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Abstract

Hyperspectral stimulated Raman scattering (SRS) by spectral focusing can generate label-free 

chemical images through temporal scanning of chirped femtosecond pulses. Yet, pulse chirping 

decreases the pulse peak power and temporal scanning increases the acquisition time, resulting 

in a much slower imaging speed compared to single-frame SRS using femtosecond pulses. In 

this paper, we present a deep learning algorithm to solve the inverse problem of getting a 

chemically labeled image from a single-frame femtosecond SRS image. Our DenseNet-based 

learning method, termed as DeepChem, achieves high-speed chemical imaging with a large signal 

level. Speed is improved by 2 orders of magnitude with four sub-cellular components (lipid 

droplet, endoplasmic reticulum, nuclei, cytoplasm) classified in MIA PaCa-2 cells and other 

cell types which were not used for training. Lipid droplet dynamics and cellular response to 

Dithiothreitol in live MIA PaCa-2 cells are demonstrated using this computationally multiplex 

method.
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Vibrational spectroscopic imaging of cellular and tissue structures is opening a new window 

for cell biology research and clinical diagnosis1–3. Stimulated Raman scattering (SRS) 

microscopy is a vibrational imaging technique with label-free chemical specificity4,5. 

SRS microscopy has been implemented with both picosecond and femtosecond pulses, 

respectively, allowing the single color and hyperspectral imaging capabilities6,7. Despite 

these advances, the trade-off between speed, signal-to-noise ratio (SNR), and spectroscopic 

bandwidth prevents its broader application in biology and biomedicine. Using picosecond 

pulse trains, video-rate SRS imaging was realized via a fast lock-in amplifier8. SNR 

was tenfold increased using femtosecond pulse excitation because of the integration 

over a spectral window compared to picosecond pulse excitation9. Although single-shot 

femtosecond SRS imaging permits real-time skin imaging in live mice and cellular 

metabolism quantification10, it lacks spectroscopic information thus cannot discriminate 

chemical components with overlapping Raman signatures. Spectral focusing provides an 

efficient method for femtosecond pulse based hyperspectral SRS (hSRS) measurements 

by linear chirping of pump and Stokes pulses11,12. However, the speed of time-delay 

scanning for parallel detection of several Raman bands is often limited by the motorized 

translational stage due to the waiting time for communication and stabilization13. Improved 

frequency tuning via a galvanometer mirror has reached a speed of seconds per stack13,14. 

Nevertheless, just as illustrated in Figure 1a, tens to hundreds of times more measurements 

are needed for an SRS stack than a single-frame image and limits further improvement 

of its imaging speed. Multiplex SRS enabled single spectrum recording within several 

microseconds by wavelength-division or modulation-division15–17. These multiplex designs, 

however, either came with deterioration in SNR or loss of spectral selectivity. Collectively, 

limitations of each modality highlight a need to fill the gap between the low spectral 

resolution in femtosecond pulse excitation and the low speed in hyperspectral measurement, 

aiming at a high-speed, high-SNR, hyperspectral SRS imaging method.

In parallel with instrumentation development, computational approaches have been applied 

to boost the speed and/or SNR in SRS microscopy. With prior knowledge of the low-

rankness of SRS images, sparse sampling methods improved the SRS imaging speed with 

linear models18–20. Thanks to the recent resurgence of deep neural networks (DNNs), 

image interpretation and translation problems can be resolved via direct learning of the 

underlying image mapping relation21. A recently reported U-Net DNNs based algorithm 

for SRS image denoising shows applicability to reduce potential photodamage and enable 

deep tissue imaging22. Other applications of DNNs to optical microscopy include image 

translation23,24, denoising22,25, super-resolution26, cross-modality image fusion27, focus 

correction28, transmission correction29, largely in the fluorescence microscopy field.

In this work, we tackle the trade-off between spectral specificity, speed, and SNR by 

learning the correlation between spectral and spatial features to derive chemical maps 

from a high-speed femtosecond SRS image. Specifically, we deploy a customized DNN 
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model, namely a DenseNet-based neural network architecture30,31. DenseNet has significant 

advantages over conventional DNNs such as U-Net in computer vision problems, including 

semantic segmentation32. By introducing connections between each layer, DenseNet has 

achieved advanced performance, such as the alleviation of gradient vanishing, reduction of 

the number of parameters, encouraging feature reuse30. We term our DenseNet-based DNN 

as DeepChem. The pairs of spectrally summed hSRS images of MIA PaCa-2 cells and the 

spatially segmented subcellular organelle maps are used for training DeepChem. Then the 

well-trained network is capable of generating subcellular organelle maps using femtosecond 

SRS images (Figure 1b). Based on this method, the needed frame number is reduced to one 

while the chemical selectivity of four subcellular components (lipid droplet, endoplasmic 

reticulum, nuclei, cytoplasm) is preserved. Thus, the trade-off between high SNR, chemical 

selectivity, and speed qualities is broken, without additional need for fluorescent labels, 

parameter estimation, or hardware design.

