Skip to main content
. 2022 Jan 28;35(3):432–445. doi: 10.1007/s10278-021-00551-1

Table 1.

MR-based DL approaches for AC correction in brain PET/MR

Ref Input Output Network No. in train and test Dice in bone regions Regional PET bias PET surface error Anatomic abnormalities
Gong et al. 2018 [14] Dixon pseudoCT 2.5D UNet 40 (cross validation) 0.76  < 3% (8 VOIs) No No
Dixon + ZTE pseudoCT 2.5D GroupUNet 14 (cross validation) 0.80  < 3% (8 VOIs) No No
Blanc-Durand et al. 2019 [4] ZTE PseudoCT 3D UNet Train 23 Test 47 No  < 2% (70 VOIs) No No
Arabi et al. 2019 [12] T1 PseudoCT 3D DL-AdvSS 40 (cross validation) 0.80  < 3.5% (63 VOIs) No No
Spuhler et al. 2019 [3] T1 LRAM 2D UNet Train 55 Test 11 No  < 3% (19 VOIs) No No
Tao et al. 2021 [13] T1 pseudoCT 2D cGAN 11 (cross validation) No No No No
Dixon pseudoCT 2D cGAN 10 (cross validation) No No No No
Gong et al. 2021 [15] T1 pseudoCT 2.5D GroupUNet 35 (cross validation) 0.84  < 2% (10 VOIs) Yes No
Dixon pseudoCT 2.5D GroupUNet 35 (cross validation) 0.84  < 2% (10 VOIs) Yes No
mUTE pseudoCT 2.5D GroupUNet 35 (cross validation) 0.87  < 2% (10 VOIs) Yes No