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Abstract
Tissue engineering, using a combination of living cells, bioactive molecules, and three-dimensional porous scaffolds, is a 
promising alternative to traditional treatments such as the use of autografts and allografts for bone and cartilage tissue regen-
eration. Scaffolds, in this combination, can be applied either through surgery by implantation of cell-seeded pre-fabricated 
scaffolds, or through injection of a solidifying precursor and cell mixture, or as an injectable cell-seeded pre-fabricated 
scaffold. In situ forming and pre-fabricated injectable scaffolds can be injected directly into the defect site with complex 
shape and critical size in a minimally invasive manner. Proper and homogeneous distribution of cells, biological factors, and 
molecular signals in these injectable scaffolds is another advantage over pre-fabricated scaffolds. Due to the importance of 
injectable scaffolds in tissue engineering, here different types of injectable scaffolds, their design challenges, and applica-
tions in bone and cartilage tissue regeneration are reviewed.

Keywords  In situ injectable hydrogels · Injectable microparticles · Injectable shape memory scaffolds · Bone tissue 
engineering · Cartilage tissue engineering
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G2.5 PAMAM-Ad	� Adamantane-decorated 
generation 2.5 poly(amido 
amine)s

GelMA	� Gelatin with pendant meth-
acrylate groups

GMA	� Glycidyl methacrylate
HA	� Hyaluronic acid
HAp	� Hydroxyapatite
HDI	� Hexamethylenediisocyanate
hMSC	� Human mesenchymal stem 

cells
hPLSCs	� Human periodontal ligament 

stem cells
HRP	� Horseradish type VI
LCST	� Lower critical solution 

temperature
MAEP	� Monoacryloxyethyl 

phosphate
MeGel	� Methacrylated gelatin
MPEG	� Methoxy polyethylene glycol
nBG	� Nanoscaled bioactive glass
NVP	� N-Vinyl-2-pyrrolidone
OPF	� Oligo(poly(ethylene glycol) 

fumarate)
p(NiPAAm)	� Poly(N-isopropylacrylamide)
PAG	� Poly (aldehyde guluronate)
PAMAMs	� Polyamidoamines
PCL	� Poly(ε-caprolactone)
PCL-DA	� PCL diacrylate
PCLF	� Poly (e-caprolactone 

fumarate)
PEG	� Polyethylene glycol
PEG2K-AMI	� Maleimido-terminated 

poly(ethylene glycol)
PEG-DA	� PEG-diacrylate
PEGMEM	� Poly(ethylene glycol) methyl 

ether methacrylate
PEO	� Poly(ethylene oxide)
PETMP	� Pentaerythritol tetrakis 

3-mercaptopropionate
PLA	� Polylactide
PSAGE	� Poly(3-allyloxy-1,2-propyl-

ene succinate)
rhBMP-2	� Recombinant human bone 

morphogenetic protein-2
SDF-1α	� Stromal cell-derived 

factor-1α

SMO–PCLA–PEG–PCLA–SMO	� Sulfamethazine 
oligomers–poly(e-
caprolactone-co-
lactide)–poly(ethylene 
glycol)–poly(e-caprol-
actone-co-lactide)–sul-
famethazine oligomers

sulfo-NHS	� N-Hydroxysulfosuccinimide
TEA	� Triethylamine
TEMED	� Tetramethylethylenediamine
TGM	� Thermogelling macromer
VEGF	� Vascular endothelial growth 

factor

Introduction

Tissue engineering is a combination of cells, signals, scaf-
folds, and bioreactors (Khan et al. 2015). This means that 
the cells are cultured in a three-dimensional scaffold which 
plays the role of ECM for cell growth (Eftekhari et al. 2020). 
Signals are used for cell growth and differentiation, result-
ing in more cellular adhesion. Bioreactors are simulators of 
body's response kinetics that cause a mass transfer to the 
tissue and improve the mechanical properties (Cleutjens and 
Creemers 2002; Langer and Vacanti 1999).

The permanent and inseparable part of tissue engineer-
ing is scaffold composed of natural or synthetic polymers 
(Behtouei et al. 2022; Kiran et al. 2020). These synthetic 
matrices for tissue engineering induce and guide tissue 
regeneration and are gradually replaced with new tissue 
(Pourjavadi et al. 2019). Natural polymers possess qualities 
such as promoting cell growth, less inflammatory response, 
immunological reactions, and toxicity and they can mimic 
the chemical composition of natural ECM. However, they 
suffer from a lack of reproducibility, control on their rate of 
biodegradability, and weak mechanical strength.

An ideal scaffold has a three-dimensional structure 
(Abdollahi Boraei et al. 2021; Ahmadian et al. 2019). It must 
be biodegradable with a controllable degradation rate, so 
that not only its rate of degradation has to be well matched 
with the rate of regeneration of tissue, but also it has to 
maintain its mechanical properties during tissue regenera-
tion. Its structure should be porous with interconnected 
pores to allow the entrance of nutrients required for cells and 
the exit of waste produced by them (Liu et al. 2009; Nemati 
Hayati et al. 2012) and provide the perfect environment for 
adhesion, growth, and differentiation of cells. Spatiotempo-
ral control, easy formation, and lack of toxic by-products are 
the other requirements of an ideal scaffold (Yang et al. 2014; 
Nikpour et al. 2021).