To test this idea, SRS images were acquired using a lab-built SRS microscope previously 

reported in 9 (Section S1 and Figure S1, Supporting Information). For hyperspectral SRS 

imaging under a spectral focusing scheme, both the pump and Stokes beams were chirped 

with high-dispersion glass, and the hSRS images were collected via spectral scanning 

controlled by a motorized translational stage. For single-frame femtosecond SRS imaging, 

no chirping material was used. The schematic of these two imaging schemes in the time, 

Ramam shift, and intensity domain is illustrated in Figure 1a. For the collected hSRS 

images, we implemented a hyperspectral image segmentation method based on Phasor 

analysis and Markov Random Field (Phasor-MRF, see Section S2 and Figure S2 for 

details) to incorporate both spectral and spatial features in segmenting the subcellular 

organelle maps. Two-photon excitation fluorescence images then confirmed the results from 

Phasor-MRF (Figure S4, Supporting Information). Section S3 and Figure S5 in Supporting 

Information compared the single-frame femtosecond SRS images and the spectrally summed 

SRS images under the same field of view, showing that images collected using these two 

modalities have morphological features with high similarity. This data validates our scheme 

in which spectrally summed hSRS images were used for training. After training, DeepChem 

is capable of predicting subcellular organelle maps from single-frame femtosecond SRS 

images. The workflow of DeepChem training and prediction is shown in Figure 1b.

To generate the training set, we applied normalization for each image to accommodate 

different experimental conditions. Following the normalization, we applied image 

augmentation, such as image rotation and transpose, is used to generate a training set with 

4000 images, each with 128x128 pixels. DeepChem is constructed with repeated dense 

blocks consisting of several densely-connected convolution blocks. Each convolution block 

consists of one convolutional layer followed by a batch normalization layer and a ReLU 

activation layer. DeepChem employs an exponentially decaying learning rate with an Adam 

optimizer and a batch size of 2. Different learning rate initialization is applied for each 

segmentation class. The neural network is implemented in Keras framework on a single 

GPU (GEFORCE 2080Ti). The detailed architecture can be found in Figure S6. Test-time 

augmentation is then applied towards a better segmentation accuracy as33. For each image 

in the testing set, the prediction ensemble of multiple transformed versions of this image is 

first calculated using the pre-trained network. Accordingly, we get the final prediction result 
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Y = E(Y X) = 1
N yn/N . yn denotes the probability map of each instance in the prediction 

ensemble, and X denotes the input image for inference.

Predicted subcellular organelle maps using spectrally summed hSRS show clear biological 

details and high structural similarity to ground truth images (Figure 2a). The confusion 

matrix in Figure 2b shows good prediction accuracy (high intensities cluster in the 

diagonals). Specifically, DeepChem has a 0.787 F1 score (definition in section S4, 

Supporting Information) for nuclei segmentation, better than other subcellular organelle 

segmentation methods using fluorescence images (~0.7)34. For the other three classes (lipid 

droplets, ER, cytoplasm), our method has F1 score of 0.645, 0.805, 0.789. In addition, our 

method is greatly simplified and easier to use compared with networks deploying multi-scale 

branches with different z-depth inputs23,24. Moreover, compared with the U-Net DNNs 

trained on the same dataset, DenseNet-based DeepChem achieves higher segmentation 

performance (Section S5 and Figure S7, Supporting Information)32. Figure 2c and Figure 

S8 show predicted subcellular organelle maps from femtosecond SRS images including 

those cell types (OVCAR-5 and HPDE-6) that never appeared in the training set. It means 

the neural network “has learned” to provide reliable results from new input of different 

modalities and different cell types. This result demonstrates the generalization ability of 

our method and heralds potential in functional cell imaging with high speed and chemical 

selectivity. In terms of the speed performance, a hSRS stack (256×256×100, FOV 64×64 

μm2) takes 110 s, while a single shot femtosecond SRS image with the same size takes 1 to 2 

s. This dramatic speed improvement allows real-time imaging of living cells.

