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Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide, and it is characterized by the produc-
tion of immature malignant cells in the bone marrow. Computer vision techniques provide automated analysis that can help 
specialists diagnose this disease. Microscopy image analysis is the most economical method for the initial screening of patients 
with ALL, but this task is subjective and time-consuming. In this study, we propose a hybrid model using a genetic algorithm 
(GA) and a residual convolutional neural network (CNN), ResNet-50V2, to predict ALL using microscopy images available 
in ALL-IDB dataset. However, accurate prediction requires suitable hyperparameters setup, and tuning these values manually 
still poses challenges. Hence, this paper uses GA to find the best hyperparameters that lead to the highest accuracy rate in the 
models. Also, we compare the performance of GA hyperparameter optimization with Random Search and Bayesian optimization 
methods. The results show that GA optimization improves the accuracy of the classifier, obtaining 98.46% in terms of accuracy. 
Additionally, our approach sheds new perspectives on identifying leukemia based on computer vision strategies, which could 
be an alternative for applications in a real-world scenario.

Keywords Leukemia classification · Convolutional neural networks · Genetic algorithm · Hyperparameter optimization · 
Fine-tuning

Introduction

Acute lymphoblastic leukemia (ALL) is a type of cancer 
caused by immature lymphocytes in bone marrow [1]. It is 
the most common childhood cancer worldwide and accounts 
for 80% of all childhood leukemia [2–4]. ALL can be diag-
nosed through a variety of tests, such as physical examina-
tions, blood tests, blood counts, myelogram, lumbar punc-
tures, and bone marrow biopsies [5].

Visual analysis in microscopy images is the most econom-
ical method for the initial screening of patients with ALL. 
However, it is a very subjective and time-consuming task [1]. 
Leukocytes are detected by their dark purple-like appearance, 
but the analysis and further processing become very com-
plicated due to their variability in shape and texture. Also, 
significant changes in the morphology of the cells are found 
in severe cases of the disease.

To overcome these limitations, computer-aided diagnosis 
systems based on image processing and machine learning 
techniques are essential and widely applied in several fields 
of medicine [6–10]. Moreover, these techniques are finan-
cially attractive, especially for developing countries [11].

Following the advances of computational resources, 
deep convolutional neural networks (CNNs) have been sig-
nificantly outperforming approaches based on handcrafted 
features. This strategy provides an automatic feature extrac-
tion from input images and demonstrates effective results in 
visual recognition tasks in many areas [12, 13].

In this study, we explore the classification of ALL using 
microscopy images and deep learning. Our main goal is to 
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improve the identification rate among immature lympho-
cytes and healthy lymphocytes, thus helping in the diagnosis 
of ALL in the early stages. Our deep learning approach used 
a ResNet-50 V2 [14] CNN architecture, and we evaluated its 
performance using a k-fold cross-validation procedure over 
the training set and validated the overall results in using the 
and test sets.

Finding the optimal hyperparameters to train a deep CNN 
is crucial because there is no optimum method for selecting 
hyperparameters. In machine learning, for example, grid 
search (equivalent to brute force), random search, Bayesian 
optimization, and GA are common approaches used for hyper-
parameter optimization [15–18]. However, the computational 
cost of grid search is too high, while random and Bayesian 
approaches are limited to the search space distribution [19].

To address this challenge, we innovate with a method to 
find a suitable setup for hyperparameter optimization using 
genetic algorithm (GA). Hyperparameters are a set of vari-
ables to be tuned before applying the learning algorithm to 
the dataset. These hyperparameters directly affect the learn-
ing speed, the convergence of the cost function, and the clas-
sification performance [20].

Our results suggest that hyperparameter optimization 
combined with fine-tuning training tends to be the best per-
forming strategy. Our results demonstrate the suitability and 
performance score of hyperparameter optimization based on 
GA, and the best result achieved an accuracy of 98.46% in 
ALL classification.

Moreover, as far as we know, our result is the best obtained 
for ALL classification in microscopy images using the data-
set evaluated in this study. We believe that our proposed 
method can contribute to future research intended to help 
healthcare workers to identify leukemia and manage patients’ 
conditions.

The remaining of this paper is organized as follows: "Related 
Work" surveys related work. "Materials and Methods" describes 
the material and methods. "Experimental Protocol" presents the 
experimental procedure. "Results and Discussion" presents and 
discusses the results. Finally, conclusion and future work are 
presented in "Conclusions".

