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Purpose: Meaningful changes in picture naming responses may be obscured
when measuring accuracy instead of quality. A statistic that incorporates infor-
mation about the severity and nature of impairments may be more sensitive to
the effects of treatment.
Method: We analyzed data from repeated administrations of a naming test to
72 participants with stroke aphasia in a clinical trial for anomia therapy. Participants
were divided into two groups for analysis to demonstrate replicability. We assessed
reliability among response type scores from five raters. We then derived four sum-
mary statistics of naming ability and their changes over time for each participant:
(a) the standard accuracy measure, (b) an accuracy measure adjusted for item diffi-
culty, (c) an accuracy measure adjusted for item difficulty for specific response
types, and (d) a distance measure adjusted for item difficulty for specific response
types. While accuracy measures address the likelihood of a correct response, the
distance measure reflects that different response types range in their similarity to
the target. Model fit was assessed. The frequency of significant improvements and
the average magnitude of improvements for each summary statistic were com-
pared between treatment groups and a control group. Effect sizes for each model-
based statistic were compared with the effect size for the standard accuracy
measure.
Results: Interrater and intrarater reliability were near perfect, on average, though
compromised somewhat by phonological-level errors. The effects of treatment
were more evident, in terms of both frequency and magnitude, when using the
distance measure versus the other accuracy statistics.
Conclusions: Consideration of item difficulty and response types revealed addi-
tional effects of treatment on naming scores beyond those observed for the
standard accuracy measure. The results support theories that assume naming
ability is decomposable into subabilities rather than being monolithic, suggesting
new opportunities for measuring treatment outcomes.
Supplemental Material: https://doi.org/10.23641/asha.17019515
Picture naming tasks are frequently used to evaluate
speech and language abilities in clinical populations, either
as part of a larger language assessment battery or as a
standalone assessment of word finding and speech produc-
tion. Picture naming tasks are also frequently used to derive
outcome measures for treatment monitoring or rehabilitation
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research. While naming accuracy scores have been reliable
and useful in practice, informally, clinicians and researchers
often note that clinical impressions of progress in verbal
communication abilities are not fully captured by changes in
naming accuracy scores. Although clients or participants
may not necessarily produce more correct responses, the re-
sponses may appear to be of higher quality, that is, closer to
the target. Formally measuring changes in the quality of
naming behavior can open opportunities for intervention
and study, but it also poses significant challenges. In this ar-
ticle, we present a statistical approach based on a cognitive
y 2022 • Copyright © 2021 American Speech-Language-Hearing Association 215
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model that attempts to address these challenges, and we
demonstrate that there are indeed measurable treatment
gains that are not captured by accuracy scores.

What Is an Ability, and How Do We Know
If It Changes?

A seminal treatise by Lord and Novick (1968),
commissioned by the Educational Testing Service, pre-
sented a formal, statistical framework for working with test
scores. They addressed fundamental questions, such as the
following: What is a test score actually measuring? How do
we know if it is reliable? How do we know if it is useful? By
formally defining an ability as a propensity to answer test
items correctly (i.e., a probability of success), methods and
formal models that had been developed for statistical sam-
pling and estimation could be brought to bear on relating a
sample of data (test scores) to a probability estimate (abil-
ity). This allowed observed test scores to be decomposed
into a “true ability” (or “true score”) component and a
“measurement noise” component. For any set of sampled
data (test responses), we need to consider if the testing pro-
cedure is truly reflective of an underlying ability, because
many factors can potentially affect test scores beyond the
process of interest, such as vigilance level, time of day, item
effects, and so on. If the ability construct is useful, it will
lead to valid inferences based on the relative orderings of
individuals; higher abilities should predict better outcomes
outside of the specific testing situation.

A fundamental assumption of this framework is that,
during a given test administration, ability levels remain ap-
proximately stable. If responses reflect a moving target, it be-
comes much harder to separate item-to-item ability changes
from random fluctuations that are unrelated to the underlying
ability. When the goal is to measure a change in ability, as is
typically the case in rehabilitation research, abilities before
and after an intervention are assumed to be approximately
stable, thus defining a “true change” in ability, with measure-
ment noise influencing observed test scores at each time point
(Cronbach & Furby, 1970). This approach to quantifying
abilities and their changes has been extremely popular and
productive, but it has its limitations. If there are multiple ways
to fail on a test item, then the simple probability of success
(i.e., a single ability) does not reflect the full complexity of
the underlying process (Embretson, 1997). Likewise, there
may be multiple ways that the response process may change,
and considering only the distal effects on the probability of
correct responses might obscure other meaningful changes.

Picture Naming Behaviors in Aphasia
Are Complex

Anomia (word-finding difficulty) is one of the most com-
mon long-term consequences of stroke. Clinical evaluations
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of language processing almost invariably include some
form of object naming or picture naming task. However,
naming is a deceptively complex process that can be dis-
rupted in many ways, leading to multiple opportunities for
different types of errors (Cuetos et al., 2000; Dell et al.,
1997, 2004; Fromkin, 1971; Mitchum et al., 1990; Schwartz
& Brecher, 2000). That is, because naming requires several
different cognitive abilities (e.g., visual analysis, semantic
analysis, lexical retrieval, phonological sequencing, and
motor execution), problems at one or more processing
stages can lead to different types of errors. Furthermore,
multiple brain regions, widely distributed throughout the
cerebrum, typically work in concert to produce fluent and
accurate naming behavior (Giahi-Saravani et al., 2019).
Cerebrovascular accidents like stroke do not respect the
functional boundaries of the brain when causing damage
and can therefore lead to highly diverse patterns of impair-
ment in a clinical population, depending on the location
and extent of strokes and the relevant premorbid abilities.
On top of this, not all words offer the same error opportu-
nities; some words may be harder to recall, and some words
may be harder to pronounce. Thus, there will be an interac-
tion between a given person’s deficits and the properties of
the items that the person is instructed to name, leading to
further complexity in the patterns of test scores obtained
during clinical evaluations.

Modeling Subcomponents of Naming

An alternative to using a simple accuracy measure
on a naming task is to use error-type data to estimate the
functional status of subcomponents of the naming process
(Mitchum et al., 1990). For example, it is reasonable to
assume that a participant who makes mostly semantic er-
rors has a breakdown that is different from a participant
who makes mostly phonological errors. Estimating abili-
ties at these subcomponent levels is useful not only theo-
retically but also clinically, for example, in deciding on a
treatment choice targeting semantic versus phonological
levels (Abel et al., 2009; Boyle & Coelho, 1995; Leonard
et al., 2008). A more detailed measurement of the subcom-
ponents of the process could also be important for mea-
suring change in recovery as well. Clinicians sometimes re-
port that clients seem to be improving despite minimal
changes on naming accuracy scores. This could be because
improvement at one level of the process (avoiding seman-
tic errors) is partially offset by a drop in performance at
another level, which may be a result of increased load due
to higher success rates at an early processing stage.

A Spreading Activation Model
Perhaps the most popular approach for estimating

subcomponent abilities is based on the Dell et al. (1997)
spreading activation model of lexical retrieval. This model
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consists of a three-layer network of units symbolizing se-
mantic (meaning), lexical (word), and phonological (sound
gesture) levels of mental word representations. During
word production, activation spreads from the semantic
units through the network, and after several timesteps, the
most active word unit is selected, receiving its own activa-
tion boost. After several further timesteps, the most active
phonological units are selected for production. Errors can
occur at either selection stage (lexical or phonological)
due to the decay of activation over time and the presence
of intrinsic noise that is added to the activation on each
timestep. In Foygel and Dell (2000), damage to the net-
work was modeled by reducing the connection strengths
between semantic and lexical units (S weights) or between
lexical and phonological units (P weights), thereby inhibit-
ing the flow of activation, increasing the influence of
noise, and causing more errors. This model posits that
two distinct categories of damage (S and P) can account
for the rates of six different response types (correct and
five error types). This supposition has gained support
from analyses of patterns of naming errors in people
with aphasia: The model provides a reasonable approxi-
mation to the observed response type frequencies using
just these two parameters (Schwartz et al., 2006). This
means that rather than using a single number (percent
correct [%C]) to characterize the level of impairment,
using the model, we can characterize impairment in two
dimensions.

This simplified model can illustrate how considering
only the correct response rate obscures the individual ef-
fects on subcomponents of naming. Consider three hypo-
thetical participants that are simulated by the model who
are identical before receiving any treatment, all having a
relatively severe impairment (10% of maximum S and P
weights) with a 6% correct response rate. The rates of other
response types are shown in the bar graph in Figure 1A.
After receiving different targeted therapies, the participants
all improved their accuracy scores by 5%. The posttreat-
ment response type rates are shown in Figure 1B, and the
Figure 1. (A) The bar graph shows pretreatment response rates for thre
model. (B) The bar graph shows posttreatment response rates for the s
response rate, their different error type rates reveal differences in their u
changes in response rates from pretreatment to posttreatment for the sa
correct response rate, changes in their error type rates reveal differences
changes in each response type rate are shown in Figure 1C.
Despite the nearly identical accuracy rates among the par-
ticipants both before and after treatment, the error type
rates reveal clear differences in the relative strengths of the
subcomponents of each simulated participant. Posttreat-
ment, the first participant’s S weight is 4.5 times stronger
than their P weight; the second participant’s P weight is 2.8
times stronger than their S weight; and the third partici-
pant’s S weight and P weight strengths are equal. All three
participants increased their accuracy rate by the same
amount (5%), but the changes in error types reveal how the
individual responses to treatment differed, resulting in dif-
ferent patterns of performance posttreatment. The first par-
ticipant’s S weight increased 35%; the second participant’s
P weight increased 18%; and the third participant’s S and P
weights each increased 10%.