To demonstrate the advantage of our DenseNet-based method over single-frame 

femtosecond SRS imaging, we show lipid droplet tracking with paralleled ER label in 

live MIA PaCa-2 cells using high-speed high-sensitivity femtosecond pulses excitation. 

Previous research has shown the correlation between the spatial-temporal dynamics of 

lipid droplets and cellular lipid metabolism35. However, the previous method using single-

frame femtosecond SRS was unable to detect other subcellular organelles simultaneously. A 

traditional frame-by-frame SRS imaging system can provide multiple subcellular organelles 

simultaneously, but the speed is around one hundred times slower than our method. In 

our experiment, we imaged live MIA PaCa-2 cells with a temporal resolution of 1.5 

seconds per frame for about 2 min. Then, DeepChem predicted lipid droplet maps from the 

collected femtosecond SRS images. These maps were then analyzed by the particle-tracking 

plugin in ImageJ36. Two sample images are shown in Figure 3a. To quantify the lipid 

droplets dynamics, we define two parameters: traveled distance (the cumulative position 

displacement between consecutive frames) and distance to the origin (the displacement of 

the current position to the origin of the movement). Using the two parameters defined 

above, less active lipid droplet movement is observed in cells treated with 0.5 mM 

Dithiothreitol (DTT) for 1 hour (Figure 3b). DTT is a strong reducing agent that can 

break down disulfide bond formation and thus lead to ER stress in minutes37. Lipid 

droplet has been shown as a functional organelle connected as to the ER lumen. Thus, 

our observation implies that the enlarged ER lumen is more likely to trap the lipid droplets 

and limit their movement37. Besides lipid metabolism, DeepChem based femtosecond SRS 
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has the hyperspectral competence to address the rising interest in understanding organelle 

interaction and cooperation from different aspects, including morphology and functionality.

Another strong desire in biomedical applications is large-scale imaging with single-cell 

resolution. The strengths of our method in resolving this need are motion artifacts 

suppression and quantitative evaluation of each population. To illustrate these strengths, 

400 images (64×64 μm2 each) were captured in 10 minutes for both control and DTT treated 

group (0.5mM DTT, 1 hour incubation) (Figure 4a,b). We then quantify the cellular response 

by normalized ER total intensity and ER area ratio, defined in the caption of Figure 4. In 

the DTT treated group, ER total intensity (Figure 4c) and ER area ratio (Figure 4c) are 

both increased compared to the control group, indicating an expansion of ER lumen induced 

by DTT. The hyperspectral capability of our method enables this large-scale high-speed 

imaging with high SNR displaying great advantage over the conventional frame-by-frame 

SRS imaging system. In contrast to the flow setting where the sample cannot be retrieved, 

our image cytometry method can perform continuous imaging of the same field of view. 

Potential applications for this method include SRS-enabled cell sorting.

We note that in our manuscript, the subcellular components ER, nucleus, cytoplasm, and 

lipid droplets can be differentiated based on the intensity of femtosecond SRS images. This 

condition implies that machine learning is not a magic; it pushes the limit in one domain 

by leveraging information in another domain. Nevertheless, compared to the threshold 

approach, machine learning ensures higher accuracy through a sophisticated network. By 

comparing the prediction results between brightness thresholding and DeepChem, Figure S9 

shows that brightness thresholding based on a simple linear scheme suffers from different 

experimental conditions and cell-to-cell variation. The advantage of this DenseNet-based 

learning method is that it trains a nonlinear network utilizing the information of both 

the intensity and the morphological features in the training process, and after training, it 

outputs much more robust segmentation results with high accuracy (Section S6, Supporting 

Information).

In conclusion, we demonstrated a high-speed multiplex chemical imaging method by 

DenseNet-based learning of femtosecond SRS images. This method is capable of revealing 

rapid cellular dynamics, including lipid droplet movement and cellular response to DTT, 

an inducer of ER stress. High speed and chemical selectivity provided by this method 

offers various possibilities, and potential applications including large-area tissue segments 

imaging and deciphering cell metabolism. An optimized algorithm may be applied to 

enable massive parallel visualization of subcellular organelles in the future. Based on 

rapid developments in both SRS microscopy and deep learning methods, we foresee a 

more integrated computational SRS microscope providing advanced imaging schemes for 

comprehensive understanding of biology and materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Zhang et al. Page 5

J Phys Chem Lett. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ACKNOWLEDGMENT

We thank Linli Shi for her assistance with the experiment, Dr. Kai-Chih Huang for helpful discussions on 
image pre-processing, and Peng Lin for discussions on the theoretical comparison between spectrally summed 
hyperspectral SRS and femtosecond SRS. We acknowledge funding from R35GM136223, R33CA223581, 
R01CA224275 to JXC.

