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Abstract

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer worldwide, and it is characterized by the produc-
tion of immature malignant cells in the bone marrow. Computer vision techniques provide automated analysis that can help
specialists diagnose this disease. Microscopy image analysis is the most economical method for the initial screening of patients
with ALL, but this task is subjective and time-consuming. In this study, we propose a hybrid model using a genetic algorithm
(GA) and a residual convolutional neural network (CNN), ResNet-50V2, to predict ALL using microscopy images available
in ALL-IDB dataset. However, accurate prediction requires suitable hyperparameters setup, and tuning these values manually
still poses challenges. Hence, this paper uses GA to find the best hyperparameters that lead to the highest accuracy rate in the
models. Also, we compare the performance of GA hyperparameter optimization with Random Search and Bayesian optimization
methods. The results show that GA optimization improves the accuracy of the classifier, obtaining 98.46% in terms of accuracy.
Additionally, our approach sheds new perspectives on identifying leukemia based on computer vision strategies, which could
be an alternative for applications in a real-world scenario.

Keywords Leukemia classification - Convolutional neural networks - Genetic algorithm - Hyperparameter optimization -
Fine-tuning

Introduction Visual analysis in microscopy images is the most econom-

ical method for the initial screening of patients with ALL.

Acute lymphoblastic leukemia (ALL) is a type of cancer
caused by immature lymphocytes in bone marrow [1]. It is
the most common childhood cancer worldwide and accounts
for 80% of all childhood leukemia [2—4]. ALL can be diag-
nosed through a variety of tests, such as physical examina-
tions, blood tests, blood counts, myelogram, lumbar punc-
tures, and bone marrow biopsies [5].
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However, it is a very subjective and time-consuming task [1].
Leukocytes are detected by their dark purple-like appearance,
but the analysis and further processing become very com-
plicated due to their variability in shape and texture. Also,
significant changes in the morphology of the cells are found
in severe cases of the disease.

To overcome these limitations, computer-aided diagnosis
systems based on image processing and machine learning
techniques are essential and widely applied in several fields
of medicine [6—10]. Moreover, these techniques are finan-
cially attractive, especially for developing countries [11].

Following the advances of computational resources,
deep convolutional neural networks (CNNs) have been sig-
nificantly outperforming approaches based on handcrafted
features. This strategy provides an automatic feature extrac-
tion from input images and demonstrates effective results in
visual recognition tasks in many areas [12, 13].

In this study, we explore the classification of ALL using
microscopy images and deep learning. Our main goal is to
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improve the identification rate among immature lympho-
cytes and healthy lymphocytes, thus helping in the diagnosis
of ALL in the early stages. Our deep learning approach used
a ResNet-50 V2 [14] CNN architecture, and we evaluated its
performance using a k-fold cross-validation procedure over
the training set and validated the overall results in using the
and test sets.

Finding the optimal hyperparameters to train a deep CNN
is crucial because there is no optimum method for selecting
hyperparameters. In machine learning, for example, grid
search (equivalent to brute force), random search, Bayesian
optimization, and GA are common approaches used for hyper-
parameter optimization [15-18]. However, the computational
cost of grid search is too high, while random and Bayesian
approaches are limited to the search space distribution [19].

To address this challenge, we innovate with a method to
find a suitable setup for hyperparameter optimization using
genetic algorithm (GA). Hyperparameters are a set of vari-
ables to be tuned before applying the learning algorithm to
the dataset. These hyperparameters directly affect the learn-
ing speed, the convergence of the cost function, and the clas-
sification performance [20].

Our results suggest that hyperparameter optimization
combined with fine-tuning training tends to be the best per-
forming strategy. Our results demonstrate the suitability and
performance score of hyperparameter optimization based on
GA, and the best result achieved an accuracy of 98.46% in
ALL classification.

Moreover, as far as we know, our result is the best obtained
for ALL classification in microscopy images using the data-
set evaluated in this study. We believe that our proposed
method can contribute to future research intended to help
healthcare workers to identify leukemia and manage patients’
conditions.

