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Abstract 
No effective therapy exists for the most common long-term side effect of radiation therapy for head and neck cancer (HNC)—xerostomia. The 
objective was to evaluate safety and provide proof of concept for efficacy of allogeneic adipose tissue-derived mesenchymal stem/stromal cells 
(AT-MSCs) injected into the major salivary glands of irradiated patients. This open-label, first-in-human, phase 1b, and single-center trial was 
conducted with repeated measurements days 0, 1, 5, and 30 and 4 months. Eligible patients with objective and subjective signs of radiation-
induced salivary gland damage after treatment of oropharyngeal squamous cell carcinoma stages I-II (UICC 8) were enrolled. Twenty-five 
million cryopreserved AT-MSCs were injected into each submandibular and 50 million AT-MSCs into each parotid gland. Data were collected 
on adverse events, unstimulated and stimulated whole saliva (UWS and SWS) flow rates and saliva composition, patient-reported outcomes 
(EORTC QLQ-H&N35 and Xerostomia Questionnaire [XQ]), blood samples and salivary gland scintigraphy. Data were analyzed using repeated 
measures linear mixed models. Ten patients (7 men, 3 women, 59.5 years [range: 45-70]) were treated in 4 glands. No treatment-related serious 
adverse events occurred. During 4 months, UWS flow rate increased from 0.13 mL/minute at baseline to 0.18 mL/minute with a change of 0.06  
(P = .0009) mL/minute. SWS flow rate increased from 0.66 mL/minute at baseline to 0.75 mL/minute with a change of 0.09 (P = .017) mL/minute. 
XQ summary score decreased by 22.6 units (P = .0004), EORTC QLQ-H&N35 dry mouth domains decreased by 26.7 (P = .0013), sticky saliva 23.3  
(P = .0015), and swallowing 10.0 (P = .0016). Our trial suggests treatment of the major salivary glands with allogenic AT-MSCs is safe, warranting 
confirmation in larger trials.
Key words: stem cells; mesenchymal stem cells; clinical trials; xerostomia; cancer.
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Graphical Abstract 

Lessons Learned
	•	 Injection of an allogeneic “off-the-shelf” AT-MSC therapy into both the submandibular and parotid glands of irradiated patients is 

feasible.
	•	 No treatment-related serious adverse events occurred at 4 months follow-up after treatment with AT-MSC drug in 10 patients with 

previous oropharyngeal squamous cell carcinoma with radiation-induced salivary gland hypofunction and xerostomia.
	•	 A significant and clinically meaningful increase in unstimulated and stimulated whole saliva flow rate was observed along with decrease 

in xerostomia with improved patient-reported quality of life.
	•	 Intraglandular treatment of the major salivary glands with allogeneic AT-MSCs is appropriate in larger randomized controlled trials.

Significance Statement
No efficient treatment exists to alleviate the burden of radiation-induced salivary gland hypofunction and xerostomia in patients with 
previous head and neck cancer. This first-in-human study evaluated the safety of and early efficacy of injecting an allogeneic “off-the-shelf” 
adipose tissue-derived mesenchymal stem/stromal cells (AT-MSC) product from healthy donors into both the submandibular and parotid 
glands of irradiated patients. We demonstrate that an allogeneic AT-MSC therapy is safe and feasible and has a tendency toward clinical 
efficacy in patients with radiation-induced salivary gland hypofunction and xerostomia. Our findings indicate that intraglandular treatment 
of the major salivary glands with allogeneic AT-MSCs is appropriate in larger randomized controlled trials testing the safety and efficacy of 
its applicability in the clinical setting, potentially alleviating treatment-related morbidity in patients with HNC.