Bones form the body skeleton, which not only provides 
structure and protect inner organs, but also produce red 
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and white blood cells and store minerals. Bone can be 
damaged by arthritis, fractures, infections, osteoporosis 
and tumors in their lifetime (Kumar Meena et al. 2019). 
Bone formation is complex and occurs by two mecha-
nisms: intramembranous and endochondral bone formation 
(Shapiro 2008). Completion of the restoration of a dam-
aged bone requires mechanical stability and the presence 
of periosteal cells and inflammatory cells in the defect 
site (Temenoff and Mikos 2000). Three essential factors 
for bone reconstruction include bone conduction, bone 
induction, and bone marrow cell. Growth factors are fre-
quently used to differentiate cells into bone tissue. How-
ever, unwanted bone formation raises doubts about the 
application of growth factors. Improved and co-substituted 
hydroxyapatite is an alternative option for osteoconduction 
and increasing osteogenesis (Ressler et al. 2021).

Cartilage is an avascular, aneural tissue in the body 
that is usually associated with bone (Toniato et al. 2019; 
Eftekhari et al. 2020). Due to its avascular nature, low 
cell density, and metabolic activity, injured cartilage 
cannot heal sufficiently for even small defects (Li et al. 
2018; Chuang et al. 2018). One of the most popular and 
challenging cartilage-related diseases is the damages to 
the meniscus. The meniscus is a shock absorber located 
between the tibia and femoral cartilage (Kim et al. 2018). 
Because of its joint-stabilizing role, damaged meniscus 
might aggravate articular cartilage degeneration and 
induce the progression of other joint diseases (Kim et al. 
2018).

Today, the irregular shape of bone and cartilage defects, 
their critical size, and the risk of implant migration have 
led to the use of injectable scaffolds instead of pre-fabri-
cated ones (Kumar Meena et al. 2019). Injectable scaf-
folds not only have the ability to fill defects of any shape 
and adhere to the environmental tissue, but also minimize 
aggressive treatment, are easily manageable, and improve 
patient compliance (Mohamadnia et al. 2009; Solouk et al. 
2014; Makvandi et al. 2021). They can also encapsulate 
cells easily and then provide a favorable microenviron-
ment for cell survival and growth, elicit specific cellular 

responses, and direct new tissue formation (Li et al. 2018). 
They can be used in the drug delivery of bioactive mol-
ecules (Temenoff and Mikos 2000; Hunt and Grover 2010).

Because of the importance of injectable systems in both 
bone and cartilage tissue engineering and meniscus therapy, 
in this article, we will introduce different types of injectable 
hydrogels in terms of structure and cross-linking reactions, 
outline their advantages and disadvantages and compare 
them in terms of their applications.

Injectable systems based on in situ forming 
hydrogels

Hydrogels are nanoporous, three-dimensional networks 
capable of absorbing large amounts of water (Kunkit et al. 
2019). Hydrogels are widely used for tissue engineering due 
to similar structures to the macromolecular-based compo-
nents in the body (Lee et al. 2001). Hydrogels can be pre-
pared both chemically and physically. Chains of chemical 
hydrogels form a network using covalent bonding (Kunkit 
et al. 2019). In  situ forming injectable hydrogels fabri-
cated through different chemical mechanisms include click 
reactions, Michael addition reaction, Schiff base reaction, 
enzyme-mediated reaction, and photo-cross-linking, whereas 
physical hydrogels are cross-linked using physical interac-
tion such as ion, hydrophobicity, and interaction between 
chains or particles (Jin et al. 2009; Singh et al. 2018).

The summary of the formation mechanisms of the chemi-
cal and physical hydrogels are shown in Figs. 1 and Fig. 2, 
respectively.

Chemically cross‑linked hydrogels

Click reactions

Click reactions are efficient, fast, regiospecific, with high 
selectivity, and without toxic by-products; therefore, they 
can be used in bioapplications. Previously, the click chem-
istry was known as a reaction between an azide and terminal 

Fig. 1   Schematic of chemical 
cross-linking of in situ inject-
able hydrogels



116	 Progress in Biomaterials (2022) 11:113–135

1 3

acetylene groups in the presence of copper catalysts (Tong 
et al. 2014; Jiang et al. 2014; Yang et al. 2014). Today, click 
reactions without copper catalysts and pseudo click reactions 
have also been developed. These reactions are categorized 
into three groups: CuAAC click reactions, copper-free click 
reactions, and pseudo click reactions (Jiang et al. 2014).

Copper‑free click hydrogels  Copper-free click hydrogels are 
usually produced through azide-–alkyne cycloaddition by 
which cyclooctyne molecules immediately react with azides 
without copper as catalyst (Laughlin et al. 2008; Jiang et al. 
2014). One of the applications of this type of reaction is 
mentioned in the work of Liu et al. (2016), who used the 
ability of azide–alkyne cycloaddition between hyPCL32-
BCN and hyPCL32-N3 to design a cross-linked dendrimer 
for bone tissue engineering. As mentioned previously, the 
main advantage of this reaction for preparing tissue-engi-
neered scaffold is the lack of a toxic cross-linker.

Highly selective cycloaddition between a diene and 
a dienophile without any catalyst and by-products is also 
a click reaction called the Diels–Alder reaction (Wei 
et al. 2009). This reaction is accelerated in water due to 
the increased hydrophobic effect (Nimmo et al. 2011). In 
2009, Nimmo et al. (2011) modified hyaluronic acid by the 
furan group, and then modified hyaluronic acid was cross-
linked through dimaleimide polyethylene glycol through 
the Diels–Alder reaction. As a result, they could produce 
a widely used hydrogel for tissue engineering without cata-
lyst, photoinitiator, and other extra materials that may cause 
toxicity. Bai et al. (2017) functionalized chondroitin sulfate 
and F127 by furan and maleimide. Besides the ability to 
cross link by the Diels–Alder reaction, this hydrogel formed 
a physical network with temperature variations. The chemi-
cal network enhanced its strength and its physical network 
led to a rapid networking process. The scaffold obtained 
from the combination of these two networks presented good 
results in bone tissue engineering.