The remaining of this paper is organized as follows: "Related
Work" surveys related work. "Materials and Methods" describes
the material and methods. "Experimental Protocol" presents the
experimental procedure. "Results and Discussion" presents and
discusses the results. Finally, conclusion and future work are
presented in "Conclusions".

Related Work

Leukemia identification using microscopy images is a field
of intense research, with many approaches being devel-
oped over the years. Piuri and Scotti [21] were among
the first to propose an automatic system for classifying
leukocytes from other blood components such as red blood
cells, platelets, and plasma in microscopy images. After,
Scotti [22] proposed another system that uses shape fea-
tures to identify ALL from microscopic images. According
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to their experiments, morphological features allowed the
white blood characterization.

Several studies have been proposed for classifying ALL
in microscopy images with hand-crafted feature extraction
(i.e., using a non-automated user-based process). Mohapatra
et al. [23] proposed leukocytes classification by using a sup-
port vector machine (SVM) with shape, texture, and color
features. After, [24] proposed an approach based on shape
and color features and an ensemble of classifiers.

Khashman et al. [25] applied Otsu’s threshold method,
median filtering, Canny edge detection, and pattern aver-
aging kernel to process 80 images from ALL-IDB2 data-
set. They conducted experiments with different ratios of
training and test sets and used a multi-layer perceptron for
classification.

Putzu et al. [26] proposed an approach based on shape,
color, and texture analysis for ALL identification in 245
sub-images obtained from ALL-IDB dataset. Bhattacharjee
and Saini [27] used morphological operations, SVM, K-NN,
and K-means clustering. Singhal and Singh [28] classified
ALL using a SVM classifier with local binary patterns
(LBP) and gray-level co-occurrence matrix (GLCM).

Rodrigues et al. [29] converted RGB images to HSV
color space and extracted and converted V channel into
binary. They analyzed morphological features and per-
formed the classification with four different classifiers. Sus
and Oliveira [30] extracted B and S channels, obtained from
RGB and HSV color models, respectively. Segmentation
methods, morphological analysis, and several classifiers
were used to classify leukocytes in microscopy images. The
approaches seen in [29] and [30] consider all 260 images
from ALL-IDB2 dataset, and these authors reported diffi-
culties in the segmentation stage due to problems intensity
variations in the images.

Faria et al. [31] presented a simple and efficient combina-
tion of SIFT and SURF descriptors, stacking the descriptors
of key points into a single matrix and evaluated two clas-
sifiers. Sahlol et al. [32] segmented each cell with Zack’s
threshold method and optimized a feed-forward neural net-
work with elephant herd optimization (EHO) algorithm,
which updates the weights and the biases of the network
to classify ALL. In another study, Sahlol et al. [33] applied
a bio-inspired meta-heuristic method called social spider
optimization algorithm (SSOA) and tested several types of
classifiers such as K-NN and SVM.

Although most of the previous works achieve an accuracy
rate above 90%, they depend on the use of a proper segmenta-
tion process and handcrafted feature extraction. To overcome
this limitation, strategies based on deep learning, specifically
convolutional neural networks (CNNs), have been proposed
to classify ALL in microscopy images and produce better
results than all classical techniques [34-37].
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Vogado et al. [38] proposed a method to identify leuke-
mia using a hybrid-Leukocyte database and transfer learning
strategy. Three CNNs architectures were used for feature
extraction, and the gain ratio method was applied for feature
selection. Further, the features selected were used as input
to the SVM classifier.

Sipes and Li [39] developed a simple sequential CNN
and compared it with conventional classifiers to classify the
ALL in microscopy images. They evaluated the classifiers
with training from scratch and tuned some hyperparameters
empirically. However, to deal with small datasets, training
based on transfer learning is most suitable [40].

Claro et al. [41] proposed a method for the automatic
classification of two leukemia types and healthy cells in
microscopy images using a CNN called AlertNet that shares
the basic architecture of AlexNet [42] and uses a residual
structure similar to ResNet [43]. In addition, they overcome
overfitting using different data augmentation strategies and
transfer learning.

