output.

During the process of network training, once all the examples in the training set have passed
through the network, one epoch has been completed.

Each iteration is one step in the training process. An iteration refers to an input being fed to the
network before weights and biases are updated based on the comparison to an expert answer
(i.e., an expert segmentation).

The process of partitioning the dataset into training and testing sets and subsequently varying
the testing set according to the percentage data split. For example, if 20% of the data is used fo
testing, then 5-fold cross validation would be performed generating five separate models each
trained on 20% of the data. In leave-one-out cross validation, all of the data is used for training
except one case for testing; this process is repeated until all cases have been evaluated.

A layer refers to a set of nodes, or artificial neurons connected to a previous layer of neurons.
The first layer is known as an input layer and the last an output layer. Layers between the input
and output layers are known as hidden layers.

A loss function is used to compare a desired output to the deep learning generated example.
Loss functions depend on the deep learning application, as they essentially define what the
network is trying to maximise. Common loss functions for image segmentation are the cross
entropy and dice losses.

A set of weights, biases and other parameters from a pre-trained neural network that can be
applied to new examples by transforming the input data into an inferred output.

The specific configuration of network layers and operations that occur within the neural
network. Convolutional neural networks are common throughout this review, where common
networks include the U-Net and HighResNet.

The process of generating a usable image from the raw data acquired by a scanner.

The process of transforming a moving image onto the spatial domain of a fixed image.

Primarily used to reduce overfitting by using L1 or L2 regularisation. L1 regularisation makes
the function undifferentiable at 0, incentivising weights close to 0 to be 0. L2 regularisation is
achieved by both discouraging large weights in the matrix and encouraging smaller weights to
be closer to 0.

The process of partitioning an image into one or more segments that encompass specific
anatomical or pathological regions of interest, such as the lungs, lobes, or a tumour.

The process of generating artificial images of unknown target images of one modality from
given source images of another modality. For example, a synthetic CT image can be generated
from an MR image.

The process of reusing a model pre-trained for one task as a starting point for the optimisation
of another task. This can be done by using the pre-trained model’s weights as initialisations
(fine-tuning) or fixing the weights of existing layers and adding new ones.

Validation in deep learning refers to the process of ensuring that a model’s results are robust.
For example, validation aims to determine whether results are generalisable or specific to the
dataset used. This may include using external datasets, multi-institution collaboration, cross
validation as well as the choice of evaluation metrics.
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Figure 3. lllustration of three common types of deep learning architectures used in medical imaging: (a) CNN), (b) RNN and (c)
GAN. In the lung image analysis examples given, the CNN and RNN are used for image segmentation while the GAN is used for
image synthesis. CNN, convolutional neural network; GAN, generative adversarial network; RNN, recurrent neural network.

a) Convolutional neural network (CNN)

CNNs can use 2D or 3D images. Specific architectures such as V-Net and U-Net are common in medical imaging.
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b) Recurrent neural network (RNN)

RNNs are often combined with CNNs in medical imaging to incorporate time series information.
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Discriminator and generator Discriminator
loss backpropagated to

generator

Noise vector in
latent space

— Ve
~
Output Real image
- synthesised X
image X'

4 of 26 birpublications.org/bjr Br J Radiol;95:20201107


http://birpublications.org/bjr

BJR

Table 1. Summary of common pre-processing techniques used for
literature

Astley et al

lung image analysis tasks, including values prevalent in the

Preprocessing

technique Description Modality Literature values References

Thresholding The process of CT, MRI CT intensity: Wang et al. (2018),'* Sousa et al.
constraining the pixel [-1000, 700 HU] (2019)," Javaid et al. (2018),"
values of an image to MRI intensity: [0,667] Hofmanninger et al. (2020),1¢ Jiang et
be between predefined al. (2019),'” Tahmasebi et al. (2018),'8

