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Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity-
between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of
vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of
the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but
reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its
associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS)
based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community
samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old
children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal
Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score
comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that
the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a
systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease)
associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function
of tissue-specific gene networks.
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INTRODUCTION
Several psychiatric disorders of developmental origin are char-
acterized by deficits in cognitive control – a compromised ability to
voluntarily choose a context-appropriate goal-directed response.
Altered connections and communication between prefrontal and
striatal regions appear to be at the core of this behavioral trait [1],
but the underlying neurobiological processes, as well as early
markers of vulnerability, are yet to be discovered [2–4]. The
cognitive capacity to control and override impulsive behaviors
improves gradually from childhood to early adulthood, mirroring
the protracted developmental trajectory of the prefrontal cortex
(PFC) [5–9], and its gradual quantitative and qualitative changes in
dopamine innervation [10–12]. While dopamine axons establish
local connections in the nucleus accumbens (NAcc) in adolescence,
mesocortical dopamine axons are still growing from the NAcc to
the PFC across this period [13–18]. The extent and organization of
mesocortical dopamine axon growth in adolescence determines
the organization of local PFC circuitry and cognitive function in
adulthood [19–21].
The developmental trajectories of mesocortical and mesolimbic

dopamine inputs are temporally different but have a reciprocal

functional connection [21–24]. Transient postnatal developmental
overexpression of dopamine D2 receptor in the striatum leads to
adult mesocortical dopamine PFC dysfunction and cognitive
deficits, indicating that striatal dopamine maturational events
interact with those controlling mesocortical dopamine axon
growth [25]. Changes in PFC dopamine neurotransmission are
associated with opposite changes in NAcc dopamine function
[23, 26], and alterations in D1- or D2-expressing NAcc pathways
impact gene expression in the PFC [27]. Clearly, PFC and cognitive
control development involve the recruitment of corticostriatal
neuronal networks [28, 29].
A rapidly increasing number of studies show a strong association

between genetic variability within the Netrin-1 guidance cue
receptor gene, DCC, and several psychiatric disorders of develop-
mental onset, most notably those emerging in adolescence. These
disorders are characterized by PFC and NAcc dysfunction and
deficits in impulse control [30–33]. Early postnatal expression of the
DCC gene network in the PFC associates with total brain volume in
children [34], emphasizing that the Netrin-1/DCC guidance cue
system is tightly linked to overall early neurodevelopment. In
adolescent rodents, DCC-mediated Netrin-1 signaling organizes
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the maturation of dopamine networks by promoting mesolimbic
dopamine axon targeting in the NAcc and controlling the growth
of dopamine axons to the PFC [12, 17]. Changes in DCC receptor
levels in adolescent mice lead to mistargeting of mesolimbic
dopamine axons in the NAcc and to their ectopic growth to PFC,
altering PFC function and cognitive control in adulthood [17, 35].
Similar anatomical and behavioral changes occur in humans that
are DCCmutation carriers [36, 37], indicating that the Netrin-1/DCC
pathway is part of a gene network closely involved in corticolimbic
development.
To date, most human genetic studies have focused on

associations between genetic variants and phenotypes, and the
estimated effects of a given number of variants can be aggregated
into a score that represents individual genetic risk (called polygenic
risk score; PRS). This association between genetic variation and
behavior/disease ultimately results in relatively few genome-wide
significant variants (e.g. [38]), most of which belong to noncoding
portions of the genome and whose effect is diminished by the
polygenic nature of complex phenotypes [39, 40]. Several of these
non-coding variants are regulatory in nature, likely affecting
the expression of nearby genes [40], ultimately placing gene
expression as an intermediate molecular phenotype between
genetics and disease [41]. Our approach exploits the facts that
genes operate within complex networks, code with remarkable
tissue-specificity for precise biological functions, and the likelihood
of identifying relevant biological markers increases by relying on
genotype-gene expression rather than genotype-disease associa-
tions (see [42, 43]). We use a systems biology approach to create a
genetic score based on genes co-expressed with a gene of interest
in a specific brain region. We gather all SNPs from the co-expressed
genes and assign for each SNP the effect size estimated by the
Genome-Tissue Expression (GTEx) project [44], which quantifies the
influence of variants on tissue-specific gene expression. We
aggregate genotypes weighted by the GTEx across all SNPs within
the co-expression network into an expression-based polygenic
score (ePRS), according to the individual’s genotype [42, 43].
The relationship between genes and behavior is highly indirect,