While the spreading activation model has illumi-
nated a number of implications for multicomponent theo-
ries of naming (i.e., those that assume naming is decom-
posable into subprocesses rather than being monolithic), it
also has its limitations. Because the model was designed
for the purpose of theoretical inquiry, to test specific as-
sumptions about interactivity among psycholinguistic rep-
resentations, it lacks some features that can enhance the re-
liability of probability estimates and the accuracy of predic-
tions for new data. First, the structure of the model’s lexical
neighborhood that defines the error opportunities for a
given trial is manually hard-wired rather than being learned
from real data. Second, differences between items are not
considered; the error opportunities on each trial are as-
sumed to be the same. Accounting for these sources of vari-
ance in test scores improves ability estimates and predic-
tions of independent data (Walker et al., 2020). Finally, the
multiple possibilities for changes in subcomponents still
leaves open the question of how to compare the effects of
treatment among participants (e.g., a relative ordering of
participants’ responses to treatment). A psychometric
model can provide a complementary approach to modeling
naming responses that addresses these limitations.
e identical, hypothetical participants simulated by a connectionist
ame three participants. Although all three have the same correct
nderlying connection strengths (S and P). (C) The bar graph shows
me three participants. Although all three have the same change in
in their responses to treatment.
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A Multinomial Processing Tree Model
Rather than simulating naming with a spreading ac-

tivation model, Walker et al. (2018) modeled each naming
attempt as a probabilistic sequence of successful or unsuc-
cessful latent processes, with each sequence leading to a
specific response type. The possible sequences of mental
errors or successes leading to each response type on a
naming trial can be represented as a binary-branching
tree, like a flowchart, and probabilities can be assigned to
each path through the tree. This type of statistical model
sits on a spectrum between completely atheoretical models
that are based on the expected sampling statistics for a
given data type regardless of the source (e.g., analysis of
variance or χ2 test) and highly theoretical models that ex-
plain specific phenomena based on assumptions about the
physical mechanisms that cause variance in the data (e.g.,
spreading activation). Multinomial processing tree (MPT)
models are commonly used in psychological testing para-
digms to tease apart latent mental processes (i.e., unobserv-
able decisions, conscious or unconscious, in someone else’s
mind) that may be differentially contributing to the fre-
quency of different response types (Batchelder & Riefer,
1999; Erdfelder et al., 2009). In addition to formalizing and
testing theories of cognition, MPT models have also been
useful for psychometric measurement in clinical populations
(Batchelder et al., 1997; Batchelder, 1998; Batchelder &
Riefer, 2007; Embretson & Yang, 2013; Yang & Embretson,
2007).

The MPT-Naming model (Walker et al., 2018) esti-
mates six abilities (labeled in italics) relevant for picture
naming: the ability to initiate an attempt (Attempt); the
ability to access the semantic neighborhood of the target
and avoid totally unrelated words (Sem); the ability to
avoid words that are either semantically related (LexSem),
phonologically related (LexPhon), or both (LexSel); and
an ability to avoid sublexical errors in phoneme sequenc-
ing and production (Phon; see Figure 2). Recall that, in
this context, the term ability is referring to a participant’s
probability of taking a rightward branch in the tree dia-
gram, independent of the item’s propensity to influence
the process one way or the other. The four different lexi-
cal abilities are motivated by the concept of competitive
selection, whereby multiple candidate words are consid-
ered concurrently for selection during a naming attempt
(Nozari & Hepner, 2019). The model assumes that the
probability of a nontarget candidate being rejected de-
pends on whether it is similar to the intended target word
on semantic and/or phonological grounds; thus, the four
possible relationships define four different abilities to re-
ject four different types of nontarget competitors. Defining
Sem and LexSel independently from LexPhon and LexSem
allows for the possibility of an interaction, whereby both
relationships being present (or not) leads to greater or lesser
competition (i.e., a different probability of misselection)
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than would be expected from a simple combination of the
competitions experienced when each relationship is present
on its own.

Together, these abilities govern the likelihood of
eight possible response types: (a) correct – the response
matches the target (i.e., the picture is named correctly),
(b) mixed – the response is a real word that is both seman-
tically and phonologically related to the target, (c) formal –
the response is a real word that is phonologically related to
the target, (d) semantic – the response is a real word that is
semantically related to the target, (e) unrelated – the re-
sponse is a real word that is neither semantically nor pho-
nologically related to the target, (f) neologism – the re-
sponse is a nonword that is phonologically related to the
target, (g) abstruse neologism – the response is a nonword
that is not phonologically related to the target, and (h) non-
naming attempt – a miscellaneous category including no re-
sponses, descriptions, picture parts, or sound effects. These
categories follow the scoring and rationale for the Philadel-
phia Naming Test (PNT; Roach et al., 1996).

The relationships between response types and psy-
cholinguistic processing levels in the MPT-Naming model
are inspired by the two-step assumption found in many
contemporary models of lexical access, which proposes an
initial competition among word representations for pro-
duction, followed by a subsequent competition among
sublexical (i.e., morphological, syllabic, or phonological)
segments for production (Dell et al., 1997; Foygel & Dell,
2000; Lambon Ralph et al., 2002; Levelt, 1989; Matti
et al., 1998; Rapp & Goldrick, 2000; Roelofs, 2000). Fur-
thermore, during processing at the lexical level, there is a
progressive influence of different information sources,
from early semantic influences to later phonological influ-
ences (Dell et al., 1997; Indefrey & Levelt, 2004; Mitchum
et al., 1990). Finally, because the model is still fundamen-
tally based on the formal concept of probabilities of suc-
cess, item response theory (IRT) can be applied to account
for item effects on each latent mental process; that is,
items can be difficult in different ways by challenging dif-
ferent abilities (Embretson (Whitely), 1984; Embretson &
Yang, 2006; Maris, 1995). By examining patterns of re-
sponses in a large cohort of people with aphasia, Walker
et al. (2018, 2020) were able to disambiguate the psycho-
linguistic sources of errors and estimate the underlying
abilities of participants and difficulties of test items, yield-
ing valid inferences about participants (e.g., predicting
other test scores) and about test items (e.g., predicting the
number of similar-sounding words).

Deriving a Simple Measure From
a Complex Model

While multidimensional characterizations of naming
deficits clearly provide a richer measure of a participant’s
15–237 • January 2022



Figure 2. The MPT-Naming model for a trial from a picture naming test, with equations for the probability of each response type (adapted
with permission from Walker et al., 2018; Copyright © 2018, American Psychological Association). Leaf nodes represent response types.
C = correct; M = mixed; F = formal; S = semantic; U = unrelated; N = neologism; AN = abstruse neologism; NA = nonnaming attempt. Lower
case letters a–e represent probabilities of success associated with a latent mental process. These probabilities are determined by the inter-
action of a participant’s ability and an item’s difficulty via a logistic equation (not shown). Lower case letters g and h represent probabilities
that account for the effects of the phonological neighborhood density of the target (i.e., the number of similar sounding words). The probabil-
ity of each response type is calculated by multiplying the branches leading from the root node to the response type of interest and summing
the results if there are multiple leaf nodes indicated.
abilities, the added complexity may be unwieldy or im-
practical for clinical application. For example, if naming
requires multiple abilities and some improve while others
decline, the overall effect of the changes may be difficult
to interpret. A simple summary measure derived from a
multidimensional model might, we hypothesized, be able to
take advantage of the more detailed characterization of the
participant’s naming (sub)abilities while retaining the sim-
plicity of a single summary statistic. Thus, we derived two
simple and easily interpretable summary measures from the
MPT-Naming model, which we then tested against the
standard accuracy measure (%C) to determine whether they
have improved sensitivity to treatment effects and whether
inferences based on them have improved validity.

MPT-P(S): The Joint Probability of Avoiding All
Error Types on a Typical Item

The abilities that are estimated using the MPT-
Naming model pertain to the mental subprocesses that
must be completed during a naming trial; there is no sin-
gle parameter representing the probability of a correct re-
sponse on a given item. Instead, this probability is calcu-
lated as the joint probability of avoiding all error types
(e.g., semantic errors, phonological errors, mixed errors).
If the ability scales are fixed relative to an item with aver-
age difficulty values for the test, then the resulting joint
probability of avoiding all error types is numerically al-
most (due to stochastic model fitting) identical to %C (i.e.,
the maximum likelihood estimate of the average probabil-
ity of a correct response for the test); we call this statistic
MPT-P(S), where “MPT” indicates the model type, and
“P(S)” indicates the overall probability of success (i.e., a
correct response).
MPT-E(D): The Expected Proportion of Successful
Latent Processes on a Typical Item

While the MPT-P(S) statistic incorporates error type
information into its uncertainty about accuracy estimates
and may therefore lead to different inferences than those
based on %C, it is still fundamentally estimating a binary
construct (i.e., whether a trial is correct or incorrect).
However, therapy effects may be subtler than increasing
correct responses; the responses after therapy may simply
be closer to the target. However, what does it mean for a
response to be closer to a target? Lexical measures such as
semantic distance (Maki et al., 2004; Pennington et al.,
2014; Vigliocco et al., 2002) or phonological distance
(Sanders & Chin, 2009) between target and response might
be used to address this question, but this approach relies
on assumptions about the relative effects of semantic and
phonological distances on psychological representation
and communicative intelligibility. A functional approach,
in which independent judges attempt to guess the intended
target based on a response, could also provide a basis for
a distance measure, but this approach would require sub-
stantially more data collection from the independent
judges. Instead, we can leverage the natural ordering of
response types provided by the MPT model’s architecture.