Introduction
Despite major improvements in radiation therapy for head 
and neck cancer (HNC), the most prevalent long-term com-
plications are radiation-induced salivary gland hypofunction 
and xerostomia.1,2 In Western countries, the overall 5-year 
relative survival rate for patients with HNC is 50%-65%; 
thus, thousands of HNC survivors are living with treatment-
related morbidity.3,4 The major salivary glands (SGs) are 
highly radiosensitive; ionizing radiation leads to reduced 
saliva flow rate and changes in both the composition and 
function of saliva.5,6 Consequently, patients may suffer from 
dental decay, oral infections, difficulties with speaking, 
chewing, and swallowing, sleep disturbance, worsened nu-
tritional state, and impaired quality of life (QoL).7,8 Current 
treatments for radiation-induced salivary gland hypofunction 

and xerostomia are sparse and have no impact on the degen-
eration of the major SGs. Therapies aim with little success to 
stimulate the residual capacity of the SGs or to add topical 
oral lubrication of short duration.9,10 The pathophysiology 
behind radiation injury of SGs is multifactorial and includes 
an acute and late response that may continue for years, char-
acterized by chronic inflammation, acinar, local progenitor 
and stem cell loss and the development of fibrosis and im-
paired environment for surviving acinar cells.11-13

Mesenchymal stem/stromal cells (MSCs) are abundant in 
all vascularized body tissues and are defined by their ability 
in vitro to adhere to plastic, to differentiate into mesodermal 
lineage and by having a specific set of surface markers.14-16 
In vivo, MSCs have been suggested to primarily act by se-
creting a variety of cytokines and growth factors which 
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facilitate regeneration, immunomodulation, angiogenesis, 
and antifibrosis and support local progenitor and stem cells.16 
Preclinical studies indicate that MSCs can restore radiation 
damaged lesions, and regenerate radiation-damaged SGs to 
produce more saliva through the release of hepatocyte growth 
factor, vascular endothelial growth factor, cyclooxygenase-2, 
and matrix metalloproteinase-2 and by increasing the density 
of blood vessels in the SGs.17-20. In a recent randomized 
trial, we found that autologous adipose tissue-derived mes-
enchymal stem/stromal cells (AT-MSCs) injected into the 
submandibular glands of patients with radiation-induced 
xerostomia to be safe with a promising tendency to restore 
submandibular gland function.21 Allogeneic cells have advan-
tages over autologous as they originate from young, healthy 
donors.

We hypothesized that intraglandular allogeneic AT-MSC 
treatment of the submandibular and parotid glands in pa-
tients with radiation-induced damage of the salivary glands 
after oropharyngeal squamous cell carcinoma (OPSCC) 
treatment is safe and will show preliminary signs of efficacy 
through increased salivary flow rates.

Methods
Study Design and Ethics
The primary objective of this investigator-initiated, first-in-
human, non-randomized, single-center, open-label, phase I 
clinical trial was to investigate the safety of intraglandular 
injections of AT-MSCs into the submandibular and parotid 
glands of patients with radiation-induced salivary gland 
hypofunction and xerostomia with a 4 months follow-up 
(Fig. 1). Secondary objectives were to evaluate the prelim-
inary efficacy assessed by changes in whole saliva flow rates, 
whole saliva composition, and patient-reported QoL. The 
sample size was not based on statistical power calculations, 
but 10 was deemed adequate for a phase I trial.

The trial was conducted according to the original protocol 
and complied with the Declaration of Helsinki and was ap-
proval obtained from the National Committee on Health 
Research Ethics (H-1808924) and the Danish Medicines 
Agency (Eudra-CT 2018-003856-19). The trial protocol was 
registered at ClinicalTrials.gov (number NCT03874572. The 
trial was monitored by the Good Clinical Practice Unit of 
Copenhagen.