Sahlol et al. [44] extracted features from lymphocytes
images using VGG architecture and reducing the features
extracted using a statistically enhanced salp swarm algo-
rithm (SESSA). The training of VGG considered transfer
learning, and six conventional classifiers received as input
the features extracted by VGG architecture and reduced by
SESSA algorithm.

Most recently, Das and Meher [45] proposed a hybrid
transfer learning approach that ensembles MobilenetV?2 and
ResNet18 architectures. They considered the training based
on transfer learning but did not exploit data augmentation
techniques to deal with a small number of training images.

Automatic feature extraction is the main strength of previ-
ous studies based on deep CNNs. However, these studies do
not investigate the appropriate choice of training-relevant
hyperparameters, which can also significantly affect clas-
sification performance. Thus, to overcome this problem, we
propose an approach based on GA to identify the optimal
hyperparameters in a broad search space that considers a
uniform distribution, data augmentation strategy, and train-
ing based on fine-tuning. Also, our method does not need the
segmentation process, it is more robust to the intensity vari-
ations in the images, and it is also suitable to deal with the
lack of training data for approaches based on deep learning.

Material and Methods

To fill the state-of-the-art gap concerning the best hyperpa-
rameters setup [46], we developed a novel approach based
on GA. The main goal of this paper is to evaluate the per-
formance of a deep residual CNN architecture to classify
ALL in microscopy images. More precisely, we find the
best hyperparameter combination and improve classification

performance. Figure 1 illustrates the steps of the methodol-
ogy adopted here.

Image dataset

The images used in this work were obtained from ALL-
IDB2 dataset! provided by Department of Information
Technology - Universita degli Studi di Milano [47]. It con-
tains 260 images, each with a single, centered cell in evi-
dence, categorized into two classes: healthy (130 images)
and immature (130 images). All images are in JPG format
with 24 bit color depth and 2592 X 1944 pixels size. Figure 2
shows some images from the dataset for both classes, healthy
and immature.

Deep Residual Network

Convolutional neural networks (CNNSs) are the state-of-the-
art in image classification tasks, designed to extract visual
patterns from input images directly, without requiring
handcrafted feature extraction [12]. In CNNs, the classifi-
cation performance increases as the number of deep layers
increases. However, as the number of layers increases, the
accuracy tends to saturate and eventually degrade [48]. To
overcome this problem, a residual network (ResNet) [43]
was proposed. It uses residual blocks to address the gradi-
ent degradation in the training step and each residual block
is composed of several stacked convolutional layers. Thus,
the residual block adds a shortcut connection summing the
input feature map (x) and the output of convolutional blocks
(f(x)), as shown in Fig. 3(a).

In this study, we evaluated a deep residual network
named ResNet-50 V2 [14]. ResNet-50 V2 is the enhanced
version of ResNet-50 [43] that won the ILSVRC 2015 chal-
lenge [49]. The authors of [14] refined the residual block
using a pre-activation variant of residual block, in which
the gradients can flow through the shortcut connections to
any other earlier layer unimpeded. The convolutional block
is illustrated in Fig. 3(b), and it is composed of following
layers: batch normalization, rectified linear unit (ReLU), and
convolutional with a kernel of size k.

Hyperparameter Optimization

Hyperparameters define the optimization algorithms used,
details of training, architecture, and topology of the CNN [20].
The choice of their values is essential to the performance of
the CNN, although there is no optimum method for their
selection. This choice may be performed empirically by evalu-
ating different values until the algorithm provides satisfactory

! Available in: https://homes.di.unimi.it/scotti/all/
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Fig. 1 Flowchart of the proposed Image Dataset
approach
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performance. However, the optimal values are unknown, and ¢ Dropout (d): dropout is a technique to deal with over-

any definition of satisfaction degree is subjective. fitting. It is based on the random dropping of neurons
Alternatively, the choice of hyperparameter values during the training process, i.e., a unit out is temporarily

can be modeled as an optimization problem, where the removed from the network, along with all its incoming

hyperparameters are defined as decision variables, and the and outgoing connections [50].

objective function minimizes the loss function. The fine- e Learning rate (/): the learning rate is the main tuning

tuned hyperparameters in this study are as follows: parameter, being responsible for improving the stochas-

Fig.2 Image instances from the ALL-IDB2 dataset showing healthy (top) and immature (bottom) lymphocytes
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Fig.3 (a) Residual block. (b)
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tic gradient descent (SGD) [51] optimizer runtime. It
defines the level of adjustment of weight connections
and network topology applied at each training epoch. A
high learning rate may sacrifice accuracy due to a lack
of precision in the adjustments. On the other hand, a low
learning rate requires more training epochs and longer
processing time [20].

e Momentum (¢): the momentum coefficient [52] is
responsible for reducing oscillations in the high-curvature
regions of the loss function generated by the SGD. By
default, its value is set to 1, but fine-tuning this hyperpa-
rameter may lead to improved results [13].

Proposed Genetic Algorithm
Genetic algorithm (GA) [53] is inspired by the natural

biological evolution, and it is a type of evolutionary algo-
rithm. Usually, a GA is composed of a population with n

Identity l

Convolutional Block

Batch Normalization

RelLU

|

Convolutional (k, k)

(b)

individuals and a series of bio-inspired operations, such as
selection, crossover, and mutation.

GA is suitable for combinatorial optimization problems, and
the quality of the solution obtained by GA suggests that it is
better than simulated annealing or tabu search algorithms [54].
We choose GA over other heuristic algorithms for hyperparam-
eter CNN evolution because the GA can incorporate domain-
specific knowledge in all optimization phases [54], which is
essential for hyperparameter combination in deep learning.

The conventional GA includes three main steps, as shown
in Algorithm 1 and explained in the next subsections. Ini-
tially, n chromosomes are randomly generated according to
the specific encoding method. Then, new offspring are con-
tinuously generated from the existing population and com-
bined with the older generation to form a new generation.
Finally, there is a population evolution process in which all
individuals enter an iterative competition generating a new
population composed of the survivors generated from the
crossover of survivors and mutation operation.
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Algorithm 1 GA Framework for Hyperparameter Optimization

1:

Input: the image dataset D, size of population p, the number of sur-
vival individuals per evolution generation k, the number of evolutionary

generations GG, and the feasible hyperparameter space H.

: Encoding: the gene includes three elements: dropout rate (d), learning

rate (1), and momentum coefficient (u).

: Population initialization: n chromosomes are randomly selected from

feasible solution space and the fitness f; and evolutionary probability p;

values (i = 1,---,n) of individuals are evaluated.

4: forg=1,...,G do

5: Selection: linear ranking and tournament (¢ = 2).

6: Crossover: two individuals are selected according to fitness value.
7 Mutation: applying mutation operator.

8: end for

9: Output: In G generation, the individual with the largest fitness is the

optimal solution in the hyperparameter space H.

Population Initialization

Initialization is the process of randomly selecting candi-
date solutions in the search space. In this study, we defined
the search space size as an input from the hyperparameter
set. Also, we use a uniform distribution to ensure the ran-
dom distribution of candidates in the search space. There
is a particular interval for all hyperparameters in which the
gene can assume values within the defined range, limiting
the search space of the GA.

During population initialization, hyperparameters are
defined, and a random value is chosen within the pre-
defined interval to encode the chromosome. We must
include the information of dropout, learning rate, and
momentum coefficient for the chromosome encoding in
an array. Each chromosome is composed of three genes,
and each gene encodes a real value for its respective hyper-
parameter. The structure of the chromosome is shown in
Fig. 4.

@ Springer

Selection

The selection is based on fitness, i.e., the fittest individual
is selected to participate in the reproduction process. In
this operator, the current generation members with the
highest fitness values are the most likely to generate the
next population. In this study, we applied linear ranking
with tournament selection.

e Linear Ranking: It is based on the classification of indi-
viduals according to fitness, being the probability of
selecting an individual depends solely on fitness. For
this, the worst individual gets a rating of 1; the second-

Momentum

0.8058

Droupout

0.4047

Learning Rate

0.0012

Fig.4 Chromosome representation for hyperparameter optimization
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Fig.5 Selection based on linear
ranking and tournament. The
linear ranking is applied to select
half of the best chromosomes,
sorting the highest accuracy

and lowest loss at the top of the
population. Then, the selection o 1 2
with a tournament (¢ = 2) is
performed considering the best-
ranked chromosomes

Linear Ranking

Tournament

Selected Rank

Candidates
Selected

worst individual gets a rating of 2. This idea repeats
successively until the best individual receives a rating
of n (corresponding to the number of chromosomes in
the population). Thus, based on their rating (rank;), each
individual i has the probability P; to be selected from a
population of n individuals, as defined in Eq. 1 [55].

p rank;
T oaxm-D ey
e Tournament: The tournament selection [56] aims to
select a set of k individuals randomly, which will be
sorted according to their relative fitness. Afterward, the
fittest individual is chosen for reproduction. This process
is repeated several times for the entire population, and
the probability P; of each individual being selected is
expressed in Eq. 2.

_fcifielln—k—-1]
P"_{ 0 Lifieh-k1] 2)

Figure 5 shows the selection method based on linear rank-
ing and tournament applied in this study. All individuals are
ranked, and half of the best chromosomes will be selected for
the tournament. After, a tournament (¢ = 2) is performed con-
sidering the best-ranked chromosomes. Afterward, the winner
of the tournament will be selected for the reproduction process.

- [ [ |
Lowest Loss and Highest Accurac

3

[ I B
Lowest Loss and Highest Accuracy
L

I
1 2 3 4

I
: '

2 4

b 4

Tournament
Winner

Crossover and Mutation

The crossover operator is used to generate new individuals
by recombining the genes of parent chromosomes. In this
study, we used a single-point crossover. For each iteration
in the GA process, one point was randomly selected. For
example, as illustrated in Fig. 6, to generate a “child 17, the
random crossover point is index 1. Thus, index 0 and 1 from
“parent 1” will be selected as head, and index 2 from “parent
2” will be chosen as tail. After, a similar process occurs to
generate a “child 2.

Also, we applied the mutation operator, which is initiated
after the crossover process by randomly modifying one bit of
an individual’s chromosome to generate a child.

Fitness Evaluation

In this paper, we considered the objective function as the
loss-function defined by £(W). Eq. 3 show that L(W) is
computed over a set of training samples X; considering the
tuned weights W, parameters f(x;), and the known classes
yj» Where j represents the classes lymphocytes immature
and healthy.

LW) = Zf(y,,f(x W) 3)
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Fig. 6 Example of single-point
crossover

Crossover Point
Randomly defined

Parent 1
Dropout Learning Rate § Momentum Dropout Learning Rate | Momentum
0.2 0.001 0.9 0.5 0.005 0.5
Dropout Learning Rate | Momentum Dropout Learning Rate | Momentum
0.5 0.005 0.9 0.2 0.001 0.5

Child 2

In this way, to minimize £(W), we applied the stochastic
gradient descent (SGD) [51] optimization algorithm with
hyperparameters (dropout, learning rate, and momentum)
optimized through GA. Consequently, when we minimize
the loss-function, the accuracy (Eq. 4) is maximized.

Experimental Protocol

Firstly, we have to adapt the image size in the dataset for the
input of the ResNet-50 V2. All images were resized to 224
X 224 pixels size using bilinear interpolation.

We arranged the dataset into training and test sets: 80%
for training (further split into 80% for training and 20% for
internal validation using stratified fivefold cross-validation
method [57]) and 20% for testing (external validation). We
applied fivefold internal cross-validation to all experiments,
reporting the results on the external test set.

Neural networks like ResNet generally require a large
amount of data during the training in order to avoid overfit-
ting. Given the reduced number of images in the dataset,
we used data augmentation and transfer learning techniques
to improve the training of the networks [40, 41]. Data aug-
mentation enables to increase the training set artificially by
generating new samples of a given image under different
variations, without introducing labeling costs [42]. In our
experiments, we performed the data augmentation using
only vertical and horizontal flips.

Additionally, we applied transfer learning, i.e., we used
the pre-trained 2012 ImageNet weights to initialize the net-
work [49]. This strategy enables to use low-level features
learned in larger datasets, which are better in comparison
to the ones learned using a network trained from scratch in
a smaller dataset. For comparison, ImageNet data set con-
tains approximately 1.2 million images divided into 1000
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classes. In the sequence, we used our small dataset to fine-
tune the network weights to our problem, i.e., we initialized
all convolutional layers with weights from the pre-trained
model, and the fine-tuning was performed only in the deeper
layers [13].

We report our results in terms of average accuracy, preci-
sion, recall, and F1-score [58], averaged over the fivefold:

e Accuracy: is the ratio between the correct classifications
and total samples (Eq. 4).
TP + TN

Accuracy =
Y= TPY TN+ FP+ FN )

e Precision: is the ratio between TP and the total of positives
classification (Eq. 5).
TP

Precision =
recision —TP+FP (®)]

e Recall: is the proportion of TP correctly classified (Eq. 6).

P
Recall = ———
= TP EN ©

e Fl1-Score: is the harmonic average of the precision and
recall (Eq. 7).
Precision X Recall

F1-8 =2X
core Precision + Recall )

where TP is true positive, TN is true negative, FP is false posi-
tive and FN is false negative. For a given fold, we obtain these

Table 1 Classification results considering training without GA using
the test set

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

50.00 25.00 50.00 33.00
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Fig.7 Evolution of accuracy and loss values considering the training and validation set

metrics and then we compute the average metrics among the
folders.

All experiments were conducted using the Google Colab-
oratory cloud service with a machine Intel(R) Xeon(R)
2.20GHz processor, 12 GB RAM, and a GPU NVIDIA Tesla
T4. The experiments were programmed using Python (ver-
sion 3.6) and Keras 2.0 [59] deep learning framework. The
hyperparameter optimization algorithms random search and
Bayesian optimization were drawn from the KerasTuner
library [60], version 1.1.0.

Results and Discussion
We propose experiments aiming to answer the following questions:

e What are the best values of hyperparameters (dropout,
learning rate, and momentum coefficient), which bring the
highest classification performance?

e How much does the hyperparameter optimization increase
the performance of ResNet-50 V2, considering fine-tuning
approach?

e Considering metrics derived from confusion matrix, what
is the most suitable approach for leukocytes image clas-
sification: training without GA or with GA?

e In terms of consumed time for training and the classifi-
cation performance, considering GA, random search, and
Bayesian optimal parameter finding methods, which one is
the best approach?

Table 2 Hyperparameter search space used for optimization

Hyperparameter Value

Dropout x €[0.0, 0.5]
Learning Rate x € [0.005, 0.01]
Momentum x €1[0.0, 1.0]

Classification Without Hyperparameter
Optimization

Aiming to assess the impact of the training without hyper-
parameter optimization, we analyze the classification per-
formance according to metrics of accuracy, precision, recall
and F1-score. We trained the CNN SGD optimizer with a
learning rate of 0.01, momentum of 1.0, batch size of eight,
and 100 epochs. The values of learning rate and momentum
were defined according to the literature [13].

Regarding the classification performance, Table 1 pre-
sent the result obtained for the test set. Results show that
using the default values generates poor results, indicating
that these hyperparameters need to be well adjusted in order
to the CNN to achieve a good performance.

In order to assess the values of accuracy and loss dur-
ing the training phase, the evolution of these values is pre-
sented in Fig. 7, considering the fifth iteration of the k-fold.
Throughout the training, the behavior of the accuracy and
loss function generated noise values resulting in underfitting.

Evaluating the Impact of GA Optimization

This experiment aimed to demonstrate that proper hyperpa-
rameter tuning improves the performance of the ResNet-50

Table 3 Hyperparameter optimized with GA

Hyperparameter
Fold Dropout Learning Rate Momentum
1 0.01326 0.00179 0.15547
2 0.01489 0.00187 0.15547
3 0.01326 0.00187 0.15547
4 0.01489 0.00187 0.09274
5 0.01326 0.00179 0.15547
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Table 4 Classification results considering training with five different
hyperparameters setting from Table 3 applied on the test set

HS Accuracy Precision Recall (%) F1-Score (%)
(%) (%)
1 100.00 100.00 100.00 100.00
2 98.08 98.15 98.08 98.08
3 96.15 96.43 96.15 96.15
4 100.00 100.00 100.00 100.00
5 98.08 98.15 98.08 98.08
Average 98.46 + 0.01 98.55 + 0.01 98.46 + 0.01 98.46 + 0.01

V2 deep CNN. The selection of hyperparameter values was
carried out as an optimization problem, as described in
"Hyperparameter Optimization".

We applied the GA to optimize the fine-tune values,
namely the dropout, learning rate, and momentum coef-
ficient in pre-trained ResNet-50 V2. The hyperparameter
optimization process for each fold took about 78 minutes
to complete. The GA setting considered a mutation rate of
30%, population size of ten, and five generations. For each
generation, the CNN was trained for 20 epochs. Usually,
a larger population size and larger maximal generation
number results in better performance, but this is time-
consuming and requires more computational resources.
To overcome this limitation, we applied the same setting
adopted by [61] to optimize a deep CNN with GA.

Table 2 presents the hyperparameter space search evalu-
ated in this study. All hyperparameters are searched con-
sidering a uniform distribution. Besides, Table 3 presents
the best values for each hyperparameter returned by the
GA.

For all analyses, we consider “HS” as the abbreviation
of the hyperparameter setting, which is obtained from five-
fold internal cross-validation. Given the results obtained
by GA, we trained the ResNet-50 V2 using the optimized
hyperparameters with 100 epochs.

1.00 —

0.95 —
0.90 —
0.85 —
0.80 +
0.75 —

Accuracy

0.70 —
0.65 — s Train Accuracy
=== Validation Accuracy

0.60 —|

T T T T T T
0 20 40 60 80 100

Epochs

As shown in Table 4, the GA hyperparameter optimiza-
tion improved the classification performance significantly.
When we compare the results obtained with and without
GA, it is possible to observe that optimization generated
an accuracy enhancement of 48.46 percentage points
(accuracy increased from 50.00% to 98.46%).

The results suggest that our hyperparameter optimization
based on GA is superior in all evaluated metrics over the
strategy without automatic optimization. This implies that
defining optimal hyperparameters requires lots of domain
expertise, and manually pre-configurations limit the feasible
solution space to miss out on the better set of hyperparam-
eters. It is a relief that GA can automatically search for the
optimal solution in a large space without a manual setting.
Thus, the automatic selection by GA reduces the domain
expertise requirements in deep learning for researchers and
helps some non-expert researchers to define the best hyper-
parameters obtaining high-performance classifiers.

As a check on the learning behavior of the training step,
Fig. 8 shows the loss and accuracy values considering the
second iteration of the k-fold. It is important to note the low
values of the loss function. This behavior suggests that the
training did not overfit the data, thus retaining the generali-
zation property of the deep residual CNN.

The proposed model optimized by GA has further exploited
the potential of ResNet-50 V2 and improved the acute lympho-
blastic leukemia detection performance. In summary, the pro-
posed model shows better and more balanced performance
compared with conventional ResNet-50 V2, without GA
optimization.

Figure 9 shows the feature map acquired in selected con-
volutional layers of the ResNet-50 V2 optimized by GA.
The filters embedded in the convolutional layers shows that
most of the features behaved as texture extractors and edge
detectors, preserving the leukocyte cell spatial information.
The results demonstrate that our approach does not need the
segmentation process and it is more robust to deal with the
different leukocyte features.
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Fig.8 Evolution of accuracy and loss values considering the training and validation set and GA hyperparameter optimization
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Fig.9 Feature maps obtained for some of the convolutional layers of
the ResNet-50 V2 optimized by GA

Table 5 presents the confusion matrix for ResNet-50 V2
optimized by GA, and it shows the aspects of the classifica-
tion problem investigated in this study. It can be seen that
our approach classifies 97.69% of leukemia images correctly
and does not require preprocessing or segmentation process
(commonly used in state-of-the-art techniques).

Comparison of Different Hyperparameter
Optimization Approaches

In addition to optimizing with GA, we also evaluated the
impact of optimization using random search and Bayