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Abstract

Three-dimensional (3D) chromatin structure plays a critical role in development, gene regulation, 

and cellular identity. Alterations to this structure can have profound effects on cellular phenotypes 

and have been associated with a variety of diseases including multiple types of cancer. One of 

several forces that help shape 3D chromatin structure is liquid-liquid phase separation (LLPS), 

a form of self-association between biomolecules that can sequester regions of chromatin into 

sub-nuclear droplets or even membraneless organelles like nucleoli. This review focuses on a class 

of oncogenic fusion proteins that appear to exert their oncogenic function via phase-separation 

driven alterations to 3D chromatin structure. Here we review what is known about the mechanisms 

by which these oncogenic fusion proteins phase separate in the nucleus and their role in shaping 

the 3D chromatin structure. We discuss the potential for this phenomenon to be a more widespread 

mechanism of oncogenesis.

Introduction

Three-dimensional (3D) chromatin structure plays a critical role in gene regulation by 

connecting distant regulatory elements to gene promoters and modulating gene expression. 

Modifications to this structure have been associated with the development of human 

diseases including cancer. Several molecular forces have been identified for establishing 

and/or modulating the 3D chromatin structure, such as those directed by CTCF and 
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multi-subunit cohesin complexes, and liquid-liquid phase separation (LLPS), a form of 

self-association between biomolecules that can sequester regions of chromatin fibers into 

sub-nuclear droplets or even membraneless organelles like nucleoli. This review focuses on 

an emerging class of oncogenic fusion proteins that appear to exert their oncogenic function 

at least partly, via phase-separation-driven alterations to 3D chromatin structure. Despite the 

relatively small number of such fusions that have been characterized, this phenomenon 

is potentially a more widespread mechanism of oncogenesis and further identification 

and characterization of such fusions could have important implications for diagnostic and 

therapeutic development.

3D chromatin organization

3D chromatin structure plays a fundamental role in gene regulation and cellular identity 

by rewiring contacts between regulatory loci and gene promoters. Current theories suggest 

that this organization is driven largely by two coexisting, dynamic, yet sometimes opposing 

forces: compartmentalization and loop extrusion [1–6]. Although the exact mechanisms 

driving compartmentalization are still under investigation, this phenomenon is thought to be 

largely mediated by affinity interactions between genomic regions with similar epigenetic 

marks and levels of transcription. In contrast, loop extrusion is mediated by cohesin, a 

ring-like protein complex that extrudes DNA until it encounters CTCF proteins bound 

in a convergent orientation, at which point it stabilizes point-to-point interactions called 

chromatin loops. The combined forces of loop extrusion and compartmentalization produce 

contact domains, also known as “topologically associated domains” (TADs), which are 

broad regions of self-interacting chromatin. The interplay of these forces in shaping 3D 

chromatin architecture is nicely discussed by Rowley and Corces [7].

Increasing evidence suggests that LLPS—long known for forming membraneless nuclear 

bodies such as nucleoli, nuclear speckles, and Cajal bodies—may play a broader role in 

3D chromatin organization than previously suspected. Indeed, the association of chromatin-

bound proteins in these nuclear bodies is thought to play a role in shaping 3D chromatin 

architecture [8]. LLPS is mostly driven by a collection of weak, multivalent interactions 

between proteins that contain intrinsically disordered regions (IDRs) [9,10]. Transcription 

factors (TF) and co-regulators implicated in chromatin remodeling and gene regulation, such 

as Mediator and RNA polymerase II (RNA Pol II), are enriched with IDRs and are thought 

to exercise their function in part via phase separation [11–16]. Additionally, although not 

the focus of this review, RNA has been proposed to have a prominent role in chromatin 

organization in a way that is compatible with the concept of LLPS [17–20].

Despite mounting evidence supporting the role of LLPS in 3D chromatin organization, it 

remains unclear exactly what types of chromatin structures LLPS can generate and in which 

biological contexts. One hypothesis that has gained support in recent years proposes LLPS 

as one of the driving forces for chromatin compartmentalization [19,21–25]. Moreover, 

while DNA loops are thought to be formed largely via the ATP-dependent process of 

extrusion [3,26,27], recent evidence suggests that cohesin itself may undergo LLPS [28]. 

Finally, a model proposing phase separation as a general mechanism driving super-enhancer-
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mediated gene regulation has also gained extensive support [29,30], extending the potential 

role of phase separation to all levels of chromatin organization.

3D chromatin structure, phase separation, and cancer

Alterations in both 3D chromatin structure via a variety of different mechanisms has been 

linked to the development of various cancers. Mutations in cohesin, which are among 

the most common mutations found in cancer, have been shown to result in misregulation 

of intra-chromosomal DNA looping, affecting genome organization and gene expression 

(recently reviewed by Waldman [31]). Point mutations and somatic structural variations 

found in multiple cancer types have been shown to disrupt TADs and alter transcription 

levels of the surrounding genes [32]. One example of this phenomenon is the IDH gain-

of-function mutation in gliomas, which alters TAD boundaries, resulting in the induced 

expression of the PDGFRA oncogene [33].

LLPS has also been associated with cancer, independently from 3D chromatin conformation. 

For example, several oncogenes and tumor suppressor genes exert their normal activity via 

LLPS which when disrupted—via alterations of either gene expression or LLPS capability

—can promote cancer development. For example, p53 binding protein 1 (53BP1), uses 

LLPS to recruit DNA repair complexes to sites of DNA damage. Underexpression of 

53BP1 in various contexts promotes DNA instability and the development of cancer [34]. 

In another example, mutations disrupting the phase separation capacity of the IDR in the 

histone H3K27 demethylase UTX (also known as KDM6A) abolish its tumor suppression 

capabilities [35]. In contrast, a mutation in the histone acetylation reader ENL, commonly 

found in pediatric kidney cancer, confers novel phase separation capacity and has been 

linked to alterations in transcription and oncogenesis [36].

IDR-DNA binding fusion proteins in cancer

In addition to the observations mentioned above that independently link phase separation 

and 3D chromatin structure to cancer, several recent studies describe a novel paradigm in 

which phase separation of cancer-related fusion proteins promotes oncogenesis by directly 

inducing changes to 3D chromatin structure. Chromosomal translocations, a common 

feature of cancers, can produce chimeric genes that encode fusion proteins, which have been 

shown to influence diverse functions including cellular cycle, cell shape, cell mobility and 

RNA metabolism, amongst others [37]. Intriguingly, IDRs are enriched in cancer-associated 

fusion proteins (43.3% vs. 20.7% in all human proteins) [38] and a subset of these fuse the 

IDR of one protein to a chromatin-associated domain of another (Figure 1A). This unique 

combination of domains provides, in theory, the potential to alter 3D chromatin structure by 

pulling a set of bound regions into condensates formed via IDR LLPS, and as a result of this 

process, alter the expression of surrounding genes (Figure 1A).

We recently showed that a cancer-associated fusion between an IDR and a DNA binding 

domain could induce oncogenic transcription programs at least partly via de novo 

loop formation [39]**. This study focused on the NUP98–HOXA9, a classic example 

for a set of transcription factor (TF) fusion oncoproteins found recurrently in human 
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haematological malignancies such as acute myeloid leukemia. The two components of 

this chimera are: (1) NUP98, a constitutively expressed nucleoporin protein that contains 

a phenylalanine-glycine(FG)-repeat-rich IDR, and (2) HOXA9, a TF that contains a DNA 

binding homeodomain regulating gene expression essential for proper cell proliferation and 

differentiation during embryogenesis. Expression of this fusion in primary hematopoietic 

stem/progenitor cells (HSPCs) is sufficient to transform cells and activate leukemic gene-

expression profiles. In contrast, a phase-separation-incompetent mutant of NUP98–HOXA9, 

or one harboring a shorter IDR incapable of inducing LLPS, were unable to transform 