values. Z.Zhong et al. (2019),” Zhou et al.
(2019),% Park et al. (2019),%! Gerard
etal. (2019),% Yun et al. (2019),%
Eppenhof & Pluim (2019),%* Fu et al.
(2020), ]1an etal. (2020),%° De Vos
etal.(2019),2 Stergios et al (2018),%8
Ren et al. (2019)%
Normalisation and The process of CT, MRI, X-ray Normalisation: [0,1] Wang et al. (2018),13 L1u etal. (2019),%°
whitening transforming the Mean/variance = 0 Javaid et al. (2018),} Hofmanmnger
distribution of etal. (2020),'° Akila Agnes et al.
image pixels to some (2018),>! Novikov et al. (2018),%? Gaal
distribution which is etal. (2020),3 Jiang et al. (2019),7
standardised across Tahmasebi et al. (2018),'8 Zhou et al.
images. (2019),%° Hatamizadeh et al (2019),3
Sandkiihler et al. (2019), Ra]chl et
al. (2017),% Sentker et al. (2018),%”
Fletcher and Baltas (2020),® ]1an%
etal. (2020),% De Vos et al.(2019),”
Galib et al. (2019),% Ferrante et al.
(2018),% Stergios et al, (2018),%8
Beaudry et al. (2019), Duan et al.
(2019),%2 Liu et al. (2020),%3 Ren et al.
(2019),% Olberg et al. (2018)*
Denoising The process of removing CT, MRI Gaussian, adaptive patch- | J.Xu & Liu (2017),*® Zha et al. (2019),*
noise from images in based Tustison et al. (2019)%
order to improve their
quality.

Bias correction A technique to correct for HP gas MRI, MRI N3/N4 bias correction Tustison et al. (2019),*” Zha et al.
the low-frequency bias (2019),% Rajchl et al. (2017)%
field that corrupts MR

images.
Cropping Cropping refers to the CT, MRI, X-ray, Cropping to body Negahdar et al. (2018),"* Soans &
process of removing PET mask, specific organ or Shackleford (2018),% Zhu et al.
unwanted outer pixels manually-defined region. (2019),* Hofmannin 4ger etal. (2020),'
or voxels of an image Zha et al. (2019), Hooda et al.
prior to being inputted (2018), Mittal et al. (2018),>! Ilang et
to the network. This al. (2018),11 Zhao etal. (2019),”2 Zhou
includes cropping by etal. (2019),%° Moriya et al. (2018),”
manually-defined regions Kalinovsky et al (2017),** Sandkiihler
of interest or external etal. (2019),° Anth1mopoulos et al.
body masks. Cropping is (2019),% Gao et al. (2016),%® Rajchl et
commonly used to reduce al. (2017),%¢ C. Wang et al. (2019), 57
computational cost and/ Iuarez et al. (2019),”® Juarez et al.
or eliminate the influence (2018),% Eppenhof & Pluim (2019),%*
of background voxels. Sentker et al. (2018),% Fletcher
and Baltas (2020),38 Blendowski
& Heinrich (2019),° Zhong et al.
(2019),! Liu et al. (2020) 43 Olberg et
al. (2018)*

HU, Hounsfield unit; PET, Positron emission tomography.

Modalities included are those for which the pre-processing techniques have been used in the reviewed studies. This is not an exhaustive list of

pre-processing techniques used.

Validation

Validation is used to evaluate the performance of trained DL
networks and assess their generalisability to non-experimental
settings. The goal is to develop a validation strategy that best
represents the situation in which the algorithm is to be deployed.

Evaluation metrics

It is imperative to evaluate the performance of DL algorithms
accurately. Evaluation metrics can be categorised into overlap,
distance, error and similarity metrics and are summarised in
Figure 4.
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Figure 4. Overview of four key categories of evaluation metrics (overlap, distance, error and similarity) used to evaluate the
performance of deep learning methods in medical image analysis. Each category contains brief descriptions and mathematical
formulations for somme common metrics. In these equations, ‘x’ and ‘y’ denote the prediction and target of any deep learning task,

respectively.

/ Overlap metrics

Overlap metrics calculate the proportion of overlapping voxels
between two binary regions. They are used to quantify the difference
between two segmentations. The Dice similarity coefficient (DSC)
and Jaccard similarity coefficient (JSC) are similar formulations of

\ this type of metric.