regardless of how strong the relationship may be. Here, we forgo
direct genotype-disease associations to construct an ePRS based
on genes co-expressed with DCC in the PFC and the NAcc. Our
goal is to create a marker that captures individual variation in the
processes involved in the maturation of corticolimbic substrates
supporting inhibitory control. By modifying the approach to
genomic profiling, we generated a biological marker that can help
identify early vulnerability for impulsivity-related phenotypes. We
tested the association of the biologically-informed genetic score
with measurements of impulsivity in three ethnically different
community samples of 6- and 10-year-old children.

MATERIALS AND METHODS
Detailed description is provided in the Supplementary Materials and
Methods.

Participants
We used genomic and phenotypic data from three prospective birth
cohorts: (1) Maternal Adversity, Vulnerability and Neurodevelopment
(MAVAN [45]), (2) Growing Up in Singapore Towards Healthy Outcomes
(GUSTO[46]), and (3) Avon Longitudinal Study on Parents and Children
(ALSPAC, detailed block diagram in Fig. S1 [47, 48]). Informed consent was
obtained from each participant, and the the projects have been approved
by: (1) McGill University, Université de Montréal, Royal Victoria Hospital,
Jewish General Hospital, Centre hospitalier de l’Université de Montréal,
Hôpital Maisonneuve-Rosemount, St Joseph’s Hospital, and McMaster
University for MAVAN; (2) The National Healthcare Group Domain Specific
Review Board and the Sing Health Centralized Institutional Review Board
for GUSTO; and (3) the ALSPAC Ethics and Law Committee and the Local
Research Ethics Committees. See Supplementary Table S6 for a summary
of the genotyping information for each cohort.

Identification of corticolimbic DCC gene co-expression
networks and ePRS calculation
Figure 1 shows the steps involved in the identification of the gene
networks and the ePRS score. The ePRS was calculated considering genes
co-expressed with DCC in the PFC and NAcc. We aimed to capture DCC co-
expression networks within each brain region, with the final ePRS being a
joint representation of the functional co-expression networks in these two
corticolimbic regions. As described previously [42, 43, 49], the score was
created using the data from: (1) GeneNetwork (http://genenetwork.org), (2)
BrainSpan (http://www.brainspan.org), (3) the NCBI Variation Viewer, U.S.
National Library of Medicine, (NCBI) [50], (4) the GTEx project [44], and (5)
genotype data in the three cohorts. We used GeneNetwork to generate a
list of genes co-expressed with DCC in the PFC and in the NAcc in mice
(absolute value of co-expression correlation greater or equal to 0.5). We
used gene expression datasets from mice (see Supplementary Data file)
because our study is guided by our previous findings in rodents linking
variations in Dcc expression to changes in impulse control and in
mesocorticolimbic dopamine axon targeting [13, 17, 51, 52]. To retain
genes that are more active when the brain is still undergoing core
maturational processes in humans, we used BrainSpan to select autosomal
transcripts expressed at least 1.5-fold more during the early postnatal
development (0–18 months after birth) than in adulthood (20–40 years of
age), with the final networks consisting of 154 genes in the PFC (see
Table S4) and 72 genes in the NAcc (see Table S5). For annotations, we
used GRCh37.p13 assembly of the NCBI to source chromosome and start/
end position for the co-expressed genes, which, in turn, were used to
gather all the gene-SNP pairs from the GTEx dataset in human PFC and
NAcc (PFC: 41,053 SNPs, NAcc: 66,428 SNPs). These lists were merged with
the genotyping data in each of the three cohorts, keeping only the
common SNPs and subjecting the final genotyping data sets to linkage
disequilibrium clumping (r2 < 0.2) to eliminate highly correlated SNPs.
To calculate the ePRS, number of effect alleles at a given cis-SNP were