HSPCs, highlighting a critical requirement of IDR-mediated phase separation for cancerous 

transformation. ChIP-seq and Hi-C analysis revealed that NUP98–HOXA9-expressing cells 

formed DNA loops whose anchors were bound by NUP98–HOXA9, but not by CTCF, 

supporting a model that proposes that phase separation but not loop extrusion is the 

driving force for the formation of de novo chromatin contacts in the context of this 

fusion. Genes whose promoters overlap the anchors of the NUP98–HOXA9-bound loops 

were upregulated, including proto-oncogenes such as PBX3 and HOX cluster genes. 

These findings suggest phase separation as the driver of aberrant chromatin looping and 

the resulting changes in gene expression in leukemias harboring this fusion. Some of 

these results were confirmed by Chandra et al., who demonstrated the phase separation 

capabilities of NUP98-HOXA9 and other leukemia-related fusion oncoproteins [40]. It is 

important to mention that NUP98-HOXA9-induced alterations to 3D chromatin structure 

have only been investigated in HEK 293T cells and moving forward it will be important to 

confirm these changes in leukemia-relevant cell types.

Several other cancer-associated fusion proteins that have a similar composition —including 

an IDR and a chromatin interaction domain— are likely to impart oncogenic properties 

via similar alterations to 3D chromatin structure (Figure 1B). One group of likely 

candidates are the FUS/EWS/TAF15 (FET) fusion oncoproteins. These FET oncogenic 

fusions form multiple large nuclear condensates in cells similar to the ones observed 

when the aforementioned oncogenic fusions are present. FET fusion proteins are essential 

oncogenic drivers in various cancers including myxoid liposarcoma, Ewing sarcoma, 

and adenocarcinomas. They were shown to undergo phase separation at target binding 

loci and form phase-separated transcriptional condensates recruiting RNA Pol II and 

other co-factors (e.g. BRD4), which results in the increase in gene expression [41–43]*. 

Chong et al. also identified IDR-dependent nuclear hubs of FET fusion oncoproteins and 

demonstrated their role in transcriptional regulation; however, they propose that such hubs 

are formed via a non LLPS-driven mechanism [44]. Finally, several studies have reported 

that the SWI/SNF chromatin-remodeling complex, also known as BAF (BRG1-associated 

factors), can be recruited into FET fusion condensates. This process is likely to occur via 

heterotypic interactions among prion-like domains commonly present in both FET fusions 

and components of the SWI/SNF (BAF) complex, resulting in cancer-specific chromatin 

alterations favorable for gene activation [45–47].

Other nuclear phase separating fusion proteins in cancer

Several other fusions have been described that also act via phase separation driven changes 

to 3D chromatin organization, albeit by mechanisms distinct from the one described above 
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(Table 1). Rosencrance et. al. found that BRD4-NUT, a BRD4 fusion oncoprotein found 

in midline carcinoma, alters 3D chromatin at the compartment scale in a manner that 

is consistent with phase separation [48]**. In this case, the fusion protein BRD4-NUT 

produces changes observed at a larger scale, resulting in the formation of aberrant chromatin 

sub-compartments referred to as subcompartments “M”. These subcompartments “M” 

encompass broad stretches of active chromatin that exhibit heightened interactions both 

within and between different chromosomes. These modifications in interaction occur due 

to the ability of BRD4-NUT to drive massive changes in histone acetylation. The BRD4 

portion of the fusion protein binds acetylated histones, while the NUT portion recruits the 

p300 histone acetyltransferase, driving a proposed feed-forward loop of histone acetylation 

which results in exceptionally broad linear (100 kb to 2Mb) hyperacetylated chromatin areas 

called “megadomains”[49]. These megadomains interact with one another even between 

chromosomes, are associated with increased transcription of Myc and other important 