\

lx Nyl
DSC = 2———
lx| + |yl
[x Nyl

SC = —m————
S =T = 1lenyl

/Distance metrics

Distance metrics aim to compute the distance between the boundaries
of two regions at a voxel level. They can measure boundaries between
deep learning segmentations and ground truth manual segmentations.
Hausdorff distance (HD), and variations thereof, are common metrics
used in the literature. In addition, average contour distance (ACD) is
\also commonly used.

AN

HD(X,Y) = max(d, € x) min(dy € y) [lx — vl
for distance d'in set of voxels in x; y

ACD(X,Y) = % (—E" dr(lx"’ ), 240e0) driy" x))
x y

with distance d for set of observations n

Error metrics

Error metrics aim to quantify the bidirectional error in continuous
problems. Mean square error (MSE), root mean square error
(RMSE), mean absolute error (MAE) and target registration error
(TRE) are common error metrics. All three metrics defined here
follow a similar format and differ in the weighting they give to
\types of errors such as outliers or bidirectional errors.

'\

1
MSE = EZ(x — )2 for set of observations n
RMSE = VMSE

n
1
MAE = —Z(xi — y,) for set of observations n
=
TRE = |dy — d,|” where dy = Td,
for some transformation T and distances d over n landmary

[Similarit metrics

Similarity metrics aim to quantify the structural similarity between a
reference image. The most common of these is the structural similarity
index (SSIM) which uses structure (s), luminance (1) and contrast (c).
It has been further developed in a multi-scale approach (MS-SSIM).
Another common similarity metric is the normalised cross correlation

\_ (NCO).

N

SSIM = [l(x, N s(x,y)B - clx, y)y] for weights a, 8,y = 1

1 1
NCC = —z — f(x,y)t(x,y) for template (t) and subimage (f)
.4 050

where ¢ = standard deviation /

Validation techniques

Aside from the training set, an internal validation set is
commonly used for tuning DL parameters to improve perfor-
mance. A testing set is then used to provide an unbiased evalu-
ation of performance on unseen data. In this review, validation
sets used throughout the training phase are counted as training
sets as the network has previously seen these images before
testing. Therefore, the data split is the percentage of the total
data used for training and internal validation vs that used for
testing. Maintaining completely separate testing sets is some-
what uncommon in the literature and represents the ideal form
of validation.”***%* Validating on external multicentre data
sets that have not been used for training should be the gold-
standard in ensuring comparison between methods and gener-
alisability.%® However, this is uncommon as single-centre data
sets, split into training and testing sets, are frequently used.
To make the validation process more robust and generalisable,
specific techniques are applied, such as k-fold cross-validation.
In fourfold cross-validation, the datas et is randomly parti-
tioned into a 75/25% training/testing split; this process is
repeated with four different 25% blocks. Another approach is
leave-one-out cross-validation which uses all of the data for

training except one case for testing and repeats until all cases
have been evaluated.

METHODS

The protocol for this literature review was performed using
the preferred reporting items for systematic reviews and meta-
analyses (PRISMA)-statement.’® The literature search was
conducted on 1 April 2020 using multiple databases (Web
of Science, Scopus, PubMed) and aimed to identify studies
written in English published between 1 January 2012, the same
year that the seminal AlexNet paper was published,” and the
date of the search. The search strategy is defined in Figure 5.
Further studies that met the selection criteria were identified
by handsearching references and through the authors input.

Several recent reviews have focussed primarily on DL-based
lung classification and detection® %% accordingly, this review
was limited in scope to the lung image analysis applications
of segmentation, registration, reconstruction and synthesis.

Both published peer-reviewed scientific papers and conference
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Figure 5. The search strategy used on Scopus, Web of Science and PubMed to identify relevant studies for inclusion in the review.
Further studies that met the selection criteria were identified by handsearching references and through the authors’ input.