weighted by the estimated brain-region-specific effect of the genotype on
gene expression from the GTEx data. The ePRS was obtained by adding the
weighted SNPs, accounting for the sign of the correlation between each
gene’s expression and DCC gene expression. The sum of the estimated
effects resulted in ePRS scores for the DCC co-expression networks in the
PFC and NAcc, which were then aggregated (by summation of the two
scores) into a single global genetic score termed “corticolimbic DCC-ePRS”.
Finally, an enrichment analysis was conducted to characterize the

functional and biological properties of the gene networks that comprise
the corticolimbic DCC-ePRS score. A description of the tools and datasets
used throughout the study can be found in the Supplementary Material,
Table S7.

Behavioral outcomes
We tested whether the ePRS associates with two aspects of impulsivity: (i)
impulsive choice, reflecting proneness to make risky choices, as measured
by the Information Sampling Task; (ii) impulsive action, reflecting the
ability to inhibit motor responses, as measured by the Stop-Signal Task. In
both cases, the ability to self-regulate behavior is required for interrupting
or inhibiting competing inputs or actions in order to accomplish a specific
goal-directed response [1]. A description of the behavioral data obtained
from each cohort is described in the Supplementary Material.

Statistical analysis
Data were analyzed using R v3.6 [53] and Python v3.7 (https://www.
python.org/), and polygenic scores were generated using the PRSoS
pipeline (https://github.com/MeaneyLab/PRSoS). We considered two-tailed
hypothesis tests, and significance levels for all tests were set at α < 0.05. For
each cohort we categorized the ePRS into high- and low-ePRS groups
using a median split of the genetic score. Analysis of baseline
characteristics was performed using Student’s t-test for continuous data
(in case of unequal variances, Welch’s t test was used) and X2 for
categorical variables. Linear regression analysis was used to examine the
association of the ePRS with the behavioral outcomes, adjusting for sex
and population stratification. Adjustment for multiple comparisons was
applied using Bonferroni method, independently for each behavioral
construct/cohort. All data were inspected to ensure that the assumptions
for the tests and the linear regression analyses were met. Power analysis
was conducted for linear multiple regression, considering the effect of the
ePRS on the different outcomes: for α= 0.05, sample size of 202, 398, and
4392, and a small effect size f2= 0.02, the achieved power will be 0.64,
0.88, and > 0.95 in MAVAN, GUSTO, and ALSPAC, respectively.
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RESULTS
We found no differences in baseline characteristics between ePRS
groups in MAVAN, GUSTO, and ALSPAC cohorts (Table 1).

Behavioral outcomes
Lower Corticolimbic DCC-ePRS Scores Associate with Higher
Measurements of Impulsivity in Children. Information Sampling
Task: In MAVAN, the ePRS was associated with meanP-correct values
(Fig. 2A: β=−0.04, p= 0.045); the low-ePRS group had lower
meanP-correct values (less information sampled, lowering the
probability of making a correct choice at the point of decision)
indicating higher levels of impulsive choice in comparison to the
high-ePRS group.
Stop-Signal Task: In GUSTO, the ePRS was associated with the