Recently, Ghanian et al. (2018) developed a dual cross-
linking strategy to prepare in situ forming tough hydrogels. 
They functionalized alginate with furan to participate in 
Diels–Alder click reaction with maleimide end groups of 

a four-arm poly(ethylene glycol) cross-linker. The deriva-
tive of alginate was also cross-linked physically by calcium 
ion. This hydrogel showed interesting properties including 
improved toughness, self-healing ability, moldability, inject-
ability, self-recovery and cytocompatibility.

Thiol–ene reaction is another type of copper-free click 
reaction that involves step-growth reactions and polymer 
chain growth reactions. Generation of thiyl radicals under 
light irradiation, formation of the carbon–carbon double 
bond by thiyl radicals, and finally multiplying the formed 
carbon-based radical through carbon–carbon double bond 
are steps of the thiol–ene reaction (Gopinathan and Noh 
2018). However, this thiol–ene reaction suffers from the 
risk of producing harmful radical species. These radical spe-
cies may cause a cross-reaction of the backbone with the 
thiol groups of cells, proteins, and some drugs (Koshy et al. 
2016). Shih and Lin (2012) made an interesting comparison 
between the hydrogels prepared by thiol–ene and Michael 
addition reactions. They realized that the thiol–ene reaction 
has faster gel points and higher network density. In addi-
tion, its hydrolytic degradation rate depends on either the 
network density or the ester bond. However, due to the high 
dependence of its swelling rate on the number of macrom-
ers, thiol–ene hydrogels have not received much attention.

Pseudo click reaction  Pseudo click reaction includes thiol–-
-Michael and aldehyde–hydrazide reactions (Jiang et  al. 
2014).

A thiol-Michael addition consists of adding a thiol across 
a double bond in acrylate, vinyl sulfone, or maleimide, 
resulting in thioethers with or without the help of a basic 
catalyst. This reaction can take place with a wide variety of 
functional groups (Jiang et al. 2014; Chatani et al. 2013; Li 
et al. 2010). However, the reaction of aldehyde–hydrazide 
because of the simplicity, versatility, and lack of toxic by-
products is more accepted (Jiang et al. 2014). Dmitri and 
colleagues (Ossipov et  al. 2007) synthesized hydrazide 
and aldehyde derivatives of PVA and produced an injected 
hydrogel by using a carbamate bond formation. They 
observed that by mixing the precursor solutions of these two 
types of polymers with N2a cells, and the cells only survived 

Fig. 2   Schematic of physical 
cross-linking of in situ inject-
able hydrogels
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for 4 days. In addition, due to the lack of destructive bonds 
and subsequently the absence of cavity formation around 
the cells, their growth is prevented physically. Therefore, 
to eliminate this problem, it is required to use either labile 
bonds or a degradable polymeric backbone in the system.

Michael addition

Michael addition is a highly selective reaction between α,β-
unsaturated carbonyl compounds like unsaturated polyvi-
nyl sulfone and thiols or amines as a nucleus. Throughout 
the reaction, double bonds of polyvinyl sulfone open and 
react with the SH groups of thiol to form C–S bonds and, 
respectively, network (Zheng Shu et al. 2004; Yang et al. 
2014; Mather et al. 2006). The advantages of this reaction 
for biomedical applications include high selectivity, absence 
of toxic reagent and side products, and applicable for inject-
able systems. Michael addition reactions by thiols are known 
as pseudo click reactions too.

Jin et al. (2010) designed an injectable hydrogel using 
hyaluronic acid and polyethylene glycol through Michael 
addition reaction. To this end, they covalently conjugated the 
thiol groups into HA and the vinyl sulfone groups into PEG 
to form a three-dimensional network in less than 14 min 
under physiological conditions. The degradation time of 
this hydrogel was evaluated for a maximum of 21 days and 
showed good distribution and survival of cells. Besides, 
the enzymatic tyraminate degradation time of this hydro-
gel could be controlled by the molecular weight of the used 
polymers. All of these results testify to the potency of this 
hydrogel in tissue engineering.

Kim et al. (2010) also used a similar Michael addition 
reaction between the thiol group of thiolated heparin and 
acrylate group of diacrylated PEG to prepare heparin-based 
hydrogel as a carrier of hepatocyte cells. This reaction was 
achievable at the physiological temperature, at which the 
prepared hydrogel does not cause any toxicity to the cells 
and the loaded growth factor was released in a controlled 
manner.

Schiff base reaction

The tendency of the aldehyde groups to amines present on 
polymer chains, called Schiff base reaction, leads to the 
formation of the covalently cross-linked network (Emami 
et al. 2021; Chang et al. 2017). It is notable that the amine 
groups of cellular biomolecules can also react with aldehyde 
and cause toxicity which has to be considered in preparing 
hydrogels using the Schiff base reaction (Yang et al. 2014). 
During research conducted by Yan and his colleagues in 
2016 (Yan et al. 2016a, b), PLGA derivatives of aldehyde 
and hydrazide were prepared by activation using EDC and 
oxidation of NaIO4. Injectable hydrogels were cross-linked 

through Schiff base reaction in physiological condition. The 
results indicated that by changing the molar ratio of amine to 
aldehyde, the rate of degradation and cross-linking, swelling 
ratio and rheological properties would be controlled. More-
over, chondrocyte loading showed that this hydrogel can 
maintain the round or oval phenotype of chondrocytes, and 
cells within the hydrogel have survival and growth poten-
tial. In other words, this hydrogel is a good candidate as a 
synthetic chondral extracellular matrix for cartilage tissue 
engineering.