Study Participants
Patients were recruited from the Department of 
Otolaryngology, Head and Neck Surgery and Audiology 
at Rigshospitalet, the Departments of Oncology at 
Rigshospitalet and Herlev-Gentofte Hospital, or through 
self-referral triggered by media awareness. The patients had 
previously been treated with photon therapy (volumetric arc 
therapy technique) to a total dose to the tumor and lymph 
node metastases of 66-68 Gy given in 2 Gy per fraction with 
6 fractions per week with concurrent cisplatin therapy. This 
treatment consistently delivers practically the full prescribed 
dose to the ipsilateral submandibular gland and some dose 
to the lower portion of the ipsilateral parotid gland. Main 
inclusion criteria comprised patients of both sexes between 
18 and 75 years, with previous OPSCC stages I-II (The Union 
for International Cancer Control 8th, UICC 8), with symp-
toms and objective measures of radiation damage of the SGs 
with a minimum of 2 years without relapse after radiation 
therapy. Main exclusion criteria were cancer in the previous 
4 years (not including OPSCC and basal cell carcinomas), 
xerogenic medications, penicillin or streptomycin allergy, 
other diseases of the SGs, any previous stem cell therapy or 
SG surgery, alcohol abuse, smoking, or pregnancy (A full list 
of eligibility criteria is provided in Supplementary Material, 
eMethods 1). Patients were screened for human immunodefi-
ciency virus (HIV), syphilis, hepatitis B and C, and kidney 
and liver disease.

Figure 1.  Schematic depiction of the study. Created using Biorender.com (PL22Y4W85V).
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We recruited 10 healthy control participants to compare 
the flow rates and composition of whole saliva The control 
participants fulfilled same criteria as the patients and were 
matched for age (±5 years), sex, race, and education. All par-
ticipants provided written informed consent.

Study Treatment and Assessments
All patients received without any anesthesia ultrasound-
guided injection of an AT-MSC suspension of 50 million 
AT-MSCs/mL with 25 million AT-MSCs in each subman-
dibular and 50 million in each parotid gland using a 23 G 
× 2 2/5 KDM disposable hypodermic needle performed by 
the same 2 surgeons (C.D.L. and J.M.). AT-MSCs were de-
posited in 2 areas of the parotid glands to secure equal dis-
tribution of the suspension. The study dose was based on a 
previous trial, injecting 2.8 million autologous AT-MSCs/cm3 
into the submandibular glands, yielding a total of 50-100 
million AT-MSCs with no serious adverse event (SAE) and 
adjusted for inclusion of the parotid gland.21 The slightly in-
creased AT-MSCs dose/cm3 was both with the attempt to in-
crease the effect and due to the use of allogeneic AT-MSCs. 
Consequently, and especially due to inclusion of the parotid 
gland, the total administered dose was increased as above 
described. The intervention containing patient-unmatched 
allogeneic AT-MSCs was manufactured by Cardiology Stem 
Cell Centre from lipoaspirate obtained from 3 healthy female 
donors (22-26 years old), according to Good Manufacturing 
Practice as previously described.22,23 Each study batch con-
tained cells from 1 donor and the patients only received cells 
from 1 donor each. The AT-MSCs drug was injected within 10 
minutes after thawing in a 37 °C water bath in the outpatient 
clinic without any further processing. Lipoaspirates were 
obtained from healthy donors signing an informed consent 
in compliance with the Declaration of Helsinki. Donor eligi-
bility was determined by donor interviews and testing for in-
fectious disease markers HIV, hepatitis B and C, syphilis, and 
human T-cell lymphotropic virus (HTLV I/II). AT-MSCs were 
expanded in automated closed bioreactor systems (Quantum 
Cell Expansion System, Terumo BCT) with human platelet 
lysate as growth supplement (Sexton Biotechnologies). 
AT-MSCs were cryopreserved, 50 million/mL in CryoStor 
CS10 (10% dimethyl sulfoxide [DMSO])) or CS5 (5% 
DMSO) (BiolifeSolutions) and stored in nitrogen dry-storage 
until clinical use. Release criteria were viral safety (donor 
serology/NAT), sterility (including test for contamination of 
bacteria, fungus, mycoplasmas and endotoxins), cell number 
and viability (>80%), and immunophenotypical characteriza-
tion of cells by flow cytometry (stable positive markers CD90, 
CD105, CD73 >80% and negative markers <3% CD45, <5% 
human leukocyte antigen (HLA)-DR). Ten-month stability 
of release criteria and cell function after storage were docu-
mented. All donors were HLA-A, B, -C, -DRB1, -DRB3/4/5, 
-DQA1, -DQB1, -DPA1, and -DPB1 typed by qPCR. Each 
treatment unit was based on 1 donor only. As this was the first 
time for a cryopreserved and allogeneic AT-MSC treatment 
of major SGs in humans, the trial was designed to start with 
excipient CS5 for the first 5 patients and CS10 for the last 5 
patients (Supplementary Material, Fig. S1).

Patient follow-up occurred on day 1 after the intervention 
and at day 5, 1 month, and 4 months. The primary endpoint 
was treatment-related SAEs after 4 months evaluated by 
Common Terminology Criteria for Adverse Events, CTCAE 
vs 5.0 ( Supplementary Material, Figs. S1 and S2). To be open 

for all potential SAEs, specific events were not stated in the 
protocol. The secondary endpoints comprised change in sal-
ivary flow rates, whole saliva composition, quality of life 
(the European Organization for Research and Treatment of 
Cancer Quality of Life Questionnaire Head and Neck Module 
(EORTC QLQ-H&N35) and Xerostomia Questionnaire) 
and salivary gland function measured by scintigraphy (full 
description in Supplementary Material, eMethods 2).24,25 
Measurements of saliva flow rates and saliva collection 
were performed using sialometry (drooling method) at every 
visit.26,27 Participants were asked to drink a minimum of 2 L 
of water the day before a visit. Sialometry was performed be-
tween 10:00 a.m. and 12:00 p.m. by the same doctor in the 
same room. At the 4 months follow-up visit, the performance 
of sialometry by the same doctor was monitored by a project 
nurse, who was blinded to the baseline values for extra val-
idity of the results. Participants were to refrain from drinking, 
eating, smoking, and oral hygiene for a least 1 hour before 
sialometry. After 5 minutes of rest, participants swallowed 
1 mouthful (15-20 mL) of refrigerator-cold water to cleanse 
the mouth, and unstimulated whole saliva (UWS) was col-
lected for 10 minutes in a pre-weighed plastic cup. Chewing 
of a tasteless paraffin wax pellet (Ivoclar Vivadent) was used 
to collect stimulated whole saliva (SWS). After 1 minute of 
initial chewing the patients swallowed, and the saliva pro-
duced the following 5 minutes was collected with the pa-
tient chewing and spitting out the freshly produced saliva at 
their own pace. The saliva samples were snap frozen in li-
quid nitrogen and stored at −80 °C within 15 minutes from 
collection and stored pending analyses. Saliva flow rate (mL/
minute) was estimated by dividing the saliva sample volume 
(1 g of saliva equals 1 mL) by the collection time (minutes). 
UWS and SWS samples from patients and healthy controls 
were analyzed for sodium, chloride, potassium, and phos-
phate concentrations.28,29 Inorganic anions chloride (Cl−) and 
phosphate (PO4

3−) concentrations were analyzed using chro-
matography. Inorganic cations sodium (Na+) and potassium 
(K+) concentrations were analyzed using Inductively Coupled 
Plasma Mass Spectrometry (full description in Supplementary 
Material, eMethods3). Screening for HLA antibodies was 
performed on Luminex 100 System. Screening for HLA-
antibodies (IgG) was detected using the LABScreen Mixed 
(One Lambda) and if positive, subsequent specification was 
performed using LABScreen Single Antigen (One Lambda). 
Mean fluorescence intensity (MFI) >1000 was defined as 
positive.

Statistical Analysis
The objectives of the repeated measurements designs were 
to make inferences about the expected values of the obser-
vations, namely, the average change from baseline in our 
sample. As described in the prespecified Statistical Analysis 
Plan (found in Supplementary Material), data were analyzed 
from December 2020 to March 2021 using SAS version 9.4 
software (SAS Studio), with the particular outcome variable 
(Yi) as a dependent variable, using a (multilevel) repeated 
measures mixed effects model with participants as a random 
effects factor, and time (days; 5 levels) as a fixed effect factor 
based on a restricted maximum likelihood model. This statis-
tical model holds all between-time comparisons for all assess-
ment points up to 4 months from baseline/day 0 (including 
baseline) and allows for evaluation of the average change, as 
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well as the trajectory over time from baseline to 4 months 
follow-up. For the purpose of sensitivity, we also analyzed the 
patients with missing data “as observed” comparing differ-
ences between baseline and four months by Wilcoxon ranks 
test presented as medians with interquartile ranges.

Results
Of 17 patients screened, 10 eligible patients (3 women, 7 
men, aged 45 to 70 years) received ultrasound-guided in-
jection in 4 major SGs from April 29, 2019 to January 8, 
2020 (Table 1). All patients were followed for 4 months, 
but due the SARS-CoV-2 pandemic the last 2 patients were 
seen after 3 months rather than 4 months after approval 
of the protocol amendment by the National Committee on 
Health Research Ethics and the Danish Medicines Agency. 
No protocol deviations or violations occurred during the 4 
months trial period.

No patients experienced treatment-related SAEs. One pa-
tient with a history of multiple vasovagal syncopes devel-
oped a vasovagal syncope during injection of the last gland, 
the left parotid gland (Table 2). After recovery, the patient 
insisted on receiving the last injection and managed this 
without a syncope. All patients reported injections in the 
parotid glands to be particularly painful (CTCAE grade 1), 
but the pain quickly subsided after the procedure. One pa-
tient with hypertension and hypercholesteremia and 2 prior 
transient ischemic attacks encountered a stroke 82 days after 
the intervention, which the neurologists deemed unrelated 
to the intervention. No biochemical changes in parameters 
of liver and kidney function, blood count, or infection were 
observed during the 4 months follow-up. Four of the 10 pa-
tients were followed for at least 2 years with no treatment-
related SAEs.

UWS flow rate increased from 0.13 mL/minute at baseline 
to 0.16  mL/minute after 1 month, corresponding to an in-
crease of 0.03 mL/minute (95% CI: 0.00 to 0.07; P = .041). 
After 4 months UWS flow rate increased to 0.18 mL/minute, 
corresponding to an increase of 0.06  mL/minute (95% CI: 
0.03 to 0.09; P = .0009) or 50% in UWS flow rate (95% CI: 
24 to 76 P = .0005) from baseline (Table 3, Fig. 2A). SWS 
flow rate increased by 0.09  mL/minute (95% CI: 0.02 to 
0.16; P =.019) after 1 month. After 4 months the SWS flow 
rate was increased by 0.09 mL/minute (95% CI: 0.02 to 0.16; 
P =.017) or 20% (95% CI: 7 to 33, P =.004) from baseline to 
0.75 mL/minute (Fig. 2B). There was no difference between 
the patients treated with ASCs in DMSO 5% and DMSO 
10% (P > .5). After 4 months 5 patients had a clinically rele-
vant increase above 30% in UWS flow rate and 3 patients had 
an increase above 30% in SWS flow rate. The concentrations 
of UWS and SWS sodium, chloride, potassium and phosphate 
in the patients and healthy controls were comparable and 
within normal ranges at baseline (Table 1). A normal physio-
logic saliva flow rate dependence of inorganic ions was shown 
from UWS to SWS secretion in the patients at baseline and at 
4 months. No changes were found in the concentrations of 
the inorganic ions in UWS and SWS at 4 months compared 
with baseline.

The XQ summary score was reduced from 53.5 to 30.9 
(change from baseline: −22.6 [95% CI: −33.6 to −11.7];  
P = .0004) at 4 months after the intervention (Fig. 2C). The 
EORTC QLQ-H&N35 domains for dry mouth (HNDR) de-
creased from 73.3 to 46.7 (change from baseline: −26.7 [95% 

CI: −46.9 to −6.4]; P = .0013), sticky saliva (HNSS) from 
46.7 to 23.3 (change from baseline: −23.3 [95% CI: −41.5 to 
−5.2]; P = .0015), and swallowing (HNSW) from 26.7 to 16.7 
(change from baseline: −10.0 [95% CI: −17.9 to −2.1]; P = 
.0016) 4 months after the intervention (Table 3).

At baseline, only 1 patient had HLA antibodies, including 
DSAs, which showed slightly increased intensity (MFI 
values) at 1 month and decreasing at 4 months. Two pa-
tients (P5 and P10) developed de novo DSAs as well as 
other HLA antibodies. Two patients (P2 and P3) developed 
HLA antibodies of very low intensity but no DSAs. The spe-
cificity and MFI values are depicted in Table 4. At baseline, 
salivary gland tracer uptake on salivary gland scintigraphy 
was impaired in 1 or more glands in all patients. No change 
in tracer uptake was observed 4 months after the interven-
tion (change from baseline: 0.1 [95% CI: −0.06 to 0.16]; 
P = .34), nor was any change observed in excretory gland 
capacity (excretion fraction) (2.0 [95% CI: −4.75 to 8.76]; 
P = .52).

Discussion
In this first-in-human trial, we report novel data on the safety 
of major SG injection with an “off-the-shelf” allogeneic 
AT-MSC therapy in patients with radiation-induced salivary 
gland hypofunction and xerostomia. Importantly, no patients 
experienced SAEs. These findings are in accordance with re-
sults from a randomized controlled trial from our group 
involving injections of autologous AT-MSCs in the subman-
dibular glands wherein no patients developed SAEs.21 In the 
present trial, we included treatment of the parotid glands 
and advanced to allogeneic AT-MSCs, a clinically applicable 
therapy. Allogeneic cells come from young, healthy donors 
who have never had cancer or undergone radiation therapy 
or chemotherapy. Results indicate that MSC viability is af-
fected by donor gender, age, comorbidities, and cisplatin.30,31 
Moreover, “off-the-shelf” drugs require few donors and 
can be manufactured for numerous patients. Thus, fewer 
people would need to undergo surgery, and recipients of the 
AT-MSC drug would not be limited to patients living close to 
hospitals with GMP-approved stem cell facilities but could 
potentially benefit patients worldwide and be manufactured 
at much lower price than an autologous AT-MSC product. 
The study was designed as a safety study since it was the first 
time for a cryopreserved and allogeneic AT-MSC treatment 
of major SGs in humans. To investigate a potential safety 
concern of the excipient for this specific use, the trial was de-
signed to start with CS5 (5% dimethyl sulfoxide, [DMSO]) 
for the first 5 patients and if no safety concerns were ob-
served to continue with CS10 (10% DMSO) for the last 5 pa-
tients (Supplementary Material, eFig. 1). We found no safety 
concerns with the 2 concentrations, why we would prefer in 
the next phase II clinical trial to use CS10, since our data in-
dicate that it is superior to CS5 for long-term preservation of 
the present high cell concentration.

As this was an open-label trial with no randomization, no 
conclusions can be drawn about the effect of implantation 
of allogeneic AT-MSCs in the major SGs, but the results can 
support our hypothesis of AT-MSCs being able to restore the 
function of radiation-damaged SGs. A significant increase in 
UWS flow rate was observed from 0.13 to 0.18 mL/minute, 
indicating that allogeneic AT-MSCs have the same poten-
tial as autologous AT-MSCs.21 The increase of 50% is highly 
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likely to have a clinical benefit, although still below the levels 
in the healthy controls (UWS flow rate = 0.45 mL/minute). 
Interestingly, the SWS flow rates only increased by 20%. The 
lower increase in SWS flow rate probably has limited clinical 
relevance and indicating the irradiated parotid glands may 
be less responsive toward AT-MSCs treatment than subman-
dibular glands. The significantly increased UWS and SWS 
flow rates at 4 months were not mirrored in the inorganic-ion 
concentrations. Likewise, the improvement of 50% in UWS is 
presumably too small to be reflected in the semi-quantitative 
evaluations of changes in the scintigrams.

MSCs have been regarded as hypoimmunogenic since 
they lack major histocompatibility complex (MHC)-II.32–35 
Assessment of immunogenicity of allogeneic unmatched 
MSCs in clinical trials is sparse. The patients were treated 
with allogeneic AT-MSCs without matching or the exclusion 
of patients with DSAs and no immunosuppressive treatment. 
The AT-MSCs boosted preexisting DSAs in 1 patient and 2 
patients had a broad range of de novo generated antibodies, 
including DSAs. This is in accordance with previous experi-
ence in patients with heart failure, where only a small tran-
sient increase in tissue-type antibodies was seen toward one 
of 3 donors without any clinical symptoms and influence 
on clinical efficacy.23 In our study, neither the patient with 
preexisting DSAs nor the 2 patients who developed DSAs had 
a significant increase in UWS flow rate after AT-MSC therapy. 
Thus, control of DSAs status prior to allogeneic AT-MSC 
therapy may be relevant but would not exclude the risk of de 
novo generation of DSAs. Possible association between effect 

Table 2.  Safety profile with adverse events.

Adverse events (AEs) N Sum Proportion 

Serious adverse events 10 1 0.1

  SAEs, study related 10 0 0.0

  SAEs, not related 10 1 0.1

Stroke

  Grade 1 10 0 0.0

  Grade 2 10 0 0.0

  Grade 3 10 1 0.1

Death 10 0 0.0

Adverse events, study related

Pain at injection site 10 1 0.1

  Grade 1 10 10 1.0

  Grade 2 10 0 0.0

  Grade 3 10 0 0.0

Syncope, vasovagal

  Grade 3 10 1 0.1

Adverse events, not study relateda 10 3 0.3

Flu-like symptoms

  Grade 1 10 3 0.3

  Grade 2 10 0 0.0

  Grade 3 10 0 0.0

aNot study-related adverse events are patient-reported all occurring 
between day 5 and 4 months.
AE, adverse event; SAE, serious adverse event.

Table 3.  Summary of key secondary outcome measures.

Functional outcomes n Baselinea 120 days follow-upa Difference 95% CI P-value 

UWS FR, mL/minute 10 0.13 ± 0.02 0.18 ± 0.02 0.06 0.03 to 0.09 .0009

UWS FR, % change from baseline 10 0 ± 12.4 50.2 ± 12.4 50.2 23.97 to 76.44 .0005

SWS FR, mL/minute 10 0.66 ± 0.11 0.75 ± 0.1 0.09 0.02 to 0.16 .017

SWS FR, % change from baseline 10 0 ± 6.5 20.2 ± 6.5 20.2 5.14 to 35.22 .0099

XQ summary score (0-100) 10 53.5 ± 6.7 30.9 ± 6.7 −22.6 −33.57 to −11.68 .0004

EORTC QLQ-H&N35 (scores 0-100)

  HNDR 10 73.3 ± 7.2 46.7 ± 7.2 −26.7 −46.93 to −6.41 .013

  HNSS 10 46.7 ± 8.3 23.3 ± 8.3 −23.3 −41.52 to −5.15 .015

  HNSW 10 26.7 ± 4.8 16.7 ± 4.8 −10.0 −17.87 to −2.12 .016

Scintigraphic uptake score (scores 0-4)

  All glands 10 1.7 ± 0.2 1.8 ± 0.2 0.1 −0.06 to 0.16 .34

  PG 10 2.3 ± 0.2 2.4 ± 0.2 0.1 −0.06 to 0.16 .34

  SMG 10 0.9 ± 0.2 0.9 ± 0.2 −0.1 −0.16 to 0.06 .34

Scintigraphic excretion fraction, %

  All glands 10 53.3 ± 4.8 55.3 ± 4.8 2.0 −4.75 to 8.76 .52

  PG 10 59.3 ± 6.0 60.8 ± 6.0 1.4 −6.85 to 9.94 .70

  SMG 10 40.3 ± 5.0 44.3 ± 5.0 4.0 −4.16 to 12.06 .28

Saliva composition, mmol/L

  UWS chloride 8 21.7 ± 2.3 19.0 ± 2.4 −2.68 −7.46 to 2.09 .23

  SWS chloride 9 26.5 ± 3.4 25.9 ± 3.4 −0.61 −3.41 to 2.18 .63

  UWS phosphate 8 4.7 ± 0.4 4.4 ± 0.4 −0.28 −1.44 to 0.88 .55

  SWS phosphate 9 3.8 ± 0.2 3.6 ± 0.2 −0.22 −0.88 to 0.44 .47

  UWS potassium 8 19.1 ± 1.4 18.2 ± 1.6 −0.91 −4.57 to 2.74 .54

  SWS potassium 9 19.4 ± 1.1 19.4 ± 1.2 0.02 −2.85 to 2.81 .99

  UWS sodium 8 8.4 ± 1.4 7.2 ± 1.5 −1.17 −3.80 to 1.46 .32

  SWS sodium 9 14.7 ± 3.3 15.7 ± 3.4 1.02 −3.57 to 5.62 .62

aValues are least squares means and standard errors, unless otherwise stated.
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and DSAs would need verification in larger studies as the lack 
of effect in the present study could also be explained by the 
very low residual saliva function in the 2 patients at baseline 
(UWS flow rate 0.05 mL/minute).

The answers from the EORTC QLQ-H&N35 and XQ 
indicate that patients did feel alleviation of xerostomia, 

which mirrors the increased UWS flow rates. Determining 
who will benefit from the treatment requires further inves-
tigation in a larger randomized controlled trial that focuses 
on safety, development of DSAs, baseline levels of saliva 
production, and time from radiation therapy to AT-MSC 
treatment.

Figure 2.  Unstimulated whole saliva flow rate over time (A), stimulated whole saliva flow rate over time (B), and Xerostomia questionnaire summary 
score over time (C). Lines with color represent the 10 patients and the black lines represent the least square means.
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Limitations
To our knowledge, this is the first prospective study in human 
to evaluate the safety of an allogeneic AT-MSCs therapy in-
jected in the parotid and submandibular glands in previous 
patients with HNC.

The study’s main limitation is the single-center, 
nonrandomized design with a small sample size; thus, any effi-
cacy inference from this study cannot be claimed to be causal. 
The present study was primarily designed to determine the 
safety and feasibility of intraglandular injection of allogeneic 
AT-MSCs cryopreserved in DMSO either 5% or 10%. A fu-
ture randomized trial should consider a placebo solution con-
taining DSMO. Importantly, we found it unethical to inject 
a placebo with DMSO into the parotid gland near the facial 
nerve of a control group before we had the first safety results.

Conclusions
This trial provides the first results of treatment with an “off-the-
shelf” allogeneic AT-MSC drug in the submandibular and par-
otid glands of patients with radiation-induced salivary gland 
hypofunction and xerostomia with no SAEs. Increased UWS 
and SWS flow rates, and alleviation of xerostomia were ob-
served. This may open a new frontier in providing treatments 
to minimize radiation-related morbidity after HNC treatment.
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