proportion of successfully inhibited responses (Fig. 2B: β=
−0.03, p= 0.027; Fig. S3 for complete results); low-ePRS group
has a lower proportion of successful stops compared to the
high-ePRS group, indicating higher levels of impulsive action. In
ALSPAC, the ePRS was associated with measurements of
impulsive action (Fig. 2C: β=−10.368, p= 0.019; Fig. S4 for
complete results), with the low-ePRS group showing a shorter
mean reaction time in unsuccessful stop trials- indicating higher
levels of impulsive action- compared to the high-ePRS group.
Also in ALSPAC, there are no differences between ePRS groups
when comparing the proportion of successful stops, but
methodological differences (full details in supplementary
methods; see Fig. S2) in the way the task was conducted in
CANTAB (“stop” signal delay was adjusted to subject’s perfor-
mance in MAVAN and GUSTO) versus ALSPAC (fixed delay of 250
ms was applied irrespective of subject’s performance) prevent
the direct comparison of successfully inhibited responses
between these cohorts. In MAVAN, we found no association
between the ePRS and performance in this task (Proportion of

successful stops: β=−0.03, p= 0.10; Estimated SSRT: β=
−10.07, p= 0.57; see Table S2 for complete results). After
adjustments for multiple comparisons, the association between
the ePRS and the proportion of successful stops in GUSTO cohort
is no longer significant (p= 0.054).
These results show that an ePRS score reflecting variability in

the expression of corticolimbic DCC gene co-expression net-
works is associated with the levels of inhibitory control in
children from ethnically diverse backgrounds.

Corticolimbic DCC gene co-expression networks: enrichment
analysis
Protein–protein interaction (PPI). We used STRING [54] and
Cytoscape [55] to visualize catalogued PPIs in protein products
of genes within each co-expression network (networks were
analyzed separately; only proteins with interactions are depicted
in Fig. 3A). PFC: This network contains 152 nodes (one for each
protein with at least 1 connection with another protein in the
network) and 151 edges, corresponding to the mapped interac-
tions among the nodes. The PPI enrichment (p= 0.004) indicates
that this network contains more interactions than expected,
compared to a network of equal size composed of a random set of
proteins, and that the proteins are involved in common biological
functions. NAcc: Contains 74 nodes and 50 edges, and the PPI
enrichment (p= 5.1e-11) also suggests a strong biological
connection among the proteins (see the corresponding gene
networks, created using GeneMANIA [56], in Fig. S5).

Tissue-specific gene expression. We used FUMA [57] to visualize
the expression levels of the genes from the co-expression
networks across the 54 tissue-types included in GTEx. The PFC
(comprising BA24 and BA9) and the NAcc are the 1st and 4th most
enriched tissues for the gene networks’ expression (Fig. 3B).

Fig. 1 Flowchart depicting the steps involved in the creation of the corticolimbic DCC-ePRS score. A The GeneNetwork database was used
to generate a Dcc gene co-expression matrix in the PFC and NAcc in mice. Genes with a correlation of co-expression �|0.5| were retained.
Brainspan was used to identify human homologous transcripts and to filter each gene list by selecting the transcripts enriched during the first
18 months of life, as compared to adulthood, defined by a differential expression �1.5, within the same brain area. Each resulting gene list
comprised the DCC co-expression network for their respective brain area. B Based on their annotation in the NCBI library, using GRCh37.p13
assembly, common SNPs within each co-expression network, GTEx data base, and genotyping cohort were subjected to linkage
disequilibrium clumping to remove highly correlated SNPs (r2 � 0.2). Using data from the GTEx project, alleles at a given cis-SNP were
weighted by the estimated brain-region-specific effect of the genotype on gene expression. The sum of these estimated effects resulted in
ePRS scores for the DCC co-expression networks in the PFC and NAcc, which we aggregated into a single global ePRS score.
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Functional ontologies. Using MetacoreTM, we explored the
biological context in which the gene networks operate, by
mapping the genes from each network onto functional
categories (Fig. 3C, Table S1 for more detailed results). The
networks are enriched in synaptic components, predominantly

in cell junction and plasma membrane regions (strongest
enrichment for cell junction in PFC: p < 3.3e-8, and for synapse
in NAcc: p < 1.3e-19). Enrichment for biological processes
showed the involvement of the network in neurodevelopmental
processes including neuronal differentiation and development