Enzyme‑mediated reaction

Enzymes can also be used to cross-link tyraminated poly-
mers (Xu et al. 2013). The phenolic groups are oxidized in 
the presence of H2O2 and HRP and form di- and ter-tyrosine 
protein conjugations (Kondiah et al. 2016). Enzymatic reac-
tions can occur under body conditions in terms of tempera-
ture, pH, and humidity, and because of their specific per-
formance, removal of side reactions is more feasible. The 
rate of enzymatic reactions which is usually higher than 
that of other chemical reactions can be controlled by set-
ting the concentration of the polymer and the enzyme. So 
far, a large number of natural polymers including alginate, 
carboxymethyl cellulose, gelatin, and tyramine function-
alized dextran have been used to prepare in situ forming 
enzymatic hydrogels (Yang et al. 2014; Jin et al. 2007). Jin 
et al. (2011) formed an injectable hydrogel through co-cross-
linking of tyramine derivatives of heparin and dextran using 
H2O2 and HRP. Due to the simultaneous networking of two 
polymers, the hydrogel sooner than any of the two polymers 
reaches the point of gelation and exhibits a higher modulus. 
The presence of heparin in the hydrogel structure leads to 
improved swelling behavior, better transfer of nutrients to 
cells, and the withdrawal of wastes from it.

Photocross‑linking

Free radical polymerization is initiated using a free radical 
initiator which causes the formation of free radicals in the 
monomers or oligomers and then follows the propagation 
stage. The last stage, termination, occurs when two radicals 
on the polymer chains during propagation are covalently 
bonded (Bulmus 2011).

If the initiator produces free radicals using visible or 
UV irradiation, the mechanism of cross-linking is called 
photopolymerization (Hashemi Doulabi et al. 2015). Pho-
topolymerization not only is able to be spatially and tem-
porally controlled, but also has minimal heat production 
and fast curing rates (less than a second to a few minutes). 
It can be carried out in bulk or interfacially, in which 
bulk polymerization is more common and interfacial 
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polymerization is used for a thin coating of hydrogels for 
special applications such as cell coverage (Kondiah et al. 
2016).

Due to the toxicity of monomers and their limitations in 
biological applications, macromers are used in the fabrica-
tion of hydrogels.

One of the main challenges of photopolymerization is 
the narrow range of applicable biological temperature and 
pH (Yang et al. 2014) (Nguyen and West 2002). In addition, 
photoinitiators must be biocompatible, water-soluble, non-
toxic, and stable for biological applications. Depending on 
the activation mechanism of the initiators, photopolymeriza-
tion is classified into three groups: radical photopolymeri-
zation by photocleavage hydrogen abstraction, and cationic 
photopolymerization (Nguyen and West 2002). The last 
one due to protonic acid production is not usable in tissue 
engineering.

Initiators that produce free radicals using photocleavage 
include aromatic carbonyl compounds such as acetophe-
none derivatives, in which their bonds of C–C, C–O, C–Cl, 
or C–S break by light radiation and generate free radical 
(Nguyen and West 2002).

Initiators such as aromatic ketones lose hydrogen through 
UV irradiation to generate a radical donor (Nguyen and West 
2002).

Elisseeff and his colleagues (Elisseeff et  al. 2000) 
researched on photo-encapsulating of chondrocytes in a 
hydrogel. Photopolymerization was used to transform a 
liquid polymer solution composed of poly(ethylene oxide)-
dimethacrylate and PEG to a hydrogel while directly encap-
sulating the chondrocytes. The results showed that the num-
ber of cells inside the hydrogel reduced at the early times, 
and then reached a plateau finally, but the ECM level with 
an equilibrium modulus constantly increased.

In 2007, Lee and Tae (2007) suggested that it would be 
better to irradiate the prepared polymeric solution by UV 
to initiate cross-linking at the molecular level and inject it 
before forming the viscose solution. This overcomes the 
formation of stable hydrogels and normal tissues are not 
damaged by direct UV radiation. He tested his hypothesis on 
DA-PF 127, which is either UV cross-linked or temperature 
sensitive. The final results of the assessment of the sustain-
ability and cytotoxicity of hydrogel were acceptable for tis-
sue engineering.

Sharifi et al. designed a new injectable and in situ form-
ing system based on photo-cross-linked poly(e-caprolactone 
fumarate). The network was fabricated using PCLF macrom-
ers, a photoinitiation system (comprising initiator and accel-
erator), and the active ingredient N-vinyl-2-pyrrolidone as a 
cross-linker and reactive diluent. The study of cross-linking 
revealed that it is facilitated up to a certain concentration of 
cross-linker (NVP) and most of the NVP remained unreacted 
above this value. Photo-cross-linked PCLF network with 

optimum NVP content exhibited no significant cytotoxic-
ity (Sharifi et al. 2007, 2008, 2011; Sharifi et al. 2009a, b).

In aother research, Hashemi Doulabi et al. (2008) used 
propylene oxide as a new and different proton scavenger 
to enhance the in  situ photo-cross-linking capability of 
poly(ethylene glycol) and fumaric acid copolymers. Mac-
romers were photocured for 300 s in the presence of a vis-
ible light initiator/accelerator couple and a reactive diluent. 
Results indicated this photocurable copolymer can be used 
as precursors to prepare scaffolds with controlled hydro-
philicity, swelling, and mechanical properties in tissue 
engineering.

Schematic and examples of chemically cross-linked 
injectable hydrogels are reported in Fig. 1 and Table 1, 
respectively.