oncogenes for NUT-carcinomas, and appear as large nuclear puncta [48]. Although no 

experiments were performed to directly test for BRD4-NUT’s LLPS capabilities, previous 

studies have shown that it is clearly present in nuclear puncta, consistent with an LLPS-

driven mechanism [49,50] and evidence for phase separation of the short isoform of BRD4 

has been reported [51]; also, LLPS of the acetylated chromatin in combination with the 

multi-bromodomain of BRD4 as it has been previously proposed [24]. Interestingly, a 

subclass of NUP98 fusions that carry the plant homeodomain (PHD), a H3K4me2/3 reader 

motif, were shown to exhibit comparable large nuclear condensates [52]. Moreover, similar 

to the BRD4-NUT fusion, we have observed that condensates of NUP98-PHD fusions 

are enriched for H3K4me2/3, to which the PHD domain of the fusion binds, as well as 

MLL1, an enzyme that catalyzes H3K4 methylations (unpublished). This suggests that a 

similar feed-forward loop mechanism could underlie the formation of broad domains of 

inter/intrachromosomal interactions in leukemia cells.

Similarly, a fusion protein typically found in synovial sarcoma between the SWI/SNF (BAF) 

complex member SS18 and one of several SSX genes is another example of a fusion onco-

protein containing an unstructured region that can associate with specific chromatin areas 

and alter gene transcription. SS18 contains an IDR-rich C-terminal and has been shown 

to mediate the BAF complex assembly via LLPS [53]. When SSX is fused to SS18, this 

fusion evicts another member of the BAF complex and retargets BAF from enhancer regions 

to broad polycomb domains in the chromatin. This new BAF complex occupancy opposes 

PRC2-mediated chromatin repression and results in activation of bivalent genes [54]. The 

SS18-SSX fusion forms multiple large nuclear condensates and exhibits dense and broad 

binding patterns at target loci, reflecting typical characteristics of phase-separated molecules 

[55]. Despite the broadly known capacity of these fusion proteins to phase separate and 

cause gene mis-regulation, their potential roles in inducing alterations in the 3D chromatin 

structure have not yet been fully explored. Conversely, additional research needs to be 

performed to uncover whether other fusion onco-proteins that alter 3D chromatin structure 

do so via a LLPS mechanism. One such fusion is PAX3-FOXO1, a recurrent mutation found 

in rhabdomyosarcoma that is associated with altered 3D chromatin structure and has the 

capacity to form de novo super enhancers and recruit BRD4 and other master transcription 

factors [56,57].
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Future Directions: Fusions, Mechanisms, and Interventions

These studies provide the first glimpse into a cancer-driving mechanism in which 

fusions between IDRs and chromatin-associated domains drive oncogenic transcription via 

alterations in the 3D chromatin structure. However, it is currently unclear how broad this 

mechanism is across various cancer subtypes and other diseases. One ongoing challenge 

will be to identify and characterize other cancer fusions that operate via alterations to 

chromatin interaction frequencies. Ever expanding databases of disease-associated fusion 

proteins (e.g chimerDB [58] and COSMIC [59]), intrinsically disordered domains (e.g. 

MobiDB [60], DisProt [61], and IDEAL [62]), and phase-separating proteins (e.g. LLPSDB 

[63], PhaSePro [64], PhaSepDB [65]) provide rich resources to mine for such possibilities. 

Improving and assessing our ability to detect IDRs and phase-separation-competent regions 

should accelerate discovery further. Necci et al. [66] suggest that deep learning-based 

approaches show the most promise here, highlighting one way in which advances in artificial 

intelligence may contribute to this field moving forward.

Further mechanistic studies are required to better understand how these 3D structures are 

formed as well as their impact on transcription. While DNA loops formed via NUP98-

HOXA9 are not anchored by CTCF [39], their dependence on cohesin and/or ATP is unclear. 

Another open question involves how the oncogenic condensates interact with other nuclear 

condensates and microenvironments. For example, it has been shown that RNA Pol II 

forms phase-separated condensates [12–14] and in some cases is recruited into condensates 

formed by fusion onco-proteins to activate gene transcription [41,48]. Further development 

of experimental approaches to simultaneously monitor and visualize multiple classes of 

nuclear condensates will enable a deeper understanding of the interplay between them.

It is important to note that several researchers have expressed concern regarding the 

widespread attribution of LLPS to explain IDR-driven nuclear structures [67–69]. The 

main concerns refer to studies employing in vitro assays or ectopic overexpression 

models, which might fail to fully reflect physiological conditions (i.e. local concentrations, 

microenvironment, and interaction partners) that are fundamental for the occurrence of 

LLPS. Moving forward, the use of approaches that involve targeting of endogenous IDR-

containing proteins and single molecule tracking might enable more precise mechanistic 

interrogations.

Finally, the discovery of 3D chromatin alterations produced by IDR-containing fusion 

oncoproteins as a cancer-driving mechanism may reveal new avenues for therapeutic 

intervention. As reviewed by Wheeler [70], such interventions may look quite different 

from the classical enzyme lock-and-key or structured binding site approaches, since they 

would take into account the physicochemical properties of nuclear condensates and drug 

molecules for their mechanism of action. For example, a recent study showed how the 

partitioning, concentration, and activity of some onco-drugs were highly influenced by the 

physicochemical properties of nuclear condensates [71]. Tailoring drugs for either inclusion 

or exclusion from specific nuclear condensates could potentially improve specificity and/or 

efficacy. Another study demonstrated that small molecule induced degradation of BRD4-
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NUT eliminates its effect on chromatin compartmentalization, pointing to the potential of 

altering 3D chromatin structure as a novel approach to treat disease [48].

Conclusions

Recent studies have illuminated how aberrant gene fusion events seen in cancer can create 

chimeric proteins capable of binding DNA, altering 3D chromatin structure, and driving 

oncogenic transcription. While only a handful of such chimeras have been characterized, 

the enrichment of fusion proteins and IDRs in tumors suggests that this is a much broader 

mechanism to promote oncogenesis. Future research is required to determine the extent to 

which this mechanism explains other cancer-related fusions, the mechanisms through which 

these 3D chromatin structures form and impact gene transcription, and how such structures 

can be targeted to improve therapeutic interventions.
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Figure 1. IDR/chromatin-associating fusion proteins in cancer.
A. The proposed mechanism of action of IDR/chromatin-associating fusion proteins in 

cancer. Fusion proteins bind chromatin at enhancers and gene promoters and recruit 

bound loci into phase separation dependent condensates activating oncogenic transcriptional 

profiles. B. A list of IDR/DNA-binding fusion proteins frequently found in cancer that 

have been described to phase separate in the nucleus. *In vitro/in vivo assays for 

coalescence, fusion/fission, concentration dependency. FRAP: Fluorescence recovery after 

photobleaching.
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Table 1.
Other nuclear phase-separating fusion proteins in cancer.

A list of phase-separating fusion proteins frequently found in cancer that combine an IDR/chromatin-

associating-containing proteins and a fusion partner that alters the distribution and/or role of the first 

component. *In vitro/in vivo assays for coalescence, fusion/fission, concentration dependency. FRAP: 

Fluorescence recovery after photobleaching.

Fusion 
proteins

Type of cancer Evidence for phase separation

Condensates 
observed

General* FRAP 1,6-Hexanediol 
disruption

IDR mutations Alters 3D 
chromatin

BRD4-NUT Squamous cell 
carcinoma, 
midline 
carcinoma

Yes[48–50] - - - - Yes[48]

SS18-
SSX1/2

Synovial sarcoma Yes[53,55] Yes [53] Yes [53] Yes [53] Yes [53] -

*
In vitro/in vivo assays for coalescence, fusion/fission, concentration dependency
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