REFERENCES

(1). Cheng J-X; Xie XS Vibrational Spectroscopic Imaging of Living Systems: An Emerging Platform 
for Biology and Medicine. Science 2015, 350 (6264), aaa8870. [PubMed: 26612955] 

(2). Min W; Freudiger CW; Lu S; Xie XS Coherent Nonlinear Optical Imaging: Beyond Fluorescence 
Microscopy. Annu. Rev. Phys. Chem 2011, 62 (1), 507–530. [PubMed: 21453061] 

(3). Camp CH Chemically Sensitive Bioimaging with Coherent Raman Scattering. Nat. Photonics 
2015, 9, 11.

(4). Freudiger CW; Min W; Saar BG; Lu S; Holtom GR; He C; Tsai JC; Kang JX; Xie XS Label-Free 
Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy. Science 
2008, 322 (5909), 1857–1861. [PubMed: 19095943] 

(5). Nandakumar P; Kovalev A; Volkmer A Vibrational Imaging Based on Stimulated Raman 
Scattering Microscopy. New J. Phys 2009, 11 (3), 033026.

(6). Zhang C; Cheng J-X Perspective: Coherent Raman Scattering Microscopy, the Future Is Bright. 
APL Photonics 2018, 3 (9), 90901.

(7). Zhang C; Zhang D; Cheng J-X Coherent Raman Scattering Microscopy in Biology and Medicine. 
Annu. Rev. of Biomed. Eng 2015, 17 (1), 415–445. [PubMed: 26514285] 

(8). Saar BG; Freudiger CW; Reichman J; Stanley CM; Holtom GR; Xie XS Video-Rate Molecular 
Imaging in Vivo with Stimulated Raman Scattering. Science 2010, 330 (6009), 1368–1370. 
[PubMed: 21127249] 

(9). Zhang D; Slipchenko MN; Cheng JX Highly Sensitive Vibrational Imaging by Femtosecond Pulse 
Stimulated Raman Loss. J. Phys Chem. Lett 2011, 2 (11), 1248–1253. [PubMed: 21731798] 

(10). Yue S; Cheng J-X Deciphering Single Cell Metabolism by Coherent Raman Scattering 
Microscopy. Curr. Opin. Chem. Biol 2016, 33, 46–57. [PubMed: 27288951] 

(11). Hellerer T; Enejder AMK; Zumbusch A Spectral Focusing: High Spectral Resolution 
Spectroscopy with Broad-Bandwidth Laser Pulses. Appl. Phys. Lett 2004, 85 (1), 25.

(12). Fu D; Holtom G; Freudiger C; Zhang X; Xie XS Hyperspectral Imaging with Stimulated Raman 
Scattering by Chirped Femtosecond Lasers. J. Phys. Chem. B 2013, 117 (16), 4634–4640. 
[PubMed: 23256635] 

(13). Liao C-S; Huang K-C; Hong W; Chen AJ; Karanja C; Wang P; Eakins G; Cheng J-X Stimulated 
Raman Spectroscopic Imaging by Microsecond Delay-Line Tuning. Optica 2016, 3 (12), 1377.

(14). Ozeki Y; Umemura W; Sumimura K; Nishizawa N; Fukui K; Itoh K Stimulated Raman 
Hyperspectral Imaging Based on Spectral Filtering of Broadband Fiber Laser Pulses. Opt. Lett 
2012, 37 (3), 431. [PubMed: 22297376] 

(15). Liao C-S; Wang P; Wang P; Li J; Lee HJ; Eakins G; Cheng J-X Spectrometer-Free Vibrational 
Imaging by Retrieving Stimulated Raman Signal from Highly Scattered Photons. Sci. Adv 2015, 
1 (9), e1500738. [PubMed: 26601311] 

(16). Liao C-S; Slipchenko MN; Wang P; Li J; Lee S-Y; Oglesbee RA; Cheng J-X. Microsecond Scale 
Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy. Light 
Sci. Appl 2015, 4 (3), e265–e265. [PubMed: 26167336] 