Physically cross‑linked hydrogels

Injectable hydrogels prepared by ionic gelation

These hydrogels are prepared by divalent or trivalent cat-
ions that form ion chain connections (Aalaie et al. 2008; 
Sivashanmugam et al. 2015; Aalaie and Vasheghani-Far-
ahani 2012). Alginate is one of these polymers which can 
be cross-linked using Ca2+, Mg2+, and Ba2+ ions to form 
reversible hydrogels (Nair and Laurencin 2007; Donati 
et al. 2009; Sivashanmugam et al. 2015). However, due to 
the migration of ionic molecules of the hydrogel into the 
body fluid, alginate hydrogels are unstable and by chang-
ing the concentration of calcium, alginate, and molecular 
weight, their mechanical properties can be improved (Yang 
et al. 2014). The combination of covalent and photo-cross-
linking mechanisms with physical systems is another solu-
tion to improve the mechanical properties of these hydrogels 
(Sun et al. 2012a, b). Rottensteiner et al. (2014) prepared an 
ionic hydrogel through the bonding of alginate aldehydes 
and gelatin using calcium chloride and distributed bioglass 
in nanoscale to improve not only mechanical properties, but 
also survival, adhesion, growth, and differentiation of cells. 
The behavior of hydrogel in the cellular contact was inves-
tigated by loading the mesenchymal stem cells in it. The 
results were satisfactory for bone tissue engineering, except 
for the sample with 0.1% of bioglass, which showed slight 
toxicity compared to the control sample without bioglass. 
Yan and his colleagues (Yan et al. 2016a, b) in 2016 pro-
duced alginate-based hydrogels using CaCO3 as an ionic 
cross-linker. To improve osteo-regeneration and bioactiv-
ity of hydrogel, nanohydroxyapatite and gelatinous micro-
particles loaded with tetracycline hydrochloride were dis-
tributed within the hydrogel. The results indicated that the 
presence of HAp and gelatin particles inside the hydrogel 
would improve its mechanical properties and reduce the rate 
of degradation. Besides, tetracycline hydrochloride caused 
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better osteoblastic behavior, resulting in hydrogel as a suit-
able candidate for bone tissue engineering.

Stimuli‑responsive injectable hydrogels

Injectable hydrogels prepared by thermally induced gelation 
are networks that the solubility of their constituent chains 
changes as a result of changing temperature and phase transi-
tion to sol–gel state (Ghaeini-Hesaroeiye et al. 2020). LCST 
is usually the threshold of gelation that can be manipulated 
and shifted to body temperature through techniques such as 
copolymerization (Zhang et al. 2019). The solution, once 
injected into the body, becomes a gel in response to body 
temperature. Usually, the drug is loaded in thermally inject-
able hydrogels at ambient temperature. The chemical struc-
ture, molecular weight, and concentration of polymers affect 
the gelation of these hydrogels (Kondiah et al. 2016; Chang 
et al. 2017).

Poly(NIPAAm) is a well-known polymer with ther-
mal gelation ability (Motlaq et  al. 2019; Zajforoushan 
Moghaddam et al. 2017; Wu et al. 2020). Its temperature of 
gelation is 32 °C, which can be set to body temperature by 
copolymerization with hydrophilic polymers such as PEO 
(Amsden 2015; Yang et al. 2014; Sivashanmugam et al. 
2015). Methylcellulose is another good thermoresponsive 
polymer.

Lack of need for any chemicals to stimulate gelation is 
the main advantage of these hydrogels. However, their weak 
mechanical properties and stability limit their applications. 
To this end, hydrogels are designed to respond simultane-
ously to two environmental stimuli (such as temperature and 
pH) or (temperature and light) for phase transition. Conse-
quently, not only the mechanical strength increases, but also 
the gelation in the needle during injection would be avoided. 
This can be achieved by copolymerization of a temperature-
sensitive polymer with polymers that have pH or photosensi-
tive segments (Kim et al. 2008).

Kondiah et al. (2017) developed a temperature-sensitive 
hydrogel in 2017 with the blending of Pluronic F127, PPF, 
and PEG-PCL-PEG, which is a solution at a temperature 
below 25 °C and gel-like at the physiological temperature. 
Simvastatin was loaded within the hydrogel and it was exam-
ined at the ex vivo and in vitro conditions. The results indi-
cated that its abilities of defect filling, matrix hardening, and 
flexibility to regenerate small bone were suitable, and the 
hydrogel was similar to the natural tissue in terms of density.

Vo and colleagues (Vo et al. 2017) in 2017 designed a 
hydrogel with improved mechanical properties using copol-
ymer P(NiPAAm-co-GMA-co-DBA-co-AA), which was 
cross-linked both thermally and chemically using PAMAM. 
One of the interesting results of this study was the ability 
of self-mineralization of hydrogel (in other words self-pre-
cipitation of calcium phosphate) which provided a suitable 

environment for osteoinduction. They proved that calcium 
and not phosphate increased during 56 days due to mineral 
nucleation. This is due to the presence of protein in a culture 
medium containing serum, which may occur for two rea-
sons. Larger cavities of the swelled hydrogel and hydrogen 
bonding between the protein and the hydrogel's structure 
made the entrance and the presenting of protein in hydrogel 
possible.

Recently, Vasheghani-Farahani et al. (Kazemi-Aghdam 
et al. 2021), to enhance the mechanical properties of a well-
known thermosensitive hydrogel (chitosan/glycerophos-
phate), used chitosan-modified halloysite nanotubes. The 
loaded halloysite nanotubes with icariin as an osteogenic 
inducer improved mechanical strength and differentiation of 
stem cells to bone tissue. This is because of the stiff nature, 
tubular structure and the ability for dynamic delivery of the 
halloysite nanotubes.