Related Work

Leukemia identification using microscopy images is a field 
of intense research, with many approaches being devel-
oped over the years. Piuri and Scotti  [21] were among 
the first to propose an automatic system for classifying 
leukocytes from other blood components such as red blood 
cells, platelets, and plasma in microscopy images. After, 
Scotti [22] proposed another system that uses shape fea-
tures to identify ALL from microscopic images. According 

to their experiments, morphological features allowed the 
white blood characterization.

Several studies have been proposed for classifying ALL 
in microscopy images with hand-crafted feature extraction 
(i.e., using a non-automated user-based process). Mohapatra 
et al. [23] proposed leukocytes classification by using a sup-
port vector machine (SVM) with shape, texture, and color 
features. After, [24] proposed an approach based on shape 
and color features and an ensemble of classifiers.

Khashman et al. [25] applied Otsu’s threshold method, 
median filtering, Canny edge detection, and pattern aver-
aging kernel to process 80 images from ALL-IDB2 data-
set. They conducted experiments with different ratios of 
training and test sets and used a multi-layer perceptron for 
classification.

Putzu et al. [26] proposed an approach based on shape, 
color, and texture analysis for ALL identification in 245 
sub-images obtained from ALL-IDB dataset. Bhattacharjee 
and Saini [27] used morphological operations, SVM, K-NN, 
and K-means clustering. Singhal and Singh [28] classified 
ALL using a SVM classifier with local binary patterns 
(LBP) and gray-level co-occurrence matrix (GLCM).

Rodrigues et al.  [29] converted RGB images to HSV 
color space and extracted and converted V channel into 
binary. They analyzed morphological features and per-
formed the classification with four different classifiers. Sus 
and Oliveira [30] extracted B and S channels, obtained from 
RGB and HSV color models, respectively. Segmentation 
methods, morphological analysis, and several classifiers 
were used to classify leukocytes in microscopy images. The 
approaches seen in [29] and [30] consider all 260 images 
from ALL-IDB2 dataset, and these authors reported diffi-
culties in the segmentation stage due to problems intensity 
variations in the images.

Faria et al. [31] presented a simple and efficient combina-
tion of SIFT and SURF descriptors, stacking the descriptors 
of key points into a single matrix and evaluated two clas-
sifiers. Sahlol et al. [32] segmented each cell with Zack’s 
threshold method and optimized a feed-forward neural net-
work with elephant herd optimization (EHO) algorithm, 
which updates the weights and the biases of the network 
to classify ALL. In another study, Sahlol et al. [33] applied 
a bio-inspired meta-heuristic method called social spider 
optimization algorithm (SSOA) and tested several types of 
classifiers such as K-NN and SVM.

Although most of the previous works achieve an accuracy 
rate above 90%, they depend on the use of a proper segmenta-
tion process and handcrafted feature extraction. To overcome 
this limitation, strategies based on deep learning, specifically 
convolutional neural networks (CNNs), have been proposed 
to classify ALL in microscopy images and produce better 
results than all classical techniques [34–37].
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Vogado et al. [38] proposed a method to identify leuke-
mia using a hybrid-Leukocyte database and transfer learning 
strategy. Three CNNs architectures were used for feature 
extraction, and the gain ratio method was applied for feature 
selection. Further, the features selected were used as input 
to the SVM classifier.

Sipes and Li [39] developed a simple sequential CNN 
and compared it with conventional classifiers to classify the 
ALL in microscopy images. They evaluated the classifiers 
with training from scratch and tuned some hyperparameters 
empirically. However, to deal with small datasets, training 
based on transfer learning is most suitable [40].

Claro et al. [41] proposed a method for the automatic 
classification of two leukemia types and healthy cells in 
microscopy images using a CNN called AlertNet that shares 
the basic architecture of AlexNet [42] and uses a residual 
structure similar to ResNet [43]. In addition, they overcome 
overfitting using different data augmentation strategies and 
transfer learning.

Sahlol et al. [44] extracted features from lymphocytes 
images using VGG architecture and reducing the features 
extracted using a statistically enhanced salp swarm algo-
rithm (SESSA). The training of VGG considered transfer 
learning, and six conventional classifiers received as input 
the features extracted by VGG architecture and reduced by 
SESSA algorithm.