In essence, we are proposing a type of latent partial
credit model for naming. What is meant by latent partial
credit? Typically, partial credit is assigned to each observed
response type. For example, failure to respond is assigned 0
point, a semantic error is assigned 1 point, a minor phono-
logical error is assigned 2 points, a correct response is
assigned 3 points, and the final score is a sum of points
over all items. This scoring rubric neglects the fact that a
phonological error at a later processing stage could be
Walker et al.: Measuring Change in Picture Naming Ability 219



masking a semantic error at an earlier processing stage,
thus deserving fewer points. It also neglects the influence
that different items have on the probabilities of different er-
ror types; for example, phonological errors on some items
are less costly than on other items, at least for purposes of
functional communication (e.g., stethoscope → steposcope
vs. cat → zat). Rather than assigning points to each re-
sponse type, we derive a latent partial credit score, MPT-
E(D), by characterizing how far the participant’s internal
system gets toward producing a correct response on a typical
item, based on the pattern of observed errors across different
items. Specifically, because a correct response depends on six
sequential latent processes, we calculate the expected value
for the number of successful latent processes on a target item
with average processing difficulties and then divide by six to
obtain a proportion. This statistic, MPT-E(D), represents
the expected (proportional) distance traveled down the
processing tree toward a correct response.

It should be clear that this metric deviates from the
typical use of MPT models, in which the probability pa-
rameters are the final estimates of interest. In particular, a
claim is being made about the relative value of each error
type (e.g., an unrelated word is more costly than a phono-
logically related nonword). While we do not claim that the
relative ordering of response types in our current MPT-
Naming model is the best or only way to operationalize a
partial credit scale, we do believe that the architecture of
the model is well justified in terms of the approximate cor-
respondence between error type opportunities and the rela-
tive completeness of cognitive processing during a naming
trial (Mitchum et al., 1990; Walker et al., 2018, 2020). To
the extent that this belief is correct, and to the extent that
standard behavioral therapy improves latent cognitive pro-
cessing, we expect this measure to be more sensitive to
therapy effects than measures that ignore error type data.
Why? Consider that, according to two-step theories of lex-
ical access, a hypothetical participant who successfully re-
sponds to a semantically focused (or phonologically focused)
treatment but has an additional, persisting phonological
(or semantic) deficit might have a more pronounced shift
in error types than in correct responses. The MPT-E(D)
statistic should be sensitive to these types of effects, despite
the lack of accuracy changes, as well as being sensitive to
combined effects of accuracy and error type improvement.
Supplemental Material S1 illustrates the variables, depen-
dencies, and prior assumptions of the longitudinal model
used to calculate the MPT-P(S) and MPT-E(D) statistics as
a directed acyclic graph. Both statistics can be derived “for
free” when fitting the same model.

IRT-P(S): The Probability of a Correct Response
on a Typical Item

As a comparison model to further illustrate the im-
pact of the MPT-Naming model’s consideration of error
220 Journal of Speech, Language, and Hearing Research • Vol. 65 • 2
type data, we also investigated an IRT model that only in-
corporates item response functions and Bayesian inference
for accuracy estimates without considering error type in-
formation. In our Bayesian IRT model of naming accu-
racy, the probability of a correct response depends on the
item being named. The difficulty of the items (i.e., the dif-
ficulty for producing a correct response) is estimated
based on the naming data of a large, independent cohort
of persons with aphasia. For our statistic of interest, IRT-
P(S), we use the average difficulty over the test items to
convert an estimate of a participant’s overall naming abil-
ity (i.e., without considering subcomponent abilities) into
estimates of a probability of a correct response on a typi-
cal item, using a simple IRT function known as a Rasch
model or a one-parameter logistic model. This measure-
ment construct is the same target that is represented by
the %C and MPT-P(S) statistics, and we therefore expect
point estimates of these statistics to be highly correlated;
however, because IRT-P(S) incorporates item information
into its uncertainty surrounding estimates, like MPT-P(S),
the inferences that are made when using the Bayesian in-
terval estimates may differ from inferences made with the
other models. Supplemental Material S2 illustrates the
variables, dependencies, and prior assumptions of the lon-
gitudinal model used to calculate the IRT-P(S) statistic, as
a directed acyclic graph.

Purpose of the Current Study

The purpose of the current study was to compare in-
ferences about the effects of standard behavioral therapy
in individual participants with aphasia when using MPT
model-based statistics, IRT-model-based statistics, or the
overt %C rate statistic to measure change. We were inter-
ested in whether inferences for individual participants would
be different for the three types of measures, and we predicted
that the MPT-based measures would differ from the others
by being more sensitive to change due to therapy.

In addition to providing validation evidence for our
computational model’s assumptions and parameter inter-
pretations, the current work also advances the model’s po-
tential for individual clinical applications. Statistical
models of group effects do not permit statistical conclu-
sions to be made about the effect of therapy on any spe-
cific individual’s ability. This is a notable concern given
the heterogeneity observed in aphasic naming deficits
(Nickels & Howard, 1995) and their patterns of recovery
(Schwartz & Brecher, 2000): The group average may be a
poor estimate of any individual. Additionally, in most
nonresearch settings, clinicians must make decisions about
whether their individual client is exhibiting progress and
ideally support these decisions with objective measures.
Thus, a statistical measure of individual change that is
more sensitive than current outcome measures (i.e., those
15–237 • January 2022



based only on correct responses) could provide a valuable
tool for both researchers and clinicians.
Method

Data

Participants
We examined archived picture naming data from

four separate cohorts of people with aphasia: a model cali-
bration group, two treatment groups, and a control group.
Inclusion criteria for all groups were left-hemisphere
stroke and aphasia diagnosis without other neurological
comorbidities. All participants signed an informed consent
form approved by the institutional review boards at each
study site. Demographic information for each group of
participants is presented in Table 1.

The model calibration group was used to derive inde-
pendent estimates of item difficulty. Data from this cohort
and item difficulty estimates were reported by Walker et al.
(2018), based on recorded responses from 365 people with
aphasia.

The two treatment groups included a total of 72
participants with aphasia who completed a therapy pro-
gram at the University of South Carolina and Medical
University of South Carolina. The data were collected
Table 1. Clinical and demographic information for the participants include

Clinical and demographic information Model calibration group

Participants (N) 365
Sex (F/M) 155/210
Age (yrs.) 60 (22–86)a

Education (yrs.) 12 (6–22)b

Months poststroke 13 (1–381)a

Handedness (A/L/R) NA
Race:
African American 124 (34%)
Asian 2 (0.5%)
Caucasian 225 (62%)
NA 14 (4%)

Speech motor deficit (N) 90 (25%)
WAB-AQ 75 (16–98)c

Aphasia type:
Anomia 153 (42%)
Broca’s 94 (26%)
Conduction 58 (16%)
Global 8 (2%)
Transcortical motor 3 (1%)
Transcortical sensory 5 (1%)
Wernicke’s 44 (12%)

Baseline PNT %C 62% (0%–98%)

Note. The median of continuous measures is reported with the range in
for discrete measures. Treatment groups were reduced by excluding par
with the control group. F = female; M = male; yrs. = years; A = ambidextro
Battery–Aphasia Quotient (Kertesz, 2007); PNT = Philadelphia Naming Tes
aN = 351. bN = 240. cN = 271.
during an ongoing clinical trial, and we examined data
from participants who had completed the initial (i.e., base-
line) assessment and the 1-month posttherapy follow-up
assessment at the time of analysis. Participants with lower
than 2% correct naming at baseline were excluded. The mo-
tivation for this exclusion was comparison with the control
group, which also excluded participants who were at or
near floor performance levels (< 5%) at baseline. The ratio-
nale here is that participants who cannot access the lexicon
at all may have disruptions that are unrelated to the lexical
retrieval system per se, and thus any lack of observed
change may not be informative about meaningful changes
that occur within the lexical retrieval system. The treatment
participants were split into two independent groups for
analysis and replication based on a change in the assess-
ment protocol, as described below; the first 38 included
participants (Treatment Group 1) who performed the nam-
ing test 12 times over the course of the study, whereas the
subsequent 34 included participants (Treatment Group 2)
who performed the naming test 7 times. Almost all treatment
participants were at least 12 months poststroke at their ini-
tial assessment (Treatment Group 1 median months post-
stroke = 32; Treatment Group 2 median months poststroke =
18); three participants in Treatment Group 2 were only 10 or
11 months poststroke at baseline assessment.

The clinical trial did not include a matched, un-
treated control group of people with aphasia; however,
d in each group.

Treatment Group 1 Treatment Group 2 Control group

38 34 24
13/25 15/19 14/10

66 (29–76) 60 (38–80) 69 (37–80)
16 (12–20) 16 (12–20) 13 (7–20)
32 (12–241) 18 (10–99) 14 (8–29)

1/4/33 1/3/30 NA

10 (26%) 7 (21%) 7 (29%)
0 (0%) 1 (3%) 0 (0%)

28 (78%) 26 (76%) 17 (71%)
0 (0%) 0 0 (0%)

25 (66%) 19 (63%) 1 (4%)
62 (25–93) 65 (28–93) NA

9 (24%) 9 (26%) 5 (21%)
16 (42%) 12 (35%) 1 (4%)
8 (21%) 10 (29%) 9 (38%)
1 (3%) 1 (3%) 0 (0%)
1 (3%) 1 (3%) 0 (0%)
0 (0%) 0 (0%) 1 (4%)
3 (8%) 1 (3%) 8 (33%)

51% (2%–97%) 51% (3%–98%) 78% (5%–98%)

parentheses. The proportion of the group is reported in parentheses
ticipants with less than 2% baseline PNT accuracy for comparison
us; L = left-handed; R = right-handed; WAB-AQ = Western Aphasia
t; NA = not applicable.

Walker et al.: Measuring Change in Picture Naming Ability 221



independent, longitudinal data from people with aphasia
attempting to name the same test items were available
from the Moss Aphasia Psycholinguistic Project Database
(Mirman et al., 2010). While these data are different than
the data used in the model calibration group, the partici-
pants represent a subset of this group (i.e., the data were
collected at a different time). First, 28 participants with at
least four or five PNTs in the database that were adminis-
tered in consecutive, 12-week intervals were identified (see
Supplemental Material S3 for database identifiers, demo-
graphic information, and naming data for individual par-
ticipants). Data from 15 of these participants were re-
ported in Schwartz and Brecher (2000). These participants
were examined as part of a longitudinal investigation of
spontaneous recovery during the first year-and-a-half post-
stroke, and each participant performed a single PNT every
3 months (12 weeks) for 1 year (five total PNTs) or until
they withdrew from the study. Participants self-reported
that they were not participating in therapy during the
study. To ensure the relative stability of naming abilities
in the control group over time, four participants with
greater than 10% change in accuracy between their final
two PNTs were excluded to yield a group-average change
of 3.2%, which was not significantly different from zero
(paired t test, two-tail p = .058), whereas a Bayes factor
(BF10 = 1.6) indicated weak support for a mild, nonzero
change over time (Rouder et al., 2009). The 12-week inter-
val between test administrations in the control group ap-
proximated the 12-week interval encompassing naming as-
sessments and therapy delivery in the treatment study. The
months poststroke at the earlier PNT in the control group
ranged 8–29 months, with a median of 14 months, meaning
that the control participants were generally at an earlier
point in their course of recovery than the treatment partici-
pants, though still considered to be in the chronic phase.

In Treatment Group 1, there were 25 participants
(66%) with symptoms of a motor speech disorder (apraxia
or dysarthria) affecting speech planning or articulator
weakness or both; in Treatment Group 2, there were 19
participants (63%) with symptoms of a motor speech dis-
order. Notably, these are higher prevalences than in the
item calibration group (25%) or the control group (4%).

Therapy Protocol
We refer to this study as the POLAR (Predicting

Outcomes in Language Rehabilitation) trial. The purpose
of this trial is to determine predictors of treated recovery in a
large cohort of individuals with chronic aphasia (i.e.,
12 months poststroke) following standard aphasia therapy.
Participants each receive semantically focused and phono-
logically focused therapies in counterbalanced order, with
each therapy regimen lasting 3 weeks. There is a 4-week in-
terim between each therapy regimen. Semantically focused
treatment regimens included (a) semantic feature analysis
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(Boyle, 2004; Boyle & Coelho, 1995; Coelho et al., 2000;
Wambaugh & Ferguson, 2007), (b) the semantic barrier task
(Davis, 2005, 2007; Pulvermüller et al., 2001), and (c) verb
network strengthening treatment (Boo & Rose, 2011;
Edmonds & Babb, 2011; Edmonds et al., 2014). Phono-
logically focused treatment regimens included (a) phonolog-
ical components analysis (Leonard et al., 2008), (b) phono-
motor treatment (Kendall et al., 2015), and (c) phono-
logical judgment (Howard et al., 1985; Raymer et al., 1993).
Details regarding the treatment protocol and fidelity assess-
ments can be found in Spell et al. (2020).

Naming Assessment
The PNT includes 175 black-and-white line draw-

ings of common nouns. Images are presented one at a
time on a computer screen, and participants are instructed
to use a single word to name the picture. A maximum of
30 s is allowed for responses. The same order of PNT
items is presented to each participant; however, that order
was randomized initially. Item difficulty estimates should
account for influences of previous items on error probabil-
ities because the difficulty estimates are derived from the
same fixed order.

All language samples were recorded; the first com-
plete naming attempt was transcribed; and responses were
classified into the eight categories by graduate student re-
search assistants in the Communication Sciences and Dis-
orders Department at the University of South Carolina,
who were supervised by an American Speech-Language-
Hearing Association–certified speech-language pathologist.
The optional lenient scoring rubric for motoric impair-
ments was not applied (Schwartz et al., 2006). This scor-
ing option allows for a single phoneme substitution, omis-
sion, or transposition when evaluating the phonological
relatedness of responses from participants with motor
speech disorders. The current MPT-Naming model does
not distinguish between phonological and motor speech
errors; they are both considered to be sublexical errors.

In the POLAR trial, assessment measures (including
the PNT) are obtained at baseline, immediately following
the first round of therapy, prior to initiating the second
round of therapy, immediately following the second round
of therapy, and at 1 and 6 months following the completion
of therapy. Participants in Therapy Group 1 were adminis-
tered two PNTs during each of these six testing sessions. Due
to an assessment protocol change instituted to reduce the bur-
den of scoring on examiners, participants in Therapy Group 2
were administered the PNT twice at the initial (baseline) test-
ing session and then only once at the subsequent testing ses-
sions. When testing sessions included pairs of naming tests,
the goal was to have a span of approximately 24 hr between
the test administrations. Despite administering nearly 700
PNTs to the treatment participants, for the purposes of this
study, we were only interested in the single PNT immediately
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preceding and the single PNT immediately following the com-
bined therapy phases (Weeks 1 and 12) for each participant
(144 total PNTs), to match the amount and approximate tim-
ing of data collected from each control participant and to ex-
clude novelty effects from the first test administration. In the
control group, the final two PNTs in the longitudinal series
were examined (i.e., the fourth and fifth tests), because these
represented the plateau of spontaneous recovery as partici-
pants entered the chronic phase of the disorder.

Missing Data
The correct (white), incorrect (black), and missing

(red) trials are illustrated for Treatment Group 1 in
Figure 3A and for Treatment Group 2 in Figure 3B.
There are two tests represented consecutively for each par-
ticipant, one before treatment and one after. Of the
13,300 total naming trials that were originally planned to
be analyzed from Treatment Group 1, 729 trials (5.5%)
were treated as missing. The minimum number of ob-
served trials for a participant in this group was 74. There
were several causes for missing data. (a) The picture nam-
ing test was revised from the version used in previous re-
search, replacing the item Eskimo with the item umbrella;
because item difficulty estimates from the independent co-
hort were not available for the item umbrella, it was ex-
cluded from analysis for all participants, accounting for
76 missing trials (10.4%). (b) The remaining 653 missing
trials (89.6%) were due either to participant fatigue caus-
ing early termination of testing or to recording equipment
and data storage malfunctions (the proportions for each
of these separate causes were unavailable). Of the 11,900
total naming trials that were originally planned to be ana-
lyzed from Treatment Group 2, 534 trials (4.5%) were
treated as missing. The minimum number of observed
Figure 3. A visual representation of the picture naming data, showing e
(A) Treatment Group 1 and (B) Treatment Group 2. Each row represents
are sorted in order of total accuracy on the test.
trials for a participant in this group was 32. Causes for
missing data were similar to those in the first group. (a)
The item umbrella was excluded, accounting for 68 miss-
ing trials (12.7%). (b) The remaining 466 missing trials
(87.3%) were due either to participant fatigue causing
early termination of testing or to recording equipment and
data storage malfunctions.

The data were missing not at random. In both treat-
ment groups, there was a mild, but significant, negative
correlation between the proportion of observed trials that
were correct on partial or complete tests and the number
of missing trials on those tests, Group 1: r(74) = −.34, p =
.003; Group 2: r(66) = −.30, p = .01, accounting for
11.5% and 9.0% of the variance in missing trials across
tests in each group, respectively. Tests with many error re-
sponses typically took longer to administer, leading to
greater pressure on local computer memory resources that
sometimes failed to record the final portion of the test
administration.

Inferences based on fewer observations are likely to
be more conservative in identifying significant changes
than inferences based on more observations, due to reduced
confidence in the estimates (i.e., wider interval estimates).
Values for missing data can be imputed as a byproduct of
the Gibbs sampling procedure for estimating model param-
eters, but these imputed values do not affect the behavior
of the Gibbs sampling procedure due to the fully specified
conditional distributions from which it samples (i.e., the
same point and interval estimates for parameters would be
obtained if the data structure did not indicate any missing
data and instead was simply reduced in size).

Crucially, item difficulty parameters were estimated
from an independent calibration cohort without missing
data. Using known difficulty values means that ability
ach trial as correct (white), incorrect (black), or missing (red), for
an individual naming test, with two rows per participant. The rows
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estimates in the treatment groups should be less affected
by the specific items that are used for testing, which is a
central tenet of IRT (Lord & Novick, 1968). For ability
parameters, missing data would only bias estimates if the
participant’s response-generating mechanisms (i.e., what-
ever aspects of a participant that contribute to the proba-
bility of a response) worked differently on those missing
trials. However, the mechanisms that created the majority
of the missing data, such as recording equipment failures,
are not expected to selectively impact trials where the par-
ticipants’ response-generating mechanisms deviate from
the propensities estimated from the observed trials. For
example, if a participant showed a propensity to make er-
rors on items that were easy, one could infer that even
more errors would be made on the missing items that were
difficult, assuming the participant’s abilities continued to
be stable when naming these missing items. Regarding
participant fatigue as a mechanism for missing data, a
participant could have produced a low rate of correct re-
sponses on the initial trials and then terminated testing be-
cause the participant expected continued failures. In this
case, we can simply assume we are estimating the partici-
pant’s ability specifically when the participant feels ener-
getic and confident enough to participate, in accordance
with the model’s assumption of stable ability levels over
testing sessions. Recall that missing data are not the same
as no response, one of the modeled response type catego-
ries, which would likely account for most strategic refusals
to answer. Therefore, subsequent analyses do not include
any additional corrections for missing data.

Reliability of PNT Scoring

Interrater and intrarater reliability were estimated
for five raters who rescored two participants for interrater
reliability and two others for intrarater reliability, yielding
nine pairs of scored tests in each condition. These two
groups of nine participants with aphasia were selected
based on a previous scoring of the PNT by the supervisor
in order to represent the full range of the severity scale
(interrater group: %C average = 57.9%, SD = 39.8%,
min. = 2.6%, max. = 97.7%; intrarater group: %C aver-
age = 31.2%, SD = 29.2%, min. = 0.6%, max. = 87.1%).

Because the data were nominal, interrater and
intrarater reliability were quantified at the item level with
Cohen’s unweighted kappa (Cohen, 1960), examining
agreement of polytomous scores (i.e., for all eight response
types, assuming chance agreement of one out of eight, or
12.5%) and agreement of dichotomous scores (i.e., for
each response type, assuming chance agreement of 50%).
Kappa values are interpreted according to the scale pre-
sented in Ranganathan et al. (2017) and with respect to
the recommended cutoff of .6 for identifying problematic
agreement. Correlations between the rates of each response
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type combined across raters and kappa values for polytomous
scores were examined to identify response types that are likely
to compromise overall agreement within or between raters at
the item level.

Additionally, confusion matrices and Jaccard indi-
ces were examined for agreement on each response type,
as well as for the most likely response types to be con-
fused. For agreements, the Jaccard index is the propor-
tion of all trials scored with a given response type by one
rater that were also scored with the same response type
by the alternate rater. For confusions, the Jaccard index
is the proportion of all trials scored with a given re-
sponse type by one rater that were confused for another
given response type by the alternate rater.

Participant-level agreement (summed over items) was
evaluated by examining correlation coefficients of fre-
quency counts for each response type, as well as means and
standard deviations of difference scores, between different
raters and within the same rater on different occasions.

Model Fitting

Under the null hypothesis testing framework, a sta-
tistical model assumes that a data set comes from an unin-
teresting random source, and we use the data to check if
the model is wrong enough to reject it. Under the Bayes-
ian framework, a statistical model assumes that a data set
comes from a theoretically motivated process that includes
randomness, and we use the data to check if the model is
right enough to accept it (at least until a better model
comes along). When we fit the model to data, we estimate
the values for each participant ability that combine with
the known item difficulty values to define a probability
distribution over response types that, when sampled from,
is most likely to generate the observed data. Formally,
this estimation procedure is known as Gibbs sampling.
Then, we check three different aspects of the ability estima-
tion procedure. (a) The procedure to derive the estimates in-
volve an element of chance. Do the ability estimates depend
on the starting point of the random sampling procedure?
This is called a convergence check. (b) The procedure to de-
rive estimates also depends on somewhat arbitrary assump-
tions about the ability values that are expected to be encoun-
tered in the population before we observe any data. Do the
ability estimates depend on arbitrary prior assumptions?
This is called a sensitivity check. (c) Given the flexibility of
possible model specifications, the estimation procedure is
not guaranteed to capture relevant information about a
given data set. Can the data be recovered from the ability
estimates? This is called a posterior prediction or model fit
check. If the model is deemed satisfactory after these
checks, then we can be confident that the ability estimates
are capturing reliable information about the data, allowing
us to then make credible inferences based on the model.
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Details regarding model fitting and model checking are
provided in Supplemental Materials S4 and S5.

Making Inferences From Model-Based
Measures of Change

With point and interval estimates for the measures
of interest in hand, we are able to make inferences about
which participants significantly responded to therapy. We
wanted to know whether we would infer different numbers
of participants with significant changes in the four sum-
mary statistics, for inferences made with a given confi-
dence level. A difference in the estimated magnitude
(point estimate) of observed change or a difference in our
confidence in the estimated magnitude (interval estimate)
of observed change can lead to different inferences for in-
dividual participants. However, if differences between
measures are found, how would we know which outcome
has higher validity given that there is no gold standard for
identifying true change? Perhaps a measure’s increased
sensitivity in detecting the response to treatment is just a
higher Type I error rate, for example. To answer this
question, we employed a control group of similar people
with aphasia who were tested multiple times on the same
task but who did not have treatment. If a more “sensitive”
measure is really just a measure with a higher rate of Type
I error, the measure in question should detect “change,”
that is, exhibit Type I errors, equally in the treatment and
control groups. Analogously, if differences in the magni-
tude of change statistics are due to increased bias rather
than increased sensitivity, we expect the bias to be similar
for those who did and did not receive therapy, leading to
similar magnitudes of change statistics in these different
groups (i.e., a loss of specificity). The ability to distinguish
between participants who did and did not receive therapy
based on change statistics provides evidence that these sta-
tistics are capturing real, systematic changes in naming re-
sponses that are attributable to the treatment intervention.

Statistical Analysis 1: Treatment
Response Frequency

For each participant, we tested whether there was a
significant change in each of the four summary statistics
from baseline to immediately following therapy (i.e., during
the 12-week interval encompassing both types of therapy).
Inferences about change in %C were made using a classical
null hypothesis significance testing approach, Fisher’s exact
test (Fisher, 1922), examining differences in proportions of
correct responses before and after therapy. Inferences about
change in IRT-P(S), MPT-P(S), and MPT-E(D) were based
on whether the Bayesian 95% credible interval for the
change variable included zero (Kruschke, 2013). We report
the number of participants in each group with a significant
change in each summary statistic. We compared the
proportions of significant individual responders identified
by each change statistic in each treatment group versus the
control group, as well as in the aggregated treatment
groups versus the control group, using Fisher’s exact tests.

To apply Fisher’s exact test to an individual partici-
pant’s naming data, we assumed the data could be ar-
ranged in a 2 × 2 contingency table. The rows contained
the frequencies of correct and incorrect picture naming re-
sponses, respectively; the columns contained the frequen-
cies of responses before and after an interval of time, re-
spectively. Fisher’s exact test examines the null hypothesis
that the underlying rate has not changed during the inter-
val, yielding a p value. Performing statistical tests on the
frequencies of correct and incorrect responses instead of a
proportion correct statistic allows us to account for the ef-
fects of missing data on the confidence in our estimates and
enables statistical inferences to be made about the effect of
therapy on an individual participant. The p value for the
Fisher exact test was computed for each participant using
the MATLAB function fexact (Boedigheimer, 2021).

The assumptions of the Fisher exact test are that
each observation comes from a pair of nominal variables
(i.e., a naming trial is correct or incorrect, and comes be-
fore or after therapy), the observations are randomly sam-
pled from the population, the observations are indepen-
dent, and the row and column totals are fixed (i.e., both the
total number of naming trials before and after therapy and
the total numbers of items named correctly or incorrectly
across both testing sessions are known). While only the first
assumption is strictly true for our intended purposes, the re-
mainder is reasonably approximated. When these assump-
tions are violated, the Fisher exact test is known to be
overly conservative, meaning it is less likely to identify a
real change when one exists. Nevertheless, it continues to
be one of the most widely used tests in the field for examin-
ing differences in proportions, and we believe it serves as a
reasonable benchmark for inference quality based on the
expected distribution under a null hypothesis.

Statistical Analysis 2: Treatment
Response Magnitude

Group-level comparisons of average changes in sum-
mary statistics between treatment groups and the control
group were made using unpaired, two-sample t tests. While
we refer to the conventional thresholds for statistical signifi-
cance (α = .05) and statistical trends (α = .1), we also pro-
vide unstandardized effect sizes and other descriptive statis-
tics to broaden the perspective beyond the dichotomous
viewpoint of the significance test toward a more grada-
tional evaluation of the evidence. Additionally, BFs (BF10)
are presented alongside p values, assuming a unit informa-
tion prior with the default scale r on effect size (Rouder
et al., 2009). The unit information prior was chosen be-
cause relatively small effect sizes are expected for group-
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level case–control comparisons in anomia therapy research.
BF10 values greater than one favor the alternative hypothesis
of a nonzero difference in means, whereas values less than one
favor the null hypothesis, with 3.00 and 0.33 taken as thresh-
olds for substantial support, respectively (Rouder et al., 2009).

Group-level overlap in change scores between therapy
groups and the control group was assessed by examining the
area under the receiver operating characteristic curve (AUC).
The AUC represents the probability that a randomly se-
lected individual from a treatment group will have greater
improvement in a summary statistic than a randomly selected
individual from the control group. The 95% confidence inter-
val for the AUC of each summary statistic was estimated
using 1,000 bootstrap samples of the data with replacement.
Confidence intervals excluding .50 were taken as significant.

Following McHorney et al. (1997), we directly com-
pared the change statistics with one another by examining
their relative precision (RP) in distinguishing treatment
groups from the control group. While the p value s and
BF10 values compare the change observed in one statistic
to a hypothetical null change, the RP values compare the
change observed in one statistic to the change observed in
another statistic. We defined RP as the ratio (fraction) of
the t statistics from the comparisons of the treatment and
control groups’ average magnitudes of change (i.e., the
ratio of standardized effect sizes). The %C effect size was
assigned as the relative standard (i.e., the denominator of
the RP ratio). The 95% confidence interval for the RP of
each summary statistic was estimated using 1,000 boot-
strap samples of the data with replacement. Confidence in-
tervals excluding 1.00 were taken as significant.
Results

Reliability of PNT Scoring

The kappa values for interrater and intrarater reli-
ability, along with their correlation with the rate of each
response type, are presented in Supplemental Material S6.
Kappa values for interrater agreement of polytomous
scores (i.e., considering all response types) ranged from
.52 (moderate agreement) to 1 (perfect agreement), with
an average of .81 (near-perfect agreement). There was one
participant (of nine) for whom kappa indicated problematic
interrater agreement in the polytomous scores (kappa = .52),
although this is still considered to be moderate agreement.
There were very strong correlations between interrater kappa
for polytomous scores and the rate of correct (r = .76, p =
1.70 × 10−2), formal (r = −.95, p < 1.00 × 10−4), abstruse ne-
ologism (r = −.86, p = 2.70 × 10−3), and unrelated response
rates (r = −.84, p = 4.20 × 10−3), and a moderate correlation
with nonword response rates (r = −.66, p = 6.60 × 10−2).
Correlations between interrater kappa for polytomous scores
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and semantic response rates (r = −2.60 × 10−3, p = .99) or
mixed response rates (r = .36, p = .34) were negligible to
weak. These results indicate that lower accuracy due to more
nonword errors and word errors without a semantic relation
to the target (i.e., phonological-level errors, in psycholin-
guistic terms) can compromise agreement at the item level
between different raters.

Kappa values for intrarater agreement of polytomous
scoring of all response types ranged from .67 (substantial
agreement) to 1.00 (perfect agreement), with an average of
.86 (near-perfect agreement). There were no participants
for whom kappa indicated problematic intrarater agree-
ment in the polytomous scores (all kappa > .60). There was
a very strong correlation between intrarater kappa for poly-
tomous scores and the rate of correct responses (r = .74,
p = 2.30 × 10−2), and moderate correlations with nonnam-
ing attempt (r = −.63, p = 6.90 × 10−2) and formal response
rates (r = −.58, p = .10). Correlation strengths between
interrater kappa for polytomous scores and rates of other
response types were negligible to weak (maximum absolute
r = .29, minimum p = .45, for semantic errors). These re-
sults indicate that lower accuracy due to nonnaming at-
tempts and formal errors can compromise agreement some-
what within the same rater who scores the same test items
at different times, though the minimum intrarater agree-
ment was still substantial.

The confusion matrices and Jaccard indices for
interrater and intrarater agreement are also included in
Supplemental Material S6. For interrater comparisons, cor-
rect responses had the highest agreement (Jaccard index =
90%), followed by nonnaming attempt (70%), semantic
(57%), mixed (54%), neologism (49%), abstruse neologism
(43%), formal (32%), and unrelated responses (26%). A
plurality of trials scored with a given response type by any
rater agreed with the alternate rater’s scored response
type, for all response types except unrelated errors. Trials
that were scored as unrelated errors by one rater were
most often scored as nonnaming attempts by the alternate
rater (33%), possibly due to misidentification of the first
complete response. Unrelated errors were confused with
formal errors (13%), and formal errors were confused with
unrelated errors (6%), reflecting a difference in judgment
of the phonological relationship between the target and
the response. Abstruse neologism errors were most often
confused with neologism errors (30%), and neologism er-
rors were confused with abstruse neologism errors (14%),
again reflecting a difference in judgment of the phonological
relationship between the target and the response. Mixed
errors were most often confused with semantic errors
(19%), and semantic errors were also confused with mixed
errors (9%), again reflecting a difference in judgment of
the phonological relationship between the target and the
response. Unrelated errors were confused with abstruse ne-
ologism errors (11%), and abstruse neologism errors were
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confused with unrelated errors (6%), reflecting a difference
in judgment of the lexical status of the response. Formal
errors were most often confused with neologism errors
(25%), and neologism errors were also confused with for-
mal errors (12%), again reflecting a difference in judgment
of the lexical status of the response. Formal errors were
confused with correct responses (22%), as were neologism
errors (18%), likely reflecting differences in interpreting dia-
lectal or articulatory-phonological influences on utterances.
Semantic errors (15%) and mixed errors (12%) were con-
fused with nonnaming attempts, likely reflecting differences
in the categorization of verbs and adjectives as single-word
descriptions versus naming attempts. Differences in judg-
ment of the semantic relationship between the target and
the response were rare. Notably, most of the disagreements
at the item level occurred between response types that were
relatively close in their ordering of processing completion
assigned by the MPT model (i.e., unrelated and no response
errors are similar indicators of less successful cognitive pro-
cessing, whereas formal and neologism errors are similar in-
dicators of more successful cognitive processing).

Despite the presence of item-level discrepancies in
scoring, participant-level frequency counts were highly
consistent both within and between raters for all response
types. Among different raters, the average difference score
was less than a single item for all response types except
correct responses, which had an average difference of two
items. The minimum correlation between frequency counts
from different raters was r = .83 for neologism errors; all
other r > .96. Within the same raters, the minimum
Figure 4. Scatter plots showing the relationships between point estimates
lationships between point estimates of the changes in the summary statis
the identity line. %C = percent correct; MPT = multinomial processing tre
correlation between frequency counts on different scoring
occasions was r = .95, for mixed errors.

Model Fitting

Figure 4 shows the correlations between the point
estimates for the four summary statistics at baseline and
the point estimates of changes in these summary statistics
after therapy. Of note, in both treatment groups, %C,
IRT-P(S), and MPT-P(S) all have extremely high correla-
tions with each other for both baseline and change point es-
timates, essentially identical, whereas MPT-E(D) is strongly
related to the other summary statistics, but not identical.
At baseline, MPT-E(D) is always greater than or equal to
the other accuracy statistics, meaning that it technically has
less room to improve over time; however, this discrepancy
only becomes relevant for comparison with the other statis-
tics if participants are reaching the improvement ceiling
(no participants achieved perfect accuracy).

All model checks were satisfactory. We demon-
strated convergence of the estimates for the variables of
interest, meaning that the obtained estimates are repro-
ducible despite the element of chance in the estimation
procedure. The posterior point and interval estimates of abil-
ities were highly consistent across different justified prior
distribution specifications, suggesting that our posterior
estimates appropriately depend on the data and are not
unduly influenced by arbitrary prior beliefs. Finally, the vast
majority of the observed individual response type frequen-
cies as well as the overall distributions of response type
of the four summary statistics at baseline (bottom left) and the re-
tics after treatment (top right). The dotted, diagonal line represents
e; IRT = item response theory.
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frequencies generated by each participant could be ade-
quately recovered from the estimated ability parameters.
Given the established reliability of the ability estimates, we
can examine whether they are useful for making inferences.

Statistical Analysis 1: Treatment
Response Frequency

Figure 5 illustrates the relationships between base-
line measures of each summary statistic and changes in
each summary statistic for the control group and treatment
Figure 5. Scatter plots showing the relationships between baseline measu
after treatment. Points representing participants with significant change
deterioration, are shaded black and circled; points representing particip
correct; MPT = multinomial processing tree; IRT = item response theory
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groups. Participants exhibiting a significant change (positive
or negative) are shaded in black and circled, whereas par-
ticipants exhibiting a nonsignificant change are shaded in
gray. Although nontherapy-related changes (improvement
or decline) may be present in each of our samples, under
the assumption that treatment was at least partially effec-
tive, we expected a significantly higher frequency of perfor-
mance improvements in treatment groups relative to the
control group, and we expected nonsignificant differences
in frequencies of performance declines. These expecta-
tions were confirmed. Table 2 shows the frequencies of
rements and estimated changes for each of the summary statistics
(two-tail p or posterior p < .05) in either direction, improvement or
ants with nonsignificant change are shaded gray. %C = percent
.
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Table 2. Frequency of significant improvement.

Group %C IRT-P(S) MPT-P(S) MPT-E(D)

Control group 0 3 0 0
0% 13% 0% 0%

Treatment Group 1 4 6 5 8**
11% 16% 13% 21%

Treatment Group 2 6** 5 5* 5*
18% 15% 15% 15%

Treatment Groups
1 + 2

10* 11 10* 13**
14% 15% 14% 18%

Note. Treatment versus control frequency. %C = percent correct;
IRT = item response theory; MPT = multinomial processing tree.

*p < .1. **p < .05.
significant improvements, and Table 3 shows the frequen-
cies of significant declines. Comparing the summary statis-
tics to one another, the MPT-E(D) statistic identified the
maximum number of significant improvements across treat-
ment groups and the minimum number of significant im-
provements in the control group. It also identified the
maximum number of significant declines in the treatment
groups and control group, suggesting that this statistic is
sensitive to changes in both directions; however, the fre-
quency of significant declines in the treatment groups was
not significantly greater than in the control group, in accor-
dance with expectations about treatment efficacy. That is,
while we did find evidence that treatment leads to signifi-
cantly more improvements of MPT-E(D), we did not find
evidence that treatment leads to significantly more declines.

Inferences about significant improvement for indi-
vidual participants based on different measures sometimes-
resulted in different conclusions. In general, the MPT model-
based distance measure, MPT-E(D), tended to identify more
significant responders than accuracy measures, MPT-P(S),
IRT-P(S), or %C. Three of the four statistics, %C, MPT-
P(S), and MPT-E(D), reflected significant effects of treat-
ment on the frequency of individual improvements relative to
the control group, whereas the IRT-P(S) statistic identified
too many improvements in the control group to differentiate
them from the treatment groups.
Table 3. Frequency of significant decline.

Group %C IRT-P(S) MPT-P(S) MPT-E(D)

Control group 0 0 0 1
0% 0% 0% 4%

Treatment Group 1 0 1 1 3
0% 3% 3% 8%

Treatment Group 2 1 1 1 0
0% 3% 3% 0%

Treatment Groups
1 + 2

1 2 2 3
1% 3% 3% 4%

Note. Minimum p = .27, treatment versus control frequency.
%C = percent correct; IRT = item response theory MPT = multinomial
processing tree.
Statistical Analysis 2: Treatment
Response Magnitude

A summary of the results is presented in Table 4.
The only summary statistic for which the alternative hypothe-
sis (i.e., greater average improvement for treatment versus
control) was supported was MPT-E(D) (Treatment Group 1:
p = .01, BF10 = 5.85; Treatment Group 2: p = .03, BF10 =
3.25). Recall that the BF10 value indicates how many times
more likely the alternative hypothesis is than the null hypothesis.
It was 5.9 times more likely that there was greater improvement
for Treatment Group 1 versus control than that these groups
had equal improvement. It was 3.3 times more likely that there
was greater improvement for Treatment Group 2 versus control
than that these groups had equal improvement. With regard to
RP, the IRT-P(S) andMPT-P(S) statistics were not significantly
different from %C at detecting the group-level effects of ther-
apy in either treatment group (max. RP = 1.44); however, the
MPT-E(D) statistic trended differently than %C in Treatment
Group 1 (RP = 2.00; 97% of bootstrap samples > 1.00) and
was significantly different in Treatment Group 2 (RP = 2.51;
98% of bootstrap samples > 1.00).

Figure 6 presents the AUC analysis of change mag-
nitude as bar graphs. In both treatment groups, MPT-
E(D) was the only statistic that was able to discriminate
treatment participants from control participants at rates
significantly better than chance (Treatment Group 1:
AUC = .71, CI [.57, .83]; Treatment Group 2: AUC =
.67, CI [.52, .79]).

Differences in the magnitude of improvement between
the treatment groups and the control group were significantly
larger for the MPT-E(D) statistic than the other measures.
These results support the assumptions of the MPT-Naming
model (a) that multiple latent components are contributing
to picture naming responses and (b) that targeted therapies
may have systematic effects that are measurable despite the
persistence of impairments in other cognitive components.

Summary of Results

Taken together, these analyses provide strong evi-
dence that the MPT-E(D) statistic is more sensitive to
treatment effects than statistics based on accuracy alone.
Inferences based on the MPT-E(D) statistic identified more
significant responders in the treatment groups overall and
significantly more responders compared with the control
group. In contrast to the other accuracy statistics, partici-
pants in the treatment groups could be distinguished from
participants in the control group based on the magnitude
of changes in the MPT-E(D) statistic at rates greater than
chance. The group-level effects of treatment versus control
were 2.0–2.5 times stronger for the MPT-E(D) statistic than
the %C statistic, and this effect held across both bootstrap
resampling of the data and independent replication of the
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Table 4. Summary of results comparing change magnitude in each statistic between the treatment groups and the control group.

Treatment group Variable %C IRT-P(S) MPT-P(S) MPT-E(D)

Treatment Group 1 Mean change difference .02 .02 .03 .04
Pooled standard deviation .06 .06 .05 .06
t 1.30 1.43 1.86 2.59
Unpaired, two-tail p .20 .16 .07 .01
BF10 0.73 0.85 1.55 5.85
RP [95% CI] 1.00 [1.00, 1.00] 1.10 [0.06, 2.13] 1.44 [0.51, 2.52] 2.00 [0.99, 3.14]
AUC [95% CI] .59 [.43, .73] .58 [.44, .73] .63 [.48, .76] .71 [.57, .83]

Treatment Group 2 Mean change difference .01 .01 .02 .03
Pooled standard deviation .05 .05 .05 .05
t 0.91 0.86 1.26 2.29
Unpaired, two-tail p .37 .39 .21 .03
BF10 0.51 0.49 0.71 3.25
RP [95% CI] 1.00 [1.00, 1.00] 0.94 [0.66, 2.30] 1.39 [0.29, 2.90] 2.51 [1.11, 4.19]
AUC [95% CI] .57 [.41, .70] .54 [.38, .69] .59 [.43, .74] .67 [.52, .79]

Note. %C = percent correct; IRT = item response theory; MPT = multinomial processing tree; BF = Bayes factor; RP = relative precision;
CI = confidence interval; AUC = area under the receiver operating characteristic curve.
experiment. The response type data, assessed through the
lens of a latent cognitive model, provided an expanded view
of systematic and measurable treatment effects.
General Discussion

Systematic Effects of Therapy on Error Types

In this study, we examined changes in four different
summary statistics derived from picture naming response
type data. We found that accounting for error types can
increase confidence in observed changes in accuracy. We also
found that a scale for completeness of cognitive processing
Figure 6. Bar graphs showing the pairwise classification accuracy (i.e., th
distinguishing treatment participants from control participants based on
representing 95% confidence intervals for AUC were estimated using
processing tree; IRT = item response theory; %C = percent correct.
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can be operationalized with respect to error type data,
which can capture treatment effects that improve cognitive
processing without necessarily improving accuracy. There
were seven participants (out of 72) who exhibited a signifi-
cant change in MPT-E(D) without a significant change in
%C, four participants showing the reverse pattern, and six
participants with significant changes in both statistics. The
changes in response type rates for each of these participants
are shown in Figure 7. While changes in response type rates
are a main component of the inference outcome, it is impor-
tant to remember that the number of observed trials and
the items on which errors occurred also affect the inference,
and these aspects are not pictured. When MPT-E(D) chan-
ged without significant changes in %C, generally the most
e area under the receiver operating characteristic curve [AUC]) for
the magnitude of change in each summary statistic. Error bars
1,000 bootstrap samples with replacement. MPT = multinomial
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Figure 7. Bar graphs showing the changes in response type rates for seven participants with significant MPT-E(D) change and nonsignificant
%C change (left), four participants with nonsignificant MPT-E(D) change and significant %C change (middle), and six participants with significant
MPT-E(D) change and significant %C change (right). %C = percent correct; MPT = multinomial processing tree; NA = no attempt; AN = abstruse
neologism; U = unrelated; S = semantic; N = neologism; F = formal; M = mixed; C = correct.
severe error types (i.e., nonnaming attempts and abstruse
neologisms) were converted into less severe error types.
When %C changed without significant changes in MPT-
E(D), the changes in %C were relatively small and, for
MPT-E(D), these changes were moderated by the knowledge
that certain, infrequent error types are likely to occur on cer-
tain items due to chance rather than a true latent change.
That is, for someone without any changes in ability, it is still
reasonable to expect that a phonological error, for exam-
ple, might occur on a phonologically difficult item before
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treatment but not after treatment simply due to chance, al-
though this should happen infrequently. Without consider-
ing the specific difficulty of the items and the error types
that are committed, one might consider a small improve-
ment in accuracy to be more significant than is warranted.
Agreement between the statistics typically involved rela-
tively large increases in correct response rates along with
decreases in nonnaming attempts.

These incremental improvements that are reflected
in the MPT-E(D) statistic are measurable and distinct
from changes that occur during spontaneous recovery in
the chronic stage, as revealed by our case–control compar-
ison of change magnitude. They are also consistent with
theoretical proposals regarding the nature of speech and
language deficits in aphasia. The continuity thesis (Freud,
1953) asserts that the causes of speech errors observed in
aphasia lie on a continuum ranging from the healthy (but
still occasionally error-prone) symbolic production system
to a completely unregulated, random symbolic production
system, which implies that the observed error types offer
clues regarding the extent to which the system is damaged.
This has been claimed to be the most important feature
for any model seeking to explain rates of different speech
errors in aphasia (Dell et al., 1997; Schwartz et al., 2006).
Neurocomputational models of aphasia that adopt the par-
allel distributed processing approach (Ueno et al., 2011)
also instantiate gradients of performance that can be local-
ized to specific layers and connections mediating a series of
representational transformations from visual input to spo-
ken output. The MPT model’s assumptions are therefore
better aligned with current theories of word retrieval than
the all-or-nothing quality represented by accuracy statistics.
Calibrating our measurement scales to be more sensitive to
these incremental gains in cognitive processing is an impor-
tant advancement for the POLAR study, because predicting
outcomes presumes that we can accurately measure out-
comes (and not just the proverbial tip of the iceberg).
Systematic Effects of Test Items
on Error Types

Different estimates of item difficulty will affect how
correction of a certain error on a certain item is inter-
preted. To further illustrate the differences between item
difficulty estimates based on correct or incorrect re-
sponses and item difficulty estimates based on multiple
error types, we examined the correlations between these
types of estimates. First, we compared our new estimates
of the difficulty of producing an accurate response with
an extant analysis in the literature. Fergadiotis et al. (2015)
described an IRT analysis for PNT accuracy based on a
subset of 251 of the 365 participants included in the calibra-
tion cohort for the current study. We examined the correlation
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between our Bayesian point estimates of item difficulty and
the estimates reported by Fergadiotis et al. (2015), finding a
very strong correlation (r = .99). The relationship for higher
difficulty items veers off the identity line somewhat (see
Supplemental Material S7), due to the inclusion of partici-
pants with more severe impairment, on average, in the cur-
rent calibration cohort; more importantly, however, the rel-
ative ordering of items is essentially preserved. Next, we
compared our estimates of the difficulty of producing an
accurate response with our estimates of the difficulty of
avoiding a particular error type. The correlations of accu-
racy difficulty with the MPT difficulties for all 175 items
were as follows: Attempt (r = .84), LexSem (r = .56), LexPhon
(r = .61), LexSel (r = .76), and Phon (r = .84). Given relatively
less correspondence between the LexSem difficulty and the
accuracy difficulty, for example, remediation of semantic
errors on semantically challenging targets would not receive
due credit using the accuracy difficulty scale. Thus, the dif-
ficulty scales used by the MPT model provide insight into a
wider variety of impairment changes. Inferences based on
the incorrect assumption of unidimensional item difficulty
may be more misleading than inferences based on classical
test theory that ignore item heterogeneity.

Just as accounting for item difficulty without ac-
counting for response types was insufficient for detecting
the case–control differences, accounting for response types
without accounting for item difficulty or the sequential na-
ture of cognitive processing also failed to discriminate be-
tween treatment and control groups. In a post hoc analysis
of the standard partial credit score (i.e., assigning points to
each item based on response types and summing over items
for a total score), we found that the standard partial credit
scores behaved like the standard accuracy scores when
making group-level inferences based on change magnitude
(see Supplemental Material S8). These results are reassuring
that we are not simply “reinventing the wheel” with the
MPT-E(D) statistic. The cognitive model is necessary for
revealing additional, systematic effects of treatment on re-
sponse types.

Limitations and Future Directions

Sampling Limitations
As with most aphasia research, our data are not col-

lected from a random sample of persons with aphasia, nor
are they collected from a random sample of picturable
nouns in English. The characteristics of the participants
and items, therefore, should be considered carefully before
extending our estimates and conclusions beyond the cur-
rent study cohorts.

Cohort differences. Because we were limited to ana-
lyzing samples of convenience, there were several important
differences between the participant cohorts that could have
affected the current study. The most notable concern is
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the difference between treatment and control groups in
terms of their baseline accuracy distributions. Generally,
the control participants had higher baseline accuracy than
treatment participants. If we had included more severe
control participants, we might have observed more sponta-
neous improvement of MPT-E(D) and less contrast be-
tween the groups. Even if this were the case, it would im-
ply that severe and mild aphasias at baseline are distin-
guishable by changes in response types over time, but not
by changes in accuracy over time. So, the MPT-E(D) sta-
tistic would still be informative.

Another potential concern is the difference between
treatment groups and the control and calibration groups
in terms of motor speech impairment. Perhaps the ob-
served group differences relate to estimates of item diffi-
culties being more valid for the control group than for the
treatment groups, because their specific impairments are
more similar. The issue of item calibration based on a “rep-
resentative” sample can be quite challenging in the context
of a heterogeneous condition like aphasia. In the current
work, we sought to be as inclusive as possible, relying on
estimates that are supported by external validation experi-
ments (Walker et al., 2018, 2020), but future work should
investigate the impact of item calibration procedures.

The control and treatment groups also differed in
terms of the chronicity of their conditions. Generally, the
control participants were earlier in their course of recovery
than treatment participants. This difference leads to a con-
servative stance on the hypothesis that treatment improves
performance, because the control group may still be exhibit-
ing some spontaneous recovery. The fact that changes in be-
havior are more noticeable in a group that has had the con-
dition longer supports the claim that the treatment caused
the changes rather than the mere passage of time.

The control and treatment groups also differed in
terms of the number of times they were assessed during the
study. Perhaps the repeated administration of the naming as-
sessment, without the treatment, might have yielded the
same results. While this is possible, the expectation of group
differences remains, and only the MPT-E(D) statistic was
sensitive to these differences.

Refractory effects. The PNT items were presented to
each participant in the same, fixed, random order. This
raises the concern that items presented previously may have
affected the probabilities of response types on items pre-
sented later via refractory effects (i.e., cumulative semantic
interference). This is a minor concern for the current study
because, given the same, fixed order of item presentation
at each assessment, refractory effects are expected to be
the same across assessments and should therefore cancel
out when differences in performance are examined for sig-
nificant change in ability between tests. Furthermore, the
MPT-Naming model’s item difficulty estimates should
account for order effects on the probability of a given error
type, because the same presentation order was used for esti-
mating item difficulties. This issue does raise concerns for
the future development of short forms or adaptive tests
that are presented in a different order, and thus may engen-
der different item difficulties associated with order effects.
These deviations in item difficulty due to order effects are
expected to be small in the general population, with mini-
mal impact on ability estimates when aggregated over items
from multiple categories. This is because refractory effects
are observed in a specific subset of people with aphasia,
those with semantic control impairments (Jefferies et al.,
2007). While these effects are robustly observed in latency
data, in naming accuracy data, they are either nonsignifi-
cant (Belke, 2013; Howard et al., 2006; Riès et al., 2015;
Runnqvist et al., 2012; Schnur, 2014) or very small, with
each previously named item from a given category increasing
the probability of a semantic error by less than 1% (Harvey
et al., 2019). When these effects are aggregated over partici-
pants and items from multiple categories, they are negligi-
ble (i.e., comparable to error from random sampling).

Transcription and Scoring Limitations
Data collection and scoring is time-consuming and

difficult, making the current methods unfeasible for many
clinical settings. Our reliability analysis revealed that, al-
though scoring agreement is quite high for a random pair
of scorers scoring a random test from the full range of
ability, there is clearly room for improvement in the con-
text of more severe phonological-level impairment. Tran-
scription and identification of phonological relations to
the target appear to be particularly disagreement-prone
steps of the data collection procedure. Automated scoring
protocols are in development that can aid in the collection
and standardization of response type data (Fergadiotis
et al., 2016). Furthermore, knowledge about variance
among scorers can be incorporated into future statistical
models of the data-generating processes.

Short Forms and Adaptive Testing
The IRT formalisms encapsulated within the MPT-

Naming model offer the potential for development of
short forms and computer-adaptive tests for more efficient
measurement of summary statistics; however, in the cur-
rent study, we estimated abilities and their longitudinal
changes using as much of the available data as possible
(while maintaining comparability between groups). While
the MPT model can naturally accommodate data from
abbreviated tests without compromising its logic of infer-
ence, it remains to be seen how many and which items
are necessary to infer whether a change has occurred
with a desired level of confidence. Furthermore, testing
specific psychometric properties of latent components in
a multicomponent model—such as dimensionality, discrimi-
nability, item invariance, or local independence—can be
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quite challenging, as many of the standard assessments as-
sume a more direct relationship exists between model pa-
rameters and data. To the extent that model assumptions
are not met, inferences are expected to be suboptimal.
Thus, in our investigations to date, rather than attempting
to determine the truth of these assumptions individually, we
have attempted to determine whether the assumptions,
taken together, are useful compared with standard ap-
proaches (Box, 1979). We hope that the statistical model
might ultimately inform the development of computerized
adaptive naming tests, such as the one that already exists
for naming accuracy on the PNT (Hula et al., 2015, 2019).

Modeling Correlations Between Abilities at the
Population Level

We know that naming abilities, particularly lexical
abilities (i.e., LexSem, LexPhon, and LexSel ), are gener-
ally correlated with each other in a cross-sectional sample
of participants with aphasia, and longitudinal changes in
abilities might also be expected to exhibit significant corre-
lations. Currently, our prior assumptions stipulate that
these are all independent from one another, so incorporat-
ing our knowledge of these correlations into the model
could be a logical next step. The latent-trait approach pro-
posed by Klauer (2010) that handles estimation of corre-
lated parameters in MPT models was adapted to also
account for item heterogeneity by Matzke et al. (2015).
Reformulating the MPT-Naming model in this framework
is a natural progression that could constrain parameter
estimates in informative ways. However, there are poten-
tial pitfalls in terms of appropriately defining the variety
of correlated abilities and changes in abilities that one
might find in different variants and intensities of aphasia.
For example, within the calibration cohort, we find signifi-
cantly different correlations between point estimates of the
LexPhon and Phon parameters for subsets of participants
with or without apraxia of speech, a motor speech planning
disorder (Z test; r1 [with apraxia] = .52, r2 [without
apraxia] = .74, n1 = 90, n2 = 275; two-tailed p = .002).
That is, the severity of sublexical (Phon) deficits in partici-
pants without apraxia are strongly related to the severity of
lexical–phonological (LexPhon) deficits, but this is less true
of participants with apraxia, where the severity of the sublex-
ical deficit tends to better explain the relative frequencies of
word and nonword errors on its own. Further research will
need to identify appropriate calibration cohorts to inform
prior expectations about correlated parameters.

Modeling Individual Responses, Processes,
and Changes

The cognitive psychometric model of picture naming
abilities and changes over time can be developed further. We
used the scoring protocol for naming data outlined by
Roach et al. (1996), but there are other ways of categorizing
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or quantifying characteristics of speech errors. For example,
the current scoring protocol does not consider differences in
articulatory phonetic disturbances versus phonological substi-
tutions. Alternative scoring protocols may reveal different as-
pects or substages of cognitive processing. Alternative tree
structures may also lead to different estimates of abilities.
Finally, the temporal structure of the model can be up-
dated. For example, changes over time could be modeled
as continuous curves, given continuous observations over
time (Evans et al., 2021). The temporal structure of each
trial could also be modeled to accommodate inferences
about reaction times (Evans et al., 2020). The current re-
sults can provide a new benchmark for a model’s capabil-
ity to measure the specific effects of treatment.

Clinical Significance
Finally, while we have found clear evidence for sta-

tistically significant effects of therapy, we still do not
know how these effects translate into clinical significance.
That is, we do not know if an improvement of these sum-
mary statistics relates to an improvement in quality of life
or success in communication. This is true of all the mea-
sures studied here, including %C. Nevertheless, bench-
marks for clinical significance can and should be related
to concepts of statistical significance, appropriately framed
with respect to the ultimate quantities of interest (i.e.,
those related to client satisfaction). The current study pro-
vides new, potentially relevant metrics that warrant fur-
ther investigation in this regard.
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