Literature search 1:

(classification) AND PUBYEAR > 2012)

((TITLE-ABS KEY (CNN OR machine AND learning OR deep AND learning OR GAN OR
convolutional OR reinforcement) AND TITLE-ABS KEY (lung OR pulmonary OR respiratory OR
chest) AND TITLE-ABS-KEY (imaging OR MRI OR CT OR SPECT OR PET OR magnetic AND
resonance OR tomography) AND NOT TITLE-ABS-KEY (nodule) AND NOT TITLE-ABS-KEY

Literature search 2:

((TITLE-ABS KEY (CNN OR machine AND learning OR deep AND learning OR GAN OR
convolutional OR reinforcement) AND TITLE-ABS KEY (lung OR pulmonary OR respiratory OR
chest) AND TITLE-ABS-KEY (imaging OR MRI OR CT OR SPECT OR PET OR magnetic AND
resonance OR tomography) AND NOT TITLE-ABS-KEY (nodule) AND PUBYEAR > 2012)

proceedings were included due to recent developments in the

field.

RESULTS AND DISCUSSION

Study selection

479 non-overlapping papers were retrieved. 355 papers were
excluded due to not meeting the eligibility criteria. In partic-
ular, many papers focused on classification or used traditional
machine learning techniques beyond this review’s scope. Upon
reviewing the remaining papers, 82 studies were included for
analysis. The PRISMA flowchart is shown in Figure 6.

No studies that met the inclusion criteria were published before
2016 with the majority appearing since 2018. Image segmenta-
tion applications accounted for 65.9% of the studies reviewed.
The remaining 34% are divided between synthesis, reconstruc-
tion and registration applications. Full details are shown in
Figure 7.

The majority of studies reviewed used structural imaging modal-
ities (87.8%), with most using CT (63.5%). Functional lung
imaging studies only constitute 12.1% of the reviewed studies
and are spread across PET, SPECT and hyperpolarised gas MRI.
Graphical summaries of the studies reviewed with respect to
disease present in patient cohorts, imaging modality and archi-
tecture are shown in Figure 8.

Segmentation

Image segmentation is the process of partitioning an image into
one or more segments that encompass anatomical or patholog-
ical specific regions of interest (ROIs), such as the lungs, lobes,
or a tumour. Studies describing DL-based segmentation applica-
tions of pulmonary ROIs are summarised in Table 2.

CT segmentation

CT is the most common modality for clinical lung imaging due
to superior spatial resolution, rapid scan times and widespread
availability. This is reflected in the DL lung segmentation liter-
ature with the majority of studies to date focusing on CT. For
whole-lung segmentation, 3D networks are often used, whereas
in interstitial lung disease (ILD) pattern segmentation, only 2D

networks have been applied to date. The application often dictates
the use of 2D and 3D networks; segmentation of the whole lung
leads to a volumetric 3D region in which features such as overall
lung shape, or the position of the trachea can be encoded. In
contrast, segmenting ILD patterns is often conducted on central
2D slices; hence, a 2D network may be more appropriate as, in
this approach, no features are conserved between slices.”**

Across the CT papers reviewed, both the median and mode
training/testing data splits were 80/20%, with many using k-fold
cross-validation with less than 50 patients. Even as an indepen-
dent testing set, using only 5-10 patients for testing limits gener-
alisability. Moreover, some studies cite the number of images or
2D slices rather than the number of subjects. If data from the
same subject are included in both the testing and training phases,
it is likely that the algorithm has already seen a similar slice
from the same patient as the individual data points are spatially
correlated and do not strictly represent independent data points.

The Dice similarity coeflicient (DSC) overlap metric is the
most common evaluation metric used. Most studies tackling
whole-lung segmentation report DSC values above 0.90, with
some achieving values above 0.98. For other pulmonary ROIs,
the highest DSC values reported are often lower (e.g DSC
(airways) = 0.85). However, overlap metrics such as the DSC can
be insensitive to errors in large volumes as the percent error is
low compared to the overall pixel count.®” Frequently, high DSC
values are reported despite errors that require significant manual
intervention before a segmentation is clinically useful. As the
airways occupy smaller volumes, the DSC metric is more sensi-
tive. In terms of Hausdorft-based distance metrics, whole-lung
segmentation studies report HD95 values ~10mm; however,
Dong et al’® report a HD95 as low as 2.249 + 1.082mm aver-
aged across both lungs. The lack of a standardised evaluation
metric can make direct comparisons between different methods
challenging.

Image segmentation is challenging to evaluate. Currently, manual
segmentations by expert observers are used as the gold-standard;
however, it is well-known that expert segmentations are suscep-
tible to interobserver variability.®® Often, only one observer
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Figure 6. PRISMA flowchart of studies identified, screened, assessed for eligibility and included in the literature review analysis.
PRISMA, preferred reporting items for systematic reviews and meta-analyses.

segments all the images in a training data set; hence, if a different
observer segments the testing images, the algorithm may not
perform as expected. This poses problems for widespread gener-
alisation if certain biases in segmentation are preserved as there
is no clear ‘true’ expert segmentation; therefore, differences in
DL segmentations and expert segmentations may not be solely
the result of DL errors. Most expert segmentations are conducted
using semi-automatic software and image editing tools; the tools
given to the user can convey a propensity for features, such as
smooth lung borders, which may, in fact, be inaccurate. In other
anatomical sites such as the liver, a DSC of 0.95 was obtained by
DL; the interobserver variability for the DL approach was 0.69%
compared to 2.75% for manual expert observers.*” The low
degree of interobserver variability in DL segmentations may be
a positive step towards consistent segmentations between insti-
tutions. Using multiple expert segmentations and averaging the
error may reduce interobserver variability effects; however, this
is unlikely to be widely adopted due to the time required. In addi-
tion, medical imaging grand challenges can provide diverse data

)
c
.g Records identified through Additional records identified
_g database searching through other sources
E (n= 459) (n=20)
o
3
A 4 A4
. Records after duplicates removed
(n=479)
00
=
c
o
:
2 Records screened R Records excluded
(n=479) " (n=355)
—
)
Full-text articles assessed .
- o| Full-text articles excluded
Z for eligibility > (n = 43)
3 (n=125) -
&
w
~——
)
5 Studies included in
3 qualitative synthesis
§ (n= 82)
—

from multiple institutions with corresponding expert segmenta-
tions, limiting the extent of individual researcher bias.

MRI segmentation

There are limited studies to date regarding pulmonary MRI
segmentation, attributable perhaps to less widespread clinical
use of the modality and lack of large-scale annotated pulmonary
MRI data sets. However, pulmonary MRI techniques, such as
contrast-enhanced lung perfusion MRI and hyperpolarised gas
ventilation MRI, can provide further insights into pulmonary
pathologies currently not possible with alternative techniques.”
Quantitative biomarkers derived from hyperpolarised gas MRI,
including the ventilated defect percentage, require accurate
segmentation of ventilated and whole-lung volumes which can
be very time consuming when performed manually. Example
images of DL-based hyperpolarised gas MRI segmentations are
provided in Figure 9.
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Figure 7. Graphical overview of the number of studies per year for the four image analysis applications considered in this review.

2020 values calculated up to 1 April 2020.
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Tustison et al*’ used CNNs to provide fast, accurate segmen-
tations for hyperpolarised gas and proton MRL* A 2D U-Net
was used for hyperpolarised gas MRI segmentation whilst a 3D
U-Net was used for proton MRI segmentation. They introduced
a novel template-based data augmentation method to expand the
limited lung imaging data. Hyperpolarised gas and proton MR
images were segmented with DSC values of 0.94 + 0.03and 0.94
+ 0.02, respectively. Zha et al evaluated DL-based proton MRI
segmentation, which yielded an average DSC of 0.965 across
both lungs, outperforming conventional region growing and
k-means techniques.*®

X-ray segmentation

Although the majority of segmentation studies reviewed used
CT and MRI, early studies focused on X-ray segmentation.”””
This was due to the public availability of large-scale, annotated
X-ray datasets, such as the Japanese Society of Radiological
Technology (JSRT)’! and Montgomery®”® data sets, enabling
researchers to experiment with large numbers of images not
previously accessible. The majority of X-ray studies reviewed
used these datasets, making comparisons between methods
more applicable,>>%1.6478.79

Registration

Image registration is the process of transforming a moving image
onto the spatial domain of a fixed image. Registration is used in
numerous applications within the lung imaging field, including
adaptive radiotherapy,” computation of functional lung metrics
such as the VDP** and generation of surrogates of regional lung
function from multi-inflation CT*® or "H MRI.*®

However, most image registration algorithms assume that the
moving and fixed images’ topology are the same. This is not
always the case in lung imaging as often functional images do
not follow the same topology as structural images, especially
in individuals with severe pathologies where functional lung
images may show substantial heterogeneity.”” Studies describing

DL-based pulmonary registration applications are summarised
in Table 3.

Eppenhof and Pluim** built upon previous work by Lafarge et
al’® using publicly available data sets to directly map displace-
ment vector fields from inspiratory and expiratory CT pairs
using a 3D U-Net with extensive data augmentation. Synthetic
transforms were used to directly train the network as the defor-
mation fields are known. The approach achieved fast, accurate
registrations, reducing mean TRE from 8.46 to 2.17 mm. The
results are further validated using landmarks from multiple
observers, indicating the level of interobserver variability.
Notwithstanding, only 24 images for testing and training were
used, limiting the study’s generalisability. In addition, synthetic
transforms do not directly represent real transforms likely found
in patients.

Other approaches use a CNN to learn expressive local binary
descriptors from landmarks before applying Markov random
field registration.®” This is compared to a method using hand-
crafted local descriptors with high self-similarity, facilitating
faster computation. The results suggest that a combination of
both CNN-learned descriptors and handcrafted features produce
the best registration results.

In a generic registration approach, a U-Net-like architecture
with a differentiable spatial transformer that can register both
X-ray and MR images was used.*’ The algorithm was evaluated
using the contour mean distance (CMD). CMD was approxi-
mately 5mm on average across the testing data. Whilst this is
a less accurate registration than other methods reviewed, it is
more broadly applicable; the generic algorithm (in this case
trained on X-ray and MR images) can learn features that are
independent of modality. By fixing these weights and adding
additional layers, transfer learning can then be applied to a
specific modality; the additional data across modalities may
lead to improved results.'%*
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Figure 8. Graphical overview of breakdown of deep learning lung image analysis studies reviewed by (a) disease present in patient
cohorts, (b) imaging modality and (c) architecture. Absolute numbers of papers are provided in (a, b).
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Imaging modality

Reconstruction

Image reconstruction is the process of generating a usable image
from the raw data acquired by a scanner. CT and SPECT recon-
struction fundamentally differ from MRI reconstruction and, as
such, the role of DL in these applications is also different. CT and
SPECT reconstruction use analytic (e.g filtered backprojection)
or iterative algorithms to produce 3D images from projections
taken at multiple angles around a subject. MRI reconstruc-
tion, in contrast, produces images by transforming raw k-space
data via Fourier transforms. Full details of image reconstruc-
tion methods have been described elsewhere.'®'% Studies
describing DL-based lung image reconstruction applications are
summarised in Table 4.

B GAN ®mCNN = RNN

. —— e

PET (5.4%) SPECT (4.1%)

CT/SPECT images can be reconstructed accurately using Monte-
Carlo-based iterative reconstruction''’; however, this process is
computationally expensive and time-consuming.''! In addition,
multiple studies have demonstrated the success of analytical
methods such as filtered backprojection.!®® Building upon this,
CNNs have been used to speed up the process of filtered back-
projection to shorten reconstruction times.'” The results suggest
DL can accurately reconstruct SPECT images in under 10sec.
Furthermore, the authors compare clinical metrics, such as the
lung shunting fraction (LSF), between methods in a specific
time frame. DL produced an LSF of 4.7% comparable to 5.8% for
Monte-Carlo methods, indicating the potential for use in clinical
applications.'®’
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Figure 9. Example images from the authors’ own work using deep learning for hyperpolarised gas MRI segmentation. The *°Xe
MR ventilation images are taken from three subjects in a testing set, a healthy volunteer, asthma patient and cystic fibrosis patient.
The patient images selected are characterised by significant ventilation defects. These are compared to expert segmentations of
the same image. DSC values are displayed for all images. DSC, Dice similarity coefficient.

Deep Learning

Healthy
DSC=

Cystic Fibrosis
DSC = 0.953

Multiple studies have employed DL for MRI reconstruction'!?
but only one published study has applied it to pulmonary MRL.*
MRI of the lungs can take upwards of 10sec to acquire, often
requiring that patients maintain inflation levels for a signifi-
cant period; this can be particularly challenging for patients
with severe lung pathologies. Compressed sensing can be used
to reconstruct randomly undersampled k-space in conjunction
with regularisation methods to produce accurate reconstructions
in hyperpolarised gas MRI''>!!* and enables reduced acquisi-
tion time without significantly reducing image quality. A coarse-
to-fine neural network has been proposed to yield an accurate
hyperpolarised gas MRI scan with an accelerating factor of 8
(undersampled 1/8 of k-space).** The method can also improve
inherent spatial coregistration accuracy when acquiring proton
and hyperpolarised gas MRI in the same breath,''> possibly
alleviating the need for substantial post-acquisition image
registration.

Tangentially related to the goal of image reconstruction, images
can also be improved further using image enhancement at the
post-acquisition stage. Multiple studies have shown the effec-
tiveness of using CNNs combined with gradient regularisation
and superresolution modules to enhance low-dose CT images

Expert segmentation

with noise and artefacts, potentially limiting radiation exposure
without degrading image quality.!'®'"”

Synthesis

Image synthesis, also referred to as regression, is the process of
generating artificial images of unknown target images from given
source images. Synthesis has been applied to a range of applica-
tions, such as generating functional or metabolic images from
structural images. For example, estimating contrast-based func-
tional images from routinely acquired non-contrast structural
modalities reduces the need for additional scans, specialised
equipment and administration of contrast agents. Even within
traditional model-based techniques, accurate synthesis has
proved challenging due to the complex mathematical functions
mapping input to output images. The development of DL archi-
tectures such as GANs enables a more unsupervised approach,
which lends itself to the complex problem of synthesis.” Studies
describing DL-based lung image synthesis applications are
summarised in Table 5.

DL has been used to generate synthetic fluorine-18-fludeoxy-
glucose (FDG) PET images from CT images via a GAN.!'® The
GAN'’s inputs were varied to include either a CT image, label,
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or both CT and corresponding label; the multichannelled GANs
(M-GAN) provided the most accurate synthetic PET images,
demonstrating that multiple inputs increase synthesis accuracy.
To explore this further, the authors also evaluate the synthetic
PET images by feeding them into a network as training data.
The network aims to delineate tumours by learning relationships
from the training data; the data were then divided into real PET
images and synthetic PET images. The trained model was then
evaluated on unseen tumour detection problems. The synthetic
PET-trained network produced 2.79% lower recall accuracy. This
indicates that, as a whole, the synthetic PET images are closely
related to the real images in terms of tumour identification. The
paper posits that synthetic PET images can be used as additional
training data in other DL tasks. However, it is unclear if synthetic
PET images can be used in treatment planning and other clinical
tasks with this level of accuracy.''®

GANS have continued to show promise in synthesis problems.'!?
CT images have been used to generate SPECT images via a condi-
tional GAN (cGAN) instead of a CNN.?’ The method used a 2D
GAN with 49 patients consisting of 3054 2D images as training
data; the testing data contains 5 patients. cGANs differ from the
regular GAN architecture by using both the observed image
and a random noise vector, mapping these to the output image
instead of only the noise vector. The generator used is based on
the U-Net architecture with multiple inputs. Synthetic and real
SPECT images were compared using the multiscale structural
similarity index measure (MS-SSIM), yielding MS-SSIM = 0.87.
Further analysis used a y index with a passing rate of 97.7+1.2%
with 2%/2 mm. The authors note qualitatively that errors occur
more frequently at the base of the lungs, possibly caused by
the increased deformation in this region. A key limitation for
synthesis methods is the errors introduced by the registration of
source and target images. Consequently, it has been suggested
that images that are not matched anatomically due to breathing
discrepancies are excluded,'® complicating validation for clin-
ical adoption.?*!'"?