Self‑assembling injectable hydrogels

Self-assembling hydrogels are prepared through non-cova-
lent bonds in the absence of any chemical agents and initia-
tors. As a result, they have high biocompatibility. On the 
other hand, these hydrogels suffer from weak mechanical 
strength and their cross-linking density cannot be adjusted 
(Hou et al. 2004). Self-assembling hydrogels are classified 
based on either self-assembly mechanisms or types of their 
bindings and interactions.

Phase separation and amphiphilic are self-assembly 
mechanisms of these hydrogels. Phase separation, which 
was introduced in 1990, involved dissolving a hydrophobic 
polymer in a water-soluble and non-toxic solvent. Gelation 
occurs when the water penetrates the matrix resulting in sol-
vent displacement. The most commonly used solvents for 
phase separation include NMP, DMSO, THF, acetone, poly-
propylene glycol, and 2-pyrrolidone (Kondiah et al. 2016). 
Variables such as polymer molecular weight, concentration, 
and type of solvent affect the rate of deposition (Bakhshi 
et al. 2006; Mohamadnia et al. 2009).

The amphiphilic mechanism occurs due to the low sol-
ubility of hydrophobic moieties in an aqueous media. As 
soon as amphiphilic polymers are placed in an aqueous 
media, macromolecules arrange to minimize the interac-
tions between hydrophobic moieties and water. Hydrogels 
prepared by amphiphilic polymers with charge or electro-
static or van der Waals forces are more stable (Kretlow and 
Klouda 2007).

One of the most striking examples in this regard is amphi-
philic peptides (Kondiah et al. 2016). Amphiphilic peptides 
have a hydrophobic alkyl tail and a peptide head. The pep-
tide head consists of hydrophobic amino acids and a short 
sequence of charged amino acids. Self-assembly of these 
molecules initiates in an aqueous media in the presence of 
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multivalent salts or pH which change as screeners of repul-
sive intermolecular forces. By alkyl hydrophobic interac-
tions and creating intramolecular beta structures, hydrogels 
are formed. The results indicate that the concentration of 
salt ions in the gelation buffer has a great influence on the 
properties of the final structure, in particular the mechanical 
properties (Cui et al. 2010; Dehsorkhi et al. 2014).

Self-assembling hydrogels are divided into two groups 
based on the type of interactions: complementary binding 
and host–guest interactions. Complementary bindings such 
as ligand–receptor pairs, antigen–antibody pairs, and base-
pairing interactions have a strong tendency to each other 
which can be used as the injectable hydrogels (Yang et al. 
2014). One of the most common examples is the streptavi-
din–biotin pair.

Host–guest interactions take place by either cyclodex-
trins or cucurbituril. CDs are natural cyclic oligosaccharides 
by which they have a hydrophobic inner cavity and form a 
complex with guest molecules such as PEG. However, they 
have poor stability in the body. The affinity of cucurbit to 
guest molecules is stronger than the CDs (Yang et al. 2014; 
Li 2010). Furthermore, it can interact with two guest mol-
ecules simultaneously. Cucurbit is a hollowed symmetrical 
macromolecule.

In 2008, Manakker and his colleagues (van de Manakker 
et al. 2008) developed a new hydrogel based on PEG. To 
this end, they modified star-shaped eight-arm poly(ethylene 
glycol) using β-CD groups and cholesterol separately. The 
hydrogel was prepared through a self-assembly mechanism 
by forming an interaction between β-CDs. The main advan-
tage of this temperature reversible hydrogel was the ability 
to control properties using polymer concentration, molecular 
weight, and the ratio of stoichiometry used for β-CD and 
cholesterol.

In another research, Appel et al. (2010) demonstrated that 
preparing a hydrogel with a high binding constant is more 
feasible by functionalization of a supramolecule through 
cucurbituril as a guest molecule and methyl viologen or 
naphthoxy derivatives as a host molecule. Its cross-link 
density can also be controlled by changing the amount of 
cucurbituril.

Schematic and examples of physically cross-linked 
injectable hydrogels are reported in Fig. 2 and Table 2, 
respectively.

Injectable systems based on microparticles 
and nanoparticles

Micro and nanoparticles have long been used as a carrier for 
drugs, growth factors, biomolecules, and cells lately (Eshghi 
Esfahani et al. 2021). In 1964, Chang proposed the idea of 
using microcapsules using a very thin polymer membrane 

to protect the cells from the immune system and introduced 
the term “synthetic cell” to express the concept of biopsy. 
Biopsy has provided extensive therapies for diseases such as 
diabetes, hemophilia, cancer, and kidney problems (Baruch 
and Machluf 2006; Orive et al. 2003). However, lack of cell 
migration is the main challenge in cell encapsulating for 
tissue engineering. In other words, when the cells are encap-
sulated within the microparticles, they collapse and cannot 
grow, expand or migrate (Orive et al. 2003). For this reason, 
the cells are cultured on the surface of the microparticles, 
and then the microparticles and the cells are injected into 
the defect (Bhatia et al. 2005; Chia et al. 2002; Yeh et al. 
2006). Microparticles of gelatin and collage are examples of 
injectable microparticles to treat bone defects (Wang et al. 
2003; Kim et al. 2005).

Compared to solid microparticles, porous microparticles 
play a more significant role in cell therapy due to more avail-
able surface for cell growth and easy migration (Chung and 
Park 2007; Zhou et al. 2021). Kim et al. (Van Tomme et al. 
2008a, b) reported the production of porous microparticles 
with average size of about 200 μm and porosities of about 
30 μm for cartilage tissue engineering. These microparti-
cles are applicable in the preparation of engineered scaffolds 
through connecting and forming a porous rigid structure. 
Due to the relatively round shape of microparticles and their 
microscale diameters, it can be assured that the resulting 
porosity of hydrogels based on microparticles is completely 
connected.