Most recently, Das and Meher [45] proposed a hybrid 
transfer learning approach that ensembles MobilenetV2 and 
ResNet18 architectures. They considered the training based 
on transfer learning but did not exploit data augmentation 
techniques to deal with a small number of training images.

Automatic feature extraction is the main strength of previ-
ous studies based on deep CNNs. However, these studies do 
not investigate the appropriate choice of training-relevant 
hyperparameters, which can also significantly affect clas-
sification performance. Thus, to overcome this problem, we 
propose an approach based on GA to identify the optimal 
hyperparameters in a broad search space that considers a 
uniform distribution, data augmentation strategy, and train-
ing based on fine-tuning. Also, our method does not need the 
segmentation process, it is more robust to the intensity vari-
ations in the images, and it is also suitable to deal with the 
lack of training data for approaches based on deep learning.

Material and Methods

To fill the state-of-the-art gap concerning the best hyperpa-
rameters setup [46], we developed a novel approach based 
on GA. The main goal of this paper is to evaluate the per-
formance of a deep residual CNN architecture to classify 
ALL in microscopy images. More precisely, we find the 
best hyperparameter combination and improve classification 

performance. Figure 1 illustrates the steps of the methodol-
ogy adopted here.

Image dataset

The images used in this work were obtained from ALL-
IDB2 dataset1 provided by Department of Information 
Technology - Universitá degli Studi di Milano [47]. It con-
tains 260 images, each with a single, centered cell in evi-
dence, categorized into two classes: healthy (130 images) 
and immature (130 images). All images are in JPG format 
with 24 bit color depth and 2592 × 1944 pixels size. Figure 2 
shows some images from the dataset for both classes, healthy 
and immature.

Deep Residual Network

Convolutional neural networks (CNNs) are the state-of-the- 
art in image classification tasks, designed to extract visual  
patterns from input images directly, without requiring 
handcrafted feature extraction [12]. In CNNs, the classifi-
cation performance increases as the number of deep layers 
increases. However, as the number of layers increases, the 
accuracy tends to saturate and eventually degrade [48]. To 
overcome this problem, a residual network (ResNet) [43] 
was proposed. It uses residual blocks to address the gradi-
ent degradation in the training step and each residual block 
is composed of several stacked convolutional layers. Thus, 
the residual block adds a shortcut connection summing the 
input feature map (x) and the output of convolutional blocks 
(f(x)), as shown in Fig. 3(a).

In this study, we evaluated a deep residual network 
named ResNet-50 V2 [14]. ResNet-50 V2 is the enhanced 
version of ResNet-50 [43] that won the ILSVRC 2015 chal-
lenge [49]. The authors of [14] refined the residual block 
using a pre-activation variant of residual block, in which 
the gradients can flow through the shortcut connections to 
any other earlier layer unimpeded. The convolutional block 
is illustrated in Fig. 3(b), and it is composed of following 
layers: batch normalization, rectified linear unit (ReLU), and 
convolutional with a kernel of size k.

Hyperparameter Optimization

Hyperparameters define the optimization algorithms used, 
details of training, architecture, and topology of the CNN [20]. 
The choice of their values is essential to the performance of 
the CNN, although there is no optimum method for their 
selection. This choice may be performed empirically by evalu-
ating different values until the algorithm provides satisfactory 

1 Available in: https:// homes. di. unimi. it/ scotti/ all/
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performance. However, the optimal values are unknown, and 
any definition of satisfaction degree is subjective.

Alternatively, the choice of hyperparameter values 
can be modeled as an optimization problem, where the 
hyperparameters are defined as decision variables, and the 
objective function minimizes the loss function. The fine-
tuned hyperparameters in this study are as follows:

• Dropout (d): dropout is a technique to deal with over-
fitting. It is based on the random dropping of neurons 
during the training process, i.e., a unit out is temporarily 
removed from the network, along with all its incoming 
and outgoing connections [50].

• Learning rate (l): the learning rate is the main tuning 
parameter, being responsible for improving the stochas-

Fig. 1  Flowchart of the proposed 
approach

Fig. 2  Image instances from the ALL-IDB2 dataset showing healthy (top) and immature (bottom) lymphocytes
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tic gradient descent (SGD) [51] optimizer runtime. It 
defines the level of adjustment of weight connections 
and network topology applied at each training epoch. A 
high learning rate may sacrifice accuracy due to a lack 
of precision in the adjustments. On the other hand, a low 
learning rate requires more training epochs and longer 
processing time [20].