A major application of DL image synthesis is for MR-guided
radiotherapy. The current paradigm in radiotherapy is to derive
electron density information required for dose calculations
directly from CT scans; MRI does not directly provide this infor-
mation. DL has been invoked to generate pseudo-CT images for
use in MR-guided stereotactic body radiotherapy using GANS,
precluding the need for CT.**

Zhong et al used a CNN to synthesise ventilation images from
4DCT scans.' Whilst good performance was observed, the
major limitation of this study is that the target images in the
training phase were CT-based surrogates of ventilation gener-
ated from aligned inspiratory and expiratory CT scans via
deformable registration and computational modelling. These
images are still the subject of intense validation efforts.'*!
Using more direct measures of regional lung function, such as
hyperpolarised gas MRI, and larger data sets are critical to the
success of future work in structure-to-function DL synthesis
applications.

Astley et al

FUTURE RESEARCH DIRECTIONS

The studies reviewed show that DL has significant potential to
outperform more traditional methods in a wide range of lung
image analysis applications. Novel ways of using DL to synthe-
sise more training examples'?? or combine segmentation and
registration in one process'” have been shown to enhance
performance. The scope of such innovation is still in its infancy,
providing an opportunity for novel technical developments.

As shown through the improved performance observed by
combining traditional approaches with machine learning and
DL for registration, great synergy can be achieved by combining
DL and conventional image processing approaches.®’

In image synthesis, researchers have developed techniques to
synthesise CT images from MRI scans of the brain'®; similar
advancements in lung imaging would allow patients to receive
less radiation exposure as well as reduce the cost and time for
additional scans. Using synthesis to generate functional lung
images from routinely acquired structural images would allow
clinicians to understand which areas of the lungs are ventilated
or perfused without the need to acquire dedicated functional
scans, which often require contrast agents and specialised equip-
ment, reducing costs and acquisition times. Such applications
require further DL research in architectural development and the
input of lung imaging experts. Using DL for CT enhancement to
reduce radiation dose or improve compressed sensing methods
in MRI has the potential to reduce scan times, improving image
quality and patient compliance.

Promising results have been shown for both proton MRI and
hyperpolarised gas MRI segmentation®’; however, further work
is required to demonstrate accurate MRI segmentation in an
independent multicentre validation. The importance of collab-
orative research to boost training data and inject heterogeneity
of centre and scanner will lead to more robust and generalisable
models. The paucity of published DL studies in functional lung
imaging (only 12.9% of reviewed studies here) provides signifi-
cant opportunities for innovations and further research in this
field.

The literature on CT segmentation provides a positive picture
of the success of DL methods in providing fast, accurate auto-
matic segmentations. However, producing impressive results in
a research setting is no substitute for clinical validation. Long-
term clinical case studies are required with large numbers of
patients before these novel developments have a real impact. The
‘black box’ nature of DL methods and the lack of explainability
of generated outputs can undermine clinicians and patients’
trust, despite, or even because of, an unprecedented level of
hype. Another challenge is transparency; although most soft-
ware used for DL is well documented and open source, a require-
ment for continued use, the open-source nature also generates
safety concerns relating to software edits and bugs. Developing
a standardised literature consensus on validation and evalua-
tion procedures is key to ensuring transparency. All of these
challenges need to be overcome before DL can live up to its full
potential.
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CONCLUSIONS

We have reviewed the role of DL for several lung image analysis
tasks, including segmentation, registration, reconstruction and

BJR

develop the field further. Before widespread clinical adoption is

synthesis. CT-based lung segmentation was the most prevalent

application where exceptional performance has been demon-
strated. However, research in other applications and modali-
ties, including functional lung imaging, is still in its infancy. A
concerted effort from the research community is required to

achievable, challenges remain concerning validation strategies,
transparency and trust.
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