Fig. 2 Association between ePRS scores and impulsivity-related phenotypes. Association between the corticolimbic DCC-ePRS score and
measurements of impulsivity, in (A) MAVAN kids (n= 197) at 6 years of age (Information Sampling Task: β=−0.04, p= 0.045), (B) GUSTO kids
(n= 398) at 6 years of age (Proportion of successful stops: β=−0.03, p= 0.027), and (C) ALSPAC kids (n= 4392) at 10 years of age (Mean RT –
Incorrect stop trials: β=−10.36, p= 0.019). A lower DCC-ePRS score was associated with higher impulsive action and choice in the 3
ethnically-diverse cohorts. The Y axis represents the predicted values of the measurements of impulsivity, the middle of the box is the median,
the edges are the lowest and highest quartiles, and the error bars (whiskers) represent 1.5 x IQR (interquartile range). *p < 0.05.

Table 1. Description of baseline characteristics of the 3 cohort samples.

MAVAN

Sample description Total (n= 202) Low ePRS (n= 96) High ePRS (n= 106) p-value

Sex – male (n) 49.5% (100) 56.3% (54) 43.4% (46) 0.09

Maternal age at birth (years) 30.72 (4.90) 31.42 (5.07) 30.08 (4.67) 0.053

Gestational age (weeks) 39.03 (1.23) 38.89 (1.30) 39.16 (1.15) 0.11

Birth weight (g) 3313 (452) 3300 (450) 3224 (456) 0.71

Maternal education – University degree or above 55.7% (108) 54.3% (50) 56.9% (58) 0.47

Low family income 20.6% (50) 25.8% (23) 27.3% (27) 0.96

GUSTO

Sample description Total (n= 398) Low ePRS (n= 202) High ePRS (n= 196) p-value

Sex – male (n) 53.3% (212) 49.5% (100) 57.1% (112) 0.15

Maternal age at birth (years) 31.55 (5.04) 31.81 (5.34) 31.28 (4.73) 0.37

Gestational age (weeks) 38.49 (1.28) 38.47 (1.33) 38.50 (1.23) 0.87

Birth weight (g) 3137 (416) 3127 (441) 3147 (391) 0.39

Maternal education – University degree or above 35.64% (103) 38.36% (56) 32.88% (47) 0.39

Household income < $2000 SGD per month 12.11% (35) 15.75% (23) 8.39% (12) 0.08

ALSPAC

Sample description Total (n= 4392) Low ePRS (n= 2210) High ePRS (n= 2182) p-value

Sex – male (n) 49.2% (2159) 48.6% (1075) 49.7% (1084) 0.51

Maternal age at birth (years) 29.31 (4.47) 29.31 (4.47) 29.31 (4.47) 0.97

Gestational age (weeks) 39.76 (1.27) 39.79 (1.26) 39.73 (1.28) 0.11

Birth weight (g) 3499 (465) 3503 (458) 3496 (471) 0.61

Maternal education – University degree or above 18.9% (786) 19.7% (411) 18.2% (375) 0.25

Low SESa 35.0% (1537) 34.5% (762) 35.5% (775) 0.49

Continuous variables are expressed as mean (SD); categorical variables are expressed as percentage (number of subjects).
aWe used “crowding index” as a proxy measure for SES. This index was calculated by dividing the number of individuals living in the family’s residence, by the
number of rooms in the residence, and we considered low SES when crowding index > 0.75, and high SES when crowding index= 0.75.
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(PFC: p < 2.1e-4; NAcc: p < 1e-19), neuron projection guidance
(PFC: p < 1e-3; NAcc: p < 1e-16) and regulation of trans-synaptic
signaling (PFC: p < 2.9e-5; NAcc: p < 3.09e-17). Enrichment for
molecular functions showed a role of the networks in protein
binding and cell adhesion (PFC: p < 2.72e-8; NAcc: p < 5.6e-6).
These functions are fundamental to the establishment of brain

connectivity, mainly via axon guidance (e.g. [58]) and synapto-
genesis (e.g. [59]).

Developmental gene expression. We assessed the enrichment of
gene expression for each network across brain regions and
developmental periods in humans, using the CSEA tool [60, 61].
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Both networks are enriched across the brain during perinatal
periods. Notably, the expression of the NAcc network in the PFC is
enriched again during adolescence (Fig. 3D: p= 3.679e-04), in line
with previous descriptions of the developmental trajectory
mediating adolescent corticolimbic maturation [17, 25].
To explore the ability of the PFC and NAcc networks, and

ultimately the ePRS itself, to capture transcriptionally co-regulated
biological processes, we analyzed the networks’ co-expression
patterns in their corresponding brain regions during childhood
and adulthood using the Brainspan dataset ([62]; Fig. 4). PFC: In
the heatmap representing correlation of gene expression during
childhood, there are 3 main clusters of high co-expression, but
only 1 cluster is maintained in adulthood. Finding that correlations
of expression of genes in the PFC in childhood are not maintained
in adulthood is in line with the marked developmental changes in
the PFC transcriptome landscape previously described in humans
and mice [63]. NAcc: The heatmap for childhood gene co-
expression shows a large main cluster, containing several highly
correlated smaller clusters. Many of the smaller NAcc clusters
perdure into adulthood, indicating that the NAcc network is more
stable than the PFC network.

Comparison between polygenic scores
We compared our ePRS to a traditional PRS for ADHD on the
capacity to predict the same behavioral outcomes. For that, we
selected the top 4515 most significant SNPs identified in the latest
ADHD GWAS [64], which corresponds to the GWAS p-value
threshold 4.912e-5, and created a score comparable in size to the
ePRS in terms of number of SNPs. There was no association
between the PRS and the main outcomes for MAVAN (meanP-
correct: β=−0.01, p= 0.48), GUSTO (proportion of successful
inhibitions: β=−0.009, p= 0.52; Fig. S3) or ALSPAC (mean
reaction time – incorrect stop trials: β=−3.248, p= 0.46; Fig. S4)
cohorts. We also performed an enrichment analysis to characterize
the functional/biological properties of the PRS genes and found
that they are upregulated across the brain, but not as selectively-
and to a lesser extent- than the genes from the ePRS. Finally,
results from the CSEA show no selective spatiotemporal enrich-
ment in the human brain (Fig. S6).

DISCUSSION
Impulse control deficits are a common trait of numerous
neurodevelopmental psychiatric disorders. Discovering their
neurobiological underpinnings and early biomarkers will help
identifying at risk individuals and improving/implementing early
prevention and intervention strategies. Here, we generated an
expression-based polygenic score (ePRS) consisting of SNPs
within genes co-expressed with the axon guidance cue receptor
gene, DCC, in the PFC and NAcc, to create a functional and
corticolimbic-specific marker of vulnerability to heightened

impulsivity. Our results show that the ePRS is significantly
associated with different measures of impulsive behaviors in
children from three ethnically diverse independent birth cohorts.
Across all cohorts, the low-ePRS groups show higher impulsivity-
related phenotypes. Detailed characterization of the gene
networks comprising the corticolimbic DCC-ePRS show signifi-
cant functional interactions, contribution to core neurodevelop-
mental processes, and enriched expression in cortical neurons,
particularly from embryonic life to adolescence.
Most PRSs are characterized by a limited generalizability due to a

marked disparity in prediction accuracy across different populations
[65, 66]. This limitation, partially explained by the biased ancestry
representation in most well-powered discovery GWASs, does not
affect the ability of the ePRS to predict impulsive phenotypes across
3 independent birth cohorts from Canada, Singapore, and UK.
Other studies that have implemented a similar approach to
polygenic risk analysis by using the ePRS methodology reported
a high predictive value of their genetic scores applied across diverse
populations [42, 67]. To understand how the ePRS compares to a
traditionally derived PRS, in this study we constructed a score based
on the latest GWAS for ADHD and found that, even though the PRS
score predicts impulsive behavior in one cohort (Fig. S3), our ePRS
predicts a larger number of outcomes, across all three cohorts. This
is consistent with other studies that have observed a higher
prediction accuracy of their ePRS compared to conventional PRSs
[34, 42]. Since the ePRS methodology relies on identifying tissue-
specific gene networks and their function, instead of identifying
scattered genetic variants across the genome, we are able to create
a more biologically meaningful score compared to conventional
PRSs. Finally, the associated phenotype to weigh the SNPs in our
ePRS is gene expression, which, given the current state of
technology, is a highly quantitative trait measurable with high
precision, across different tissues and conditions, by high-
throughput sequencing, and thus yielding a score that globally
represents transcriptionally co-regulated biological processes. These
results suggest that our genetic profiling approach increases the
likelihood of identifying trait-relevant biological markers.
We identified co-expression networks for the guidance cue

receptor, DCC, specifically in the NAcc and the PFC, to create a
biological marker related to neurodevelopmental processes
occurring in these regions, that could predict levels of impulsivity
in children. In addition to establishing the ePRS’ predictive power
of impulsivity across 3 different cohorts, we found the co-
expression networks to be highly enriched for protein-protein
interactions, suggesting their involvement in common biological
functions. Since DCC receptors are master organizers of neuronal
circuits, and since variations in its expression in early life result
not only in functional and anatomical alterations of neural
pathways involved in inhibitory control, but also in alterations of
inhibitory control itself [17, 36, 51], it is not surprising that DCC
co-expression networks in these corticolimbic hubs associate

Fig. 3 Validation of the PFC and NAcc DCC co-expression networks. A Protein–Protein interaction (PPI) networks constructed from the gene
co-expression networks in PFC and NAcc, using the Cytoscape software. The edges between the nodes indicate both functional and physical
associations, and the size of the sphere is proportional to the degree of connectivity with other nodes. The protein networks represent known
functional interactions between the protein products of the genes that make up the corticolimbic DCC gene networks. Significant PPI
enrichment in the PFC (p= 0.004) and the NAcc (p= 5.1e-11). B Tissue-specific gene expression analysis performed in FUMA confirms that the
genes that comprise both networks are highly upregulated in the PFC and NAcc, according to GTEx dataset v8. C A combined enrichment
analysis for the co-expression networks performed in Metacore TM shows enrichment for diverse neurodevelopmental processes, suggesting a
common brain maturational role for the networks (see full results with FDR adjusted values in Table S3). D Cell-type Specific Expression
Analysis (CSEA) analysis reveals that the NAcc and PFC DCC co-expression networks are highly enriched throughout the brain during
embryonic life and early infancy. However, the NAcc network is enriched again in the cortex during late childhood and adolescence (p=
0.0004 for Fisher’s exact test, p= 0.002 after Benjamini-Hochberg correction). The hexagon levels mark the different degrees of stringency
applied in the identification of selectively enriched transcripts for that brain region/developmental period. In each hexagon there are 4 levels,
with the outer level representing the least stringent pSI value (0.05) and the inner-most level consisting of the most stringent pSI value
(0.0001). The 2 hexagons in between represent a pSI= 0.01 and a pSI= 0.001. The size of the hexagon is proportional to the number of genes
selectively enriched, and the color represents the FDR-adjusted p values of the expected overlap between the genes in the network and the
list of selectively enriched genes.
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with behavioral traits implicated in psychopathology. Indeed,
proper establishment of neuronal circuits is essential to mental
health [68]. The genes that make up the networks are highly
upregulated in the PFC and the NAcc and are involved in a wide
range of neurodevelopmental processes. This enrichment
suggests a prominent role of the gene networks in the
maturation of both PFC and NAcc circuits, validating the use of
these networks as the basis for the ePRS calculation and their
potential use as a functional biomarker to predict reflection and
motor impulsivity in children.
Results from several studies in humans show that mutations in

the DCC gene lead to dramatic neurodevelopmental changes,
including agenesis of the corpus callosum [36, 69, 70], develop-
mental split-brain syndrome [69], and congenital mirror move-
ments [37, 70, 71]. Similar noticeable changes have been
described in DCC homozygous or haploinsufficient mice [72],
highlighting the core role of DCC in neurodevelopmental wiring.
As DCC expression shifts from high to low in adolescence, its
functional role also shifts from broad organization of developing
neuronal networks to the refinement of neuronal architecture,
synaptogenesis and synaptic plasticity of established matured
circuits [30, 31, 73]. Recent human studies have also shown that
many polymorphisms in DCC, as well as altered levels of gene
expression, are related to numerous neuropsychiatric conditions
of developmental onset, some of which are characterized by
deficits in PFC function and impulse control [30, 31]. Individual
genes do not operate in isolation and cannot explain the entire
spectrum of mental disorders, as it has been well established by
a wealth of data from recent GWAS studies showing massive
polygenicity among neuropsychiatric disorders. Therefore, DCC
receptors act as a master organizer of specific synaptic circuits, as
a part of a gene network, and we have shown that a PFC gene
network for DCC is associated with overall brain structure [34].
Our functional analyses of the corticolimbic DCC gene networks
suggest their implication in the development of the neural
substrates underlying inhibitory control behaviors. The genes
that comprise the networks are co-expressed in crucial brain
regions (see Fig. 3B, 4), suggesting their spatial convergence.

Furthermore, the expression of genes known to increase risk for
neuropsychiatric disorders converge temporally, especially
before and during the onset of the disorder [68]. Here we
observed that gene expression for both networks is enriched
during specific pre- and post-natal periods, including an enriched
expression of the NAcc network in cortical neurons during late
childhood and adolescence. As noted previously, the neurode-
velopmental role that DCC plays changes as a function of
developmental stage, and the fact that a DCC co-expression
network is enriched again during late childhood and adoles-
cence suggest that alterations in its function/expression can
impact the adolescent development of synaptic connectivity and
function in the PFC later in life.
We propose a novel type of marker for impulsivity-related

phenotypes in children. Our biologically-informed approach to
polygenic risk analysis aims to capture variation in the function/
expression of gene networks predominantly associated with PFC
and NAcc maturation, two regions subserving inhibitory control.
Whether integrating relevant SNPs associated with other forms of
gene expression regulation beyond cis (e.g., transcription factors,
promoter regions, and chromatin modifications) in non-coding
regions changes the performance of the scores, will be
investigated in future studies. Exploring the association between
the ePRS and inhibitory control behaviors later in life is needed in
order to investigate the possible use of this genetic marker as a
probabilistic risk score for vulnerability phenotypes linked to
psychopathologies of adolescent onset. Our results are an
example of the utility of understanding the molecular processes
that govern the development of a neural circuit, and how this
knowledge can be applied to predict genetic susceptibility to
endophenotypes linked to psychiatric conditions.

DATA AVAILABILITY
Data from MAVAN can be made available via reasonable request to the correspond-
ing authors. For GUSTO, visit https://www.gusto.sg/. For ALSPAC, data can be
purchased; the study website contains details of all the data that is available through
a fully searchable data dictionary and variable search tool at http://www.bristol.ac.uk/
alspac/researchers/our-data/.

Fig. 4 Co-expression of the genes in the corticolimbic DCC ePRS across development in human PFC and NAcc. Top panel, PFC: The
heatmap of the co-expression in childhood (left) shows several clusters, while for the co-expression patterns in adulthood (right) most of the
clusters are not maintained, suggesting that genes that are co-expressed during childhood in the PFC are rarely co-expressed in adulthood.
Bottom panels, NAcc: The heatmap in childhood (left) shows many clusters with a very high correlation of expression. Interestingly, a larger
proportion of these clusters are maintained in adulthood (right) compared to the transition between childhood and adulthood in the PFC,
indicating a more stable gene network. We retained the same order for the genes as in childhood, to be able to compare if the clusters that
we observe in childhood are maintained in adulthood.
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