So far, few works have been done on the production of 
hydrogels based on microparticles. Van Tam and colleagues 
(Van Tomme et al. 2005a, b, 2006, 2008a, b) have worked on 
in situ cross-linking hydrogels based on microparticles as a 
result of electrostatic interaction. These microparticles were 
made of polyhydroxy methacrylate (HEMA) and dextran 
which have various positive and negative charges at pH of 7. 
Salem et al. (Krishnamachari et al. 2008; Salem et al. 2003) 
also reported an injectable system based on PLA micro-
particles, which were cross-linked through the avidin–bio-
tin system. Their system was a cellular composite and the 
size of the microparticles was practically smaller than the 
dimension of the cells. Bagheri Khoulenjani et al. (2010), 
Bagheri-khoulenjani et al. (2012), and Bagheri-Khoulenjani 
et al. (2013) fabricated a natural injectable nanocomposite 
for bone tissue engineering applications based on gelatin/
chitosan/nanohydroxyapatite with the ability to be solidi-
fied in situ using the benefits of avidin–biotin systems. The 
steps of this project include fabrication of microspheres 
using water-in-oil emulsions, biotination of microspheres 
using NHS-PEG-Biotin spacer via interaction of NH2 groups 
of microspheres and NHS-ester group of spacers. Results 
confirmed that the suspension concentration and particle 
size of microspheres affect the strength and pore size of the 
hydrogels, respectively.
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Schematic and examples of injectable systems based 
on microparticles are reported in Fig.  3 and Table  3, 
respectively.

Injectable systems based on shape memory 
polymers

There is a group of materials that can change their shape 
spontaneously and immediately in the presence of suitable 
environmental triggers, called shape-changing materials. 
Other stimulus-responsive materials are shape memory 
materials which can be deformed to temporary shape and 
then return to the original state through elastic deformation 
stored in them by applying an appropriate stimulus (Sun 
et al. 2012a, b).

The shape memory property in polymers is based on two 
parts: elastic and transition (Khan et al. 2020). The task of 
the elastic part is maintaining the elasticity of the system and 
the transition part is responsible for changing the stiffness 
(Sun and Huang 2010).

Stimulants used to recover the shape memory polymers 
include temperature, solvent, light, humidity, and pH. These 
systems have the ability to retrieve by more than one type 
of stimulus.

Shape memory polymers can form hydrogels which are 
more flexible than shape memory rubbers and their shape is 
recovered by heating.

Due to biodegradability, narrow temperature range, rapid 
stimulating, large deformation, adjustable stiffness, and elas-
tic properties, they can be used in medical applications. One 
of the commercial products in this field is a self-tightenable 
biodegradable suture that solved the problem of limited 
space for tying sutures (Lendlein and Langer 2002).

Shape memory polymers are categorized into four groups 
(Liu et al. 2007):Ta
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Fig. 3   Schematic of injectable systems based on micro particles
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(1)	 Covalently cross-linked glassy thermoset networks.
(2)	 Covalently cross-linked semi-crystalline networks-
(3)	 Physically cross-linked glassy copolymers-
(4)	 Physically cross-linked semi-crystalline block copoly-

mers.

Covalently cross-linked glassy thermoset networks can 
return to their original shape well due to the rubber elas-
ticity caused by covalent cross-links. The rubber module 
of these systems is controllable by the amount of covalent 
cross-linking. However, the performance of secondary 
processes is difficult due to this covalent cross-linking 
(Liu et al. 2007).

Shape recovery of semi-crystalline rubbers is faster and 
secondary form of them is fixed by crystallization, but dif-
ficulty in secondary processability is their main issue as well 
(Liu et al. 2007).

Unlike covalently cross-linked networks, physically 
cross-linked copolymers showed good processability, so 
that they can even be electrospun. Physically cross-linked 
glassy copolymers include homopolymers with low or semi-
crystallinity and melt miscible alloys with at least one semi-
crystalline part in which crystals play the role of physical 
cross-links (Liu et al. 2007).

David Mooney is a pioneer in the use of cryogels as an 
injectable hydrogel with the shape memory property (Koshy 
et al. 2014; Bencherif et al. 2012; Thornton et al. 2004). 
In 2012, He et  al. prepared nanoporous hydrogels and 
macroporous cryogels using methacrylated alginate at room 
temperature and −20 °C, respectively. The results showed 
that cryogels have the potential to compress up to 90% of 
strain by force and retrieval of their shape as they enter the 
body. In addition, cryogels have large, interconnected cavi-
ties that are recovered after entering the body and allowed 
cell growth. To fill large cavity defects, a large number of 
small cryogels instead of a large piece can be simultane-
ously used (Bencherif et al. 2012). During another research 
(Koshy et al. 2014) in 2014, they prepared a cryogel with 
shape memory property using methacrylated gelatin. They 
showed that this cryogel allows the adhesion and growth of 
the cells, and degrades enzymatically in the body.

Recently, Mirzadeh et al. (Goodarzi et al. 2020) devel-
oped a preformed injectable scaffold based on methacrylate 
gelatin for cartilage tissue engineering. They loaded beta-
methasone sodium phosphate in cellulose nanocrystal 
(CNC) and polyamidoamine (PAMAM) dendrimers as drug 
carrier embedded within the scaffold. In their next research, 
they fabricated an interpenetrating network using gelatin 

Table 3   Injectable systems based on microparticles and nanoparticles

Polymer Mechanism of gelation Chemical factors Biological factor Year Ref.

1 PLA-PEG-Biotin and PVA Self-assembly (avidin–bio-
tin systems)

Human osteoblast sar-
coma

2003 Salem et al. (2003)

2 Hydroxyethyl meth-
acrylate-derivatized dex-
tran–dimethylaminoethyl 
methacrylate

and
hydroxyethyl meth-

acrylate-derivatized 
dextran–methacrylic acid

Self-assembly TEMED
KPS

2005 Van Tomme et al. (2005a, 
b)

3 Amine-functionalized 
PLGA and PLGA

Self-assembly Bovine articular chondro-
cytes

2008 Chung et al. (2008)

4 Gelatin/chitosan Self-assembly (avidin–bio-
tin systems)

Nano hydroxyapatite 2010 Bagheri Khoulenjani et al. 
(2010)

5 SS-PLLA Self-assembly Chondrocytes 2011 Liu et al. (2011)
6 PHEMA-g-PLLA-acrylic Self-assembly TGF-β1

BMP-2
Bone marrow-derived 

mesenchymal stem cells

2015 Zhang et al. (2015)

7 PLGA/chitosan Self-assembly Chondrocytes 2014 Fang et al. (2014)
8 Sr-HA-graft-poly(γ-

benzyl-l-glutamate)
Self-assembly Hydroxyapatite adipose-

derived stem cells
2017 Gao et al. (2017)

9 Chitosan and dialdehyde 
bacterial cellulose

Self-assembly Bone marrow-derived 
mesenchymal stem cells

2018 Wang et al. (2018)

10 Strontium-substituted 
hydroxyapatite-graft-
poly(γ-benzyl-l-
glutamate)

Self-assembly Adipose-derived stem 
cells

2018 Yan et al. (2018)
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methacrylate and hyaluronic acid (Jonidi Shariatzadeh et al. 
2021). So far, high mechanical stability had been achieved 
by the cryogelation and chemical cross-linking of Gel-MA 
as well as physical cross-linking of HA and made these cryo-
gels a promising candidate for cartilage tissue application.

Schematic and examples of injectable systems based on 
shape memory polymers are reported in Fig. 4 and Table 4, 
respectively.

Future perspective

Today, due to the benefits of injectable hydrogels compared 
to pre-fabricated hydrogels, they have attracted a lot of atten-
tion. Non-invasiveness, high performance in filling irregu-
lar bone and cartilage defects, low cost and providing more 
favorable conditions for the patients and the surgeons are the 
main advantages of injectable hydrogels. However, they have 
some disadvantages. The major challenges of in situ forming 
hydrogels for regenerative medicine are the spatiotemporal 
control of gelation, the integrity, and the porosity of the final 
gel. Studies showed that chemically cross-linked hydrogels 
exhibit favorable mechanical properties and stability, but 
the probability of cytotoxicity caused by chemical reactions 
limits their applications. Producing the harmful radical spe-
cies in thiol–ene reactions, the remaining aldehyde in Schiff 
base reactions, narrow range of applicable biological tem-
perature and pH of photopolymerization, and the lake of 
labile bonds and appropriate porosity are the challenges of 
chemically cross-linked injectable hydrogels that should be 
addressed. On the other hand, physically cross-linked hydro-
gels show minimized toxicity risks and more easily produc-
tion methods. However, they are not robust for bone tissue 
engineering applications as a result of ion migration and 
show a slow response time. Furthermore, applicable physi-
cally injected hydrogels require high solid content, which 

increases the final cost and viscosity, and some discomfort 
would be caused to patients as result. In general, physical 
in situ forming injectable hydrogels is suitable for the engi-
neering of non-load-bearing tissues, and chemical in situ 
forming injectable hydrogels is more suitable in tissues that 
require high mechanical strength. This has led to the use of 
both chemical and physical cross-linking systems simultane-
ously to achieve optimal cartilage and bone regeneration.

The shape memory injectable hydrogels are a new topic 
that has been recently interested. These hydrogels are a 
combination of pre-prepared and injectable hydrogels. They 
can be condensed due to their flexibility, passed through a 
conventional needle, and can retrieve their original shape 
using various stimuli such as temperature, moisture, and pH. 
This kind of hydrogel does not have disadvantages of in situ 
forming injectable hydrogels, such as the risk of displace-
ment of the solution and the lack of proper gelation time and 
porosity. However, the use of several small pieces of shape 
memory hydrogel instead of one integrated piece to cover 
the defect and relatively high injection force compared to the 
in situ forming injectable hydrogels are the main challenges 
of the shape memory injectable hydrogels.

To see the commercial use of injectable hydrogels in the 
future, their disadvantages should be eliminated through the 
advancement of material science and methodology of pro-
duction to imitate the morphological and functional proper-
ties of bone and cartilage tissue. Only then can we expect 
injectable hydrogels to become the main option in bone and 
cartilage tissue engineering in the near future.

Conclusion

Hydrogels are widely used three-dimensional platforms for 
tissue engineering. The presence of water in their struc-
ture not only simulates ECM for the cells, but also helps to 
encapsulate, manipulate, and transfer their contents to the 
surrounding tissue in a homogenous manner. In the field 
of orthopedic injuries, the defect with irregular shape and 
critical size would limit the use of preformed hydrogels. 
Therefore, injectable hydrogels not only completely cover 
the defects, but also do not require secondary surgery and 
are applied in the least invasive manner. Currently, drugs, 
biomolecules, cells, and their combinations can be encapsu-
lated in injectable hydrogels. The disadvantages of injectable 
systems now prevent them from being used commercially 
on a large scale, and only handful are commercially avail-
able. It is hoped that by the advancement of science, these 
disadvantages will be eliminated and the performance of 
injectable hydrogels will be improved.

Fig. 4   Schematic of injectable systems based on shape memory poly-
mers
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