(17). Fu D; Lu F-K; Zhang X; Freudiger C; Pernik DR; Holtom G; Xie XS. Quantitative Chemical 
Imaging with Multiplex Stimulated Raman Scattering Microscopy. J. Am. Chem. Soc 2012, 134 
(8), 3623–3626. [PubMed: 22316340] 

(18). Bae K; Zheng W; Huang Z Spatial Light-Modulated Stimulated Raman Scattering (SLM-SRS) 
Microscopy for Rapid Multiplexed Vibrational Imaging. Theranostics 2020, 10 (1), 312–322. 
[PubMed: 31903122] 

Zhang et al. Page 6

J Phys Chem Lett. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(19). Berto P; Scotté C; Galland F; Rigneault H; Aguiar H. B. de. Programmable Single-Pixel-
Based Broadband Stimulated Raman Scattering. Opt. Lett 2017, 42 (9), 1696–1699. [PubMed: 
28454138] 

(20). Lin H; Liao C-S; Wang P; Kong N; Cheng J-X Spectroscopic Stimulated Raman Scattering 
Imaging of Highly Dynamic Specimens through Matrix Completion. Light Sci. Appl 2018, 7 (5), 
17179–17179. [PubMed: 30839525] 

(21). Rivenson Y; Göröcs Z; Günaydin H; Zhang Y; Wang H; Ozcan A Deep Learning Microscopy. 
Optica 2017, 4 (11), 1437–1443.

(22). Manifold B; Thomas E; Francis AT; Hill AH; Fu D Denoising of Stimulated Raman Scattering 
Microscopy Images via Deep Learning. Biomed. Opt. Express 2019, 10 (8), 3860–3874. 
[PubMed: 31452980] 

(23). Christiansen EM; Yang SJ; Ando DM; Javaherian A; Skibinski G; Lipnick S; Mount E; O’Neil 
A; Shah K; Lee AK; Goyal P; Fedus W; Poplin R; Esteva A; Berndl M; Rubin LL; Nelson P; 
Finkbeiner S In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images. Cell 2018, 
173 (3), 792–803.e19. [PubMed: 29656897] 

(24). Ounkomol C; Seshamani S; Maleckar MM; Collman F; Johnson GR Label-Free Prediction 
of Three-Dimensional Fluorescence Images from Transmitted-Light Microscopy. Nat. Methods 
2018, 15 (11), 917–920. [PubMed: 30224672] 

(25). Lin H; Lee HJ; Tague N; Lugagne J-B; Zong C; Deng F; Wong W; Dunlop MJ; Cheng J-X 
Fingerprint Spectroscopic SRS Imaging of Single Living Cells and Whole Brain by Ultrafast 
Tuning and Spatial-Spectral Learning. arXiv:2003.02224 [physics] 2020.

(26). Nehme E; Weiss LE; Michaeli T; Shechtman Y Deep-STORM: Super-Resolution Single-
Molecule Microscopy by Deep Learning. Optica 2018, 5 (4), 458–464.

(27). Rivenson Y; Wang H; Wei Z; de Haan K; Zhang Y; Wu Y; Günaydin H; Zuckerman JE; Chong 
T; Sisk AE; Westbrook LM; Wallace WD; Ozcan A Virtual Histological Staining of Unlabelled 
Tissue-Autofluorescence Images via Deep Learning. Nat. Biomed. Eng 2019, 3 (6), 466–477. 
[PubMed: 31142829] 

(28). Pinkard H; Phillips Z; Babakhani A; Fletcher DA; Waller L Deep Learning for Single-Shot 
Autofocus Microscopy. Optica 2019, 6 (6), 794–797.

(29). Zhao J; Sun Y; Zhu H; Zhu Z; Antonio-Lopez JE; Correa RA; Pang S; Schülzgen A Deep-
Learning Cell Imaging through Anderson Localizing Optical Fiber. Adv. Photonics 2019, 1 (6), 
066001.

(30). Huang G; Liu Z; van der Maaten L; Weinberger KQ Densely Connected Convolutional 
Networks. arXiv: 1608.06993 [cs]2018.

(31). Jegou S; Drozdzal M; Vazquez D; Romero A; Bengio Y The One Hundred Layers Tiramisu: 
Fully Convolutional DenseNets for Semantic Segmentation. In 2017 IEEE Conference on 
Computer Vision and Pattern Recognition Workshops (CVPRW); IEEE: Honolulu, HI, USA, 
2017; pp 1175–1183.