• Momentum (� ): the momentum coefficient  [52] is 
responsible for reducing oscillations in the high-curvature 
regions of the loss function generated by the SGD. By 
default, its value is set to 1, but fine-tuning this hyperpa-
rameter may lead to improved results [13].

Proposed Genetic Algorithm

Genetic algorithm (GA)  [53] is inspired by the natural 
biological evolution, and it is a type of evolutionary algo-
rithm. Usually, a GA is composed of a population with n 

individuals and a series of bio-inspired operations, such as 
selection, crossover, and mutation.

GA is suitable for combinatorial optimization problems, and 
the quality of the solution obtained by GA suggests that it is 
better than simulated annealing or tabu search algorithms [54]. 
We choose GA over other heuristic algorithms for hyperparam-
eter CNN evolution because the GA can incorporate domain-
specific knowledge in all optimization phases [54], which is 
essential for hyperparameter combination in deep learning.

The conventional GA includes three main steps, as shown 
in Algorithm 1 and explained in the next subsections. Ini-
tially, n chromosomes are randomly generated according to 
the specific encoding method. Then, new offspring are con-
tinuously generated from the existing population and com-
bined with the older generation to form a new generation. 
Finally, there is a population evolution process in which all 
individuals enter an iterative competition generating a new 
population composed of the survivors generated from the 
crossover of survivors and mutation operation.

Fig. 3  (a) Residual block. (b) 
Detail of a convolutional block 
inside the Residual Block
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Population Initialization

Initialization is the process of randomly selecting candi-
date solutions in the search space. In this study, we defined 
the search space size as an input from the hyperparameter 
set. Also, we use a uniform distribution to ensure the ran-
dom distribution of candidates in the search space. There 
is a particular interval for all hyperparameters in which the 
gene can assume values within the defined range, limiting 
the search space of the GA.

During population initialization, hyperparameters are 
defined, and a random value is chosen within the pre-
defined interval to encode the chromosome. We must 
include the information of dropout, learning rate, and 
momentum coefficient for the chromosome encoding in 
an array. Each chromosome is composed of three genes, 
and each gene encodes a real value for its respective hyper-
parameter. The structure of the chromosome is shown in 
Fig. 4.

Selection

The selection is based on fitness, i.e., the fittest individual 
is selected to participate in the reproduction process. In 
this operator, the current generation members with the 
highest fitness values are the most likely to generate the 
next population. In this study, we applied linear ranking 
with tournament selection.

• Linear Ranking: It is based on the classification of indi-
viduals according to fitness, being the probability of 
selecting an individual depends solely on fitness. For 
this, the worst individual gets a rating of 1; the second-

Fig. 4  Chromosome representation for hyperparameter optimization
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worst individual gets a rating of 2. This idea repeats 
successively until the best individual receives a rating 
of n (corresponding to the number of chromosomes in 
the population). Thus, based on their rating ( ranki ), each 
individual i has the probability Pi to be selected from a 
population of n individuals, as defined in Eq. 1 [55]. 

• Tournament: The tournament selection  [56] aims to 
select a set of k individuals randomly, which will be 
sorted according to their relative fitness. Afterward, the 
fittest individual is chosen for reproduction. This process 
is repeated several times for the entire population, and 
the probability Pi of each individual being selected is 
expressed in Eq. 2. 

Figure 5 shows the selection method based on linear rank-
ing and tournament applied in this study. All individuals are 
ranked, and half of the best chromosomes will be selected for 
the tournament. After, a tournament ( t = 2 ) is performed con-
sidering the best-ranked chromosomes. Afterward, the winner 
of the tournament will be selected for the reproduction process.

(1)Pi =
ranki

n × (n − 1)

(2)Pi =

{

Ck−1
n−1

, if i ∈ [1, n − k − 1]

0 , if i ∈ [n − k, 1]

Crossover and Mutation

The crossover operator is used to generate new individuals 
by recombining the genes of parent chromosomes. In this 
study, we used a single-point crossover. For each iteration 
in the GA process, one point was randomly selected. For 
example, as illustrated in Fig. 6, to generate a “child 1”, the 
random crossover point is index 1. Thus, index 0 and 1 from 
“parent 1” will be selected as head, and index 2 from “parent 
2” will be chosen as tail. After, a similar process occurs to 
generate a “child 2”.

Also, we applied the mutation operator, which is initiated 
after the crossover process by randomly modifying one bit of 
an individual’s chromosome to generate a child.

Fitness Evaluation

In this paper, we considered the objective function as the 
loss-function defined by L(W) . Eq. 3 show that L(W) is 
computed over a set of training samples Xj considering the 
tuned weights W, parameters f (xj) , and the known classes 
yj , where j represents the classes lymphocytes immature 
and healthy.

(3)L(W) =
1

n

N
∑

j=1

�(yj, f (xj;W))

Fig. 5  Selection based on linear 
ranking and tournament. The 
linear ranking is applied to select 
half of the best chromosomes, 
sorting the highest accuracy 
and lowest loss at the top of the 
population. Then, the selection 
with a tournament ( t = 2 ) is 
performed considering the best-
ranked chromosomes
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In this way, to minimize L(W) , we applied the stochastic 
gradient descent (SGD) [51] optimization algorithm with 
hyperparameters (dropout, learning rate, and momentum) 
optimized through GA. Consequently, when we minimize 
the loss-function, the accuracy (Eq. 4) is maximized.

Experimental Protocol

Firstly, we have to adapt the image size in the dataset for the 
input of the ResNet-50 V2. All images were resized to 224 
× 224 pixels size using bilinear interpolation.

We arranged the dataset into training and test sets: 80% 
for training (further split into 80% for training and 20% for 
internal validation using stratified fivefold cross-validation 
method [57]) and 20% for testing (external validation). We 
applied fivefold internal cross-validation to all experiments, 
reporting the results on the external test set.

Neural networks like ResNet generally require a large 
amount of data during the training in order to avoid overfit-
ting. Given the reduced number of images in the dataset, 
we used data augmentation and transfer learning techniques 
to improve the training of the networks [40, 41]. Data aug-
mentation enables to increase the training set artificially by 
generating new samples of a given image under different 
variations, without introducing labeling costs [42]. In our 
experiments, we performed the data augmentation using 
only vertical and horizontal flips.

Additionally, we applied transfer learning, i.e., we used 
the pre-trained 2012 ImageNet weights to initialize the net-
work [49]. This strategy enables to use low-level features 
learned in larger datasets, which are better in comparison 
to the ones learned using a network trained from scratch in 
a smaller dataset. For comparison, ImageNet data set con-
tains approximately 1.2 million images divided into 1000 

classes. In the sequence, we used our small dataset to fine-
tune the network weights to our problem, i.e., we initialized 
all convolutional layers with weights from the pre-trained 
model, and the fine-tuning was performed only in the deeper 
layers [13].

We report our results in terms of average accuracy, preci-
sion, recall, and F1-score [58], averaged over the fivefold:

• Accuracy: is the ratio between the correct classifications 
and total samples (Eq. 4). 

• Precision: is the ratio between TP and the total of positives 
classification (Eq. 5). 

• Recall: is the proportion of TP correctly classified (Eq. 6). 

• F1-Score: is the harmonic average of the precision and 
recall (Eq. 7). 

where TP is true positive, TN is true negative, FP is false posi-
tive and FN is false negative. For a given fold, we obtain these 

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F1−Score = 2 ×
Precision × Recall

Precision + Recall

Fig. 6  Example of single-point 
crossover

Table 1  Classification results considering training without GA using 
the test set

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

50.00 25.00 50.00 33.00
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metrics and then we compute the average metrics among the 
folders.

All experiments were conducted using the Google Colab-
oratory cloud service with a machine Intel(R) Xeon(R) 
2.20GHz processor, 12 GB RAM, and a GPU NVIDIA Tesla 
T4. The experiments were programmed using Python (ver-
sion 3.6) and Keras 2.0 [59] deep learning framework. The 
hyperparameter optimization algorithms random search and 
Bayesian optimization were drawn from the KerasTuner 
library [60], version 1.1.0.

Results and Discussion

We propose experiments aiming to answer the following questions:

• What are the best values of hyperparameters (dropout, 
learning rate, and momentum coefficient), which bring the 
highest classification performance?

• How much does the hyperparameter optimization increase 
the performance of ResNet-50 V2, considering fine-tuning 
approach?

• Considering metrics derived from confusion matrix, what 
is the most suitable approach for leukocytes image clas-
sification: training without GA or with GA?

• In terms of consumed time for training and the classifi-
cation performance, considering GA, random search, and 
Bayesian optimal parameter finding methods, which one is 
the best approach?

Classification Without Hyperparameter 
Optimization

Aiming to assess the impact of the training without hyper-
parameter optimization, we analyze the classification per-
formance according to metrics of accuracy, precision, recall 
and F1-score. We trained the CNN SGD optimizer with a 
learning rate of 0.01, momentum of 1.0, batch size of eight, 
and 100 epochs. The values of learning rate and momentum 
were defined according to the literature [13].

Regarding the classification performance, Table 1 pre-
sent the result obtained for the test set. Results show that 
using the default values generates poor results, indicating 
that these hyperparameters need to be well adjusted in order 
to the CNN to achieve a good performance.

In order to assess the values of accuracy and loss dur-
ing the training phase, the evolution of these values is pre-
sented in Fig. 7, considering the fifth iteration of the k-fold. 
Throughout the training, the behavior of the accuracy and 
loss function generated noise values resulting in underfitting.

Evaluating the Impact of GA Optimization

This experiment aimed to demonstrate that proper hyperpa-
rameter tuning improves the performance of the ResNet-50 
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Fig. 7  Evolution of accuracy and loss values considering the training and validation set

Table 2  Hyperparameter search space used for optimization

Hyperparameter Value

Dropout x ∈ [0.0, 0.5]
Learning Rate x ∈ [0.005, 0.01]
Momentum x ∈ [0.0, 1.0]

Table 3  Hyperparameter optimized with GA

Hyperparameter

Fold Dropout Learning Rate Momentum

1 0.01326 0.00179 0.15547
2 0.01489 0.00187 0.15547
3 0.01326 0.00187 0.15547
4 0.01489 0.00187 0.09274
5 0.01326 0.00179 0.15547
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V2 deep CNN. The selection of hyperparameter values was 
carried out as an optimization problem, as described in 
"Hyperparameter Optimization".

We applied the GA to optimize the fine-tune values, 
namely the dropout, learning rate, and momentum coef-
ficient in pre-trained ResNet-50 V2. The hyperparameter 
optimization process for each fold took about 78 minutes 
to complete. The GA setting considered a mutation rate of 
30%, population size of ten, and five generations. For each 
generation, the CNN was trained for 20 epochs. Usually, 
a larger population size and larger maximal generation 
number results in better performance, but this is time-
consuming and requires more computational resources. 
To overcome this limitation, we applied the same setting 
adopted by [61] to optimize a deep CNN with GA.

Table 2 presents the hyperparameter space search evalu-
ated in this study. All hyperparameters are searched con-
sidering a uniform distribution. Besides, Table 3 presents 
the best values for each hyperparameter returned by the 
GA.

For all analyses, we consider “HS” as the abbreviation 
of the hyperparameter setting, which is obtained from five-
fold internal cross-validation. Given the results obtained 
by GA, we trained the ResNet-50 V2 using the optimized 
hyperparameters with 100 epochs.

As shown in Table 4, the GA hyperparameter optimiza-
tion improved the classification performance significantly. 
When we compare the results obtained with and without 
GA, it is possible to observe that optimization generated 
an accuracy enhancement of 48.46 percentage points 
(accuracy increased from 50.00% to 98.46%).

The results suggest that our hyperparameter optimization 
based on GA is superior in all evaluated metrics over the 
strategy without automatic optimization. This implies that 
defining optimal hyperparameters requires lots of domain 
expertise, and manually pre-configurations limit the feasible 
solution space to miss out on the better set of hyperparam-
eters. It is a relief that GA can automatically search for the 
optimal solution in a large space without a manual setting. 
Thus, the automatic selection by GA reduces the domain 
expertise requirements in deep learning for researchers and 
helps some non-expert researchers to define the best hyper-
parameters obtaining high-performance classifiers.

As a check on the learning behavior of the training step, 
Fig. 8 shows the loss and accuracy values considering the 
second iteration of the k-fold. It is important to note the low 
values of the loss function. This behavior suggests that the 
training did not overfit the data, thus retaining the generali-
zation property of the deep residual CNN.

The proposed model optimized by GA has further exploited 
the potential of ResNet-50 V2 and improved the acute lympho-
blastic leukemia detection performance. In summary, the pro-
posed model shows better and more balanced performance 
compared with conventional ResNet-50 V2, without GA 
optimization.

Figure 9 shows the feature map acquired in selected con-
volutional layers of the ResNet-50 V2 optimized by GA. 
The filters embedded in the convolutional layers shows that 
most of the features behaved as texture extractors and edge 
detectors, preserving the leukocyte cell spatial information. 
The results demonstrate that our approach does not need the 
segmentation process and it is more robust to deal with the 
different leukocyte features.

Table 4  Classification results considering training with five different 
hyperparameters setting from Table 3 applied on the test set

HS Accuracy 
(%)

Precision 
(%)

Recall (%) F1-Score (%)

1 100.00 100.00 100.00 100.00
2 98.08 98.15 98.08 98.08
3 96.15 96.43 96.15 96.15
4 100.00 100.00 100.00 100.00
5 98.08 98.15 98.08 98.08
Average 98.46 ± 0.01 98.55 ± 0.01 98.46 ± 0.01 98.46 ± 0.01
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Fig. 8  Evolution of accuracy and loss values considering the training and validation set and GA hyperparameter optimization
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Table 5 presents the confusion matrix for ResNet-50 V2 
optimized by GA, and it shows the aspects of the classifica-
tion problem investigated in this study. It can be seen that 
our approach classifies 97.69% of leukemia images correctly 
and does not require preprocessing or segmentation process 
(commonly used in state-of-the-art techniques).

Comparison of Different Hyperparameter 
Optimization Approaches

In addition to optimizing with GA, we also evaluated the 
impact of optimization using random search and Bayesian 
optimization approaches to compare their performance. We 

choose these approaches because they are widely used in 
CNN hyperparameter optimization [17, 62–67].

Random search [68] is a method that selects a suitable set 
of optimal hyperparameter configurations by testing random 
combinations of hyperparameters. However, the method is 
entirely random and uses no intelligence in selecting the 

Fig. 9  Feature maps obtained for some of the convolutional layers of 
the ResNet-50 V2 optimized by GA

Table 5  Confusion matrix for ResNet-50 V2 optimized with GA 
averaged over the five hyperparameters

Healthy Leukemia

Healthy 99.23% 0.77%
Leukemia 2.31% 97.69%

Table 6  Hyperparameter optimized with random search

Hyperparameter

Fold Dropout Learning Rate Momentum
1 0.31971 0.00519 0.40853
2 0.31971 0.00519 0.40853
3 0.31971 0.00519 0.40853
4 0.27407 0.00533 0.49753
5 0.31971 0.00519 0.40853

Table 7  Hyperparameter optimized with Bayesian optimization

Hyperparameter

Fold Dropout Learning Rate Momentum
1 0.0 0.005 0.0
2 0.00624 0.005 0.0
3 0.00610 0.005 0.0
4 0.86178 0.00944 0.35184
5 0.5 0.005 0.0

Table 8  Classification results on the test set considering training with 
five different hyperparameters setting obtained from random search

HS Accuracy 
(%)

Precision 
(%)

Recall (%) F1-Score (%)

1 71.15 71.44 71.15 71.06
2 51.92 75.49 51.92 37.47
3 50.00 25.00 50.00 33.00
4 71.15 71.97 71.15 70.88
5 67.31 80.23 67.31 63.40
Average 62.31 ± 0.10 64.83 ± 0.22 62.31 ± 0.10 55.16 ± 0.18

Table 9  Classification results on the test set considering training 
with five different hyperparameters setting obtained from Bayesian 
optimization

HS Accuracy 
(%)

Precision 
(%)

Recall (%) F1-Score (%)

1 92.31 92.56 92.31 92.30
2 98.08 98.15 98.08 98.08
3 98.08 98.15 98.08 98.08
4 57.69 68.84 57.69 50.35
5 55.77 76.53 55.77 45.01
Average 80.39 ± 0.21 86.85 ± 0.13 80.39 ± 0.21 76.76 ± 0.26
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trial points resulting in a non-adaptive approach. On the 
other hand, Bayesian optimization [69] finds the value that 
minimizes the objective function by building a probability 
model (using the Gaussian process) based on the previous 
evaluation results of the target.

For a fair comparison, we considered the same search 
space evaluated in GA hyperparameter optimization (see 
Table 2). The relevant hyperparameters obtained for each 
fold with random search and Bayesian optimization are pre-
sented in Tables 6 and 7, respectively.

By comparing the values returned by the two optimizers, 
we observed that the Bayesian optimization better explored the 
search space by finding different possible optimal solutions.

Given the optimized hyperparameters obtained by random 
search and Bayesian optimization, we trained the ResNet-50 
V2 with 100 epochs. As shown in Table 8, the random search 
optimization allowed to achieve an accuracy of 62.31%. 
However, this result is only better than classification without 
hyperparameter optimization (as presented in "Classifica-
tion Without Hyperparameter Optimization"). In contrast, 
Bayesian optimization performed better than random search 
obtained an accuracy of 80.39% as shown in Table 9. Fur-
thermore, when considering the results obtained in hyperpa-
rameter setting 2 and 3, we observed that the accuracy is very 
close to the results obtained with the GA.

In order to compare the hyperparameter optimization 
methods, Table 10 shows the classification performance 
metrics and optimization time. It is important to note that 
the GA improved leukemia image classification significantly, 
although it requires more time to perform the optimization. 
This result demonstrates that random search and Bayesian 

optimization approaches don’t explore the search space 
distribution as well as the GA. At the same time, GA can 
incorporate domain-specific knowledge in all optimization 
phases, guaranteeing gains in all classification performance 
metrics. Also, once GA obtains the best hyperparameters, 
the training time becomes similar to training with manual 
configuration, taking around 10 minutes.

Comparison With Literature

We also compared the best result achieved in this study in 
terms of accuracy with other state-of-art work in the lit-
erature. The best result in our work was obtained with GA 
hyperparameter optimization, which scored 98.46% of accu-
racy (as shown in Table 4). The best results reported in the 
literature are presented in Table 11 for the same ALL-IDB2 
dataset. It can be seen that our best score is upper to the best 
state-of-the-art technique reported in the literature.

Conclusion

The results presented in this paper point to a promising use 
of deep CNN with hyperparameter optimization to classify 
ALL cases based on microscopy images. We compared the 
performance of ResNet-50 V2 optimized with GA, trained 
with transfer learning and data augmentation approaches. 
Our best result of 98.46% was upper to the highest accuracy 
score presented in the literature.

Additionally, we demonstrated that hyperparameter tun-
ing with GA leads CNN to achieve higher performance rates 
against approaches without optimization and optimization 
using random search and Bayesian algorithms, answering 
the raised questions regarding classification performance. 
Besides, we found, quantified, and presented the hyperpa-
rameters and measured the improvement they promoted in 
the performance of ResNet-50 V2 over the dataset evaluated.

Moreover, the transfer learning strategy helped to reduce 
the training time, enabling us to evaluate the hyperparam-
eter optimization and the use of k-fold cross-validation. Our 
dataset partitioning complies with the state of the art once 
our experimental protocol avoids biased model and abnor-
mal CNN behaviors.

The presented results open new opportunities towards bet-
ter machine learning based on deep CNN for automated detec-
tion of leukemia and the development of new computer-aided 

Table 10  Average classification 
and optimization time for each 
optimization method

Method Accuracy (%) Precision (%) Recall (%) F1-Score (%) Optimization Time

Random Search 62.31 64.83 62.31 55.16 22min 10s
Bayesian Optimization 80.39 86.85 80.39 76.76 22min 36s
Genetic Algorithm 98.46 98.55 98.46 98.46 78min 45s

Table 11  Highest accuracy of other classification methods using the 
ALL-IDB2 dataset

Method Accuracy (%)

Rodrigues et al. [29] 85.00
Singhal and Singh [28] 93.84
Sahlol et al. [32] 91.80
Sus and Oliveira [30] 94.60
Faria et al. [31] 97.22
Sahlol et al. [33] 95.23
Sahlol et al. [44] 96.11
Das and Meher [45] 97.18
Our proposal (2022) 98.46
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diagnosis applications. We believe that hyperparameter opti-
mization using GA and other evolutionary approaches is an 
alternative to overcome challenges in deep CNNs.

As future work, we intend to evaluate other CNN archi-
tectures, different data augmentation strategies, and different 
settings for GA with a more extensive set of hyperparam-
eters. Also, we plan to test the proposed method with other 
datasets of images containing lymphocytes and other types 
of cells to verify that our findings hold for similar datasets.
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