(32). Ronneberger O; Fischer P; Brox T U-Net: Convolutional Networks for Biomedical Image 
Segmentation. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 
2015; Navab N, Hornegger J, Wells WM, Frangi AF, Eds.; Lecture Notes in Computer Science; 
Springer International Publishing: Cham, 2015; pp 234–241.

(33). Wang G; Li W; Aertsen M; Deprest J; Ourselin S; Vercauteren T Aleatoric Uncertainty 
Estimation with Test-Time Augmentation for Medical Image Segmentation with Convolutional 
Neural Networks. Neurocomputing 2019, 338, 34–45.

(34). Caicedo JC; Goodman A; Karhohs KW; Cimini BA; Ackerman J; Haghighi M; Heng C; Becker 
T; Doan M; McQuin C; Rohban M; Singh S; Carpenter AE Nucleus Segmentation across 
Imaging Experiments: The 2018 Data Science Bowl. Nat. Methods 2019, 16 (12), 1247–1253. 
[PubMed: 31636459] 

(35). Zhang C; Li J; Lan L; Cheng J-X Quantification of Lipid Metabolism in Living Cells through 
the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging. Anal. Chem 
2017, 89 (8), 4502–4507. [PubMed: 28345862] 

(36). Sbalzarini IF; Koumoutsakos P Feature Point Tracking and Trajectory Analysis for Video 
Imaging in Cell Biology. J. Struct. Biol 2005, 151 (2), 182–195. [PubMed: 16043363] 

Zhang et al. Page 7

J Phys Chem Lett. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(37). Oslowski CM; Urano F Measuring ER Stress and the Unfolded Protein Response Using 
Mammalian Tissue Culture System. Methods Enzymol. 2011, 490, 71–92. [PubMed: 21266244] 

Zhang et al. Page 8

J Phys Chem Lett. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic of SRS imaging and workflow of DeepChem training and prediction. (a) 

Schematic of two SRS imaging schemes in the 3D domain of time, Raman shift, and 

intensity. Left: hyperspectral SRS imaging with linearly chirped pulses. Right: single-frame 

SRS imaging with non-chirped femtosecond pulses. (b) The workflow of DeepChem 

training and prediction. The training set consists of pairs of spectrally summed hyperspectral 

SRS images and their corresponding subcellular organelle maps from Phasor-MRF. After 
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training, DeepChem is capable of predicting subcellular organelle maps based on a single-

frame femtosecond SRS image. MRF: Markov Random Field.
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Figure 2. 
Predicted subcellular organelle maps from spectrally summed hSRS images and single-

frame femtosecond SRS images. (a) Predicted subcellular organelle maps from spectrally 

summed hSRS images. Scale bar: 10 μm. (b) Confusion matrix of subcellular component 

classes (definition in section S4, Supporting Information). Top: normalized by column; 

bottom: normalized by row. LD, Bkg, ER, and Cyto are abbreviations for lipid droplet, 

background, endoplasmic reticulum, and cytoplasm. (c) Predicted subcellular organelle 

maps from single-frame femtosecond SRS images. Scale bar: 10 μm.

Zhang et al. Page 11

J Phys Chem Lett. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Lipid droplet tracking in live MIA PaCa-2 cells by femtosecond SRS and DeepChem. (a) 

Trajectories of lipid droplets (solid lines) and contours of the ER regions (dashed green 

lines). Scale bar: 5 μm. (b) Quantification of lipid droplet dynamics. The insets in the right 

column show corresponding plots in the range of 75 to 125 s.
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Figure 4. 
Quantification of cellular response to DTT in live MIA PaCa-2 cells, (a-b) Large-area 

femtosecond SRS images from the control and the DTT treated group. The insets show 

areas framed with white boxes. Scale bar: 10 μm. Green lines denote the contour of the ER 

region predicted. Red lines denote the cell contour analyzed by CellProfiler. (c-d) Histogram 

showing the distribution of the normalized ER total intensity and ER area ratio from the 

two groups. ER area ratio=ER arec/Cell area; normalized ER total intensity = ER area × 

ER intensity/Cell area. ER intensity is defined by the averaged SRS signal in the ER region 

given the linear relationship between SRS signal intensity and the concentration of resonant 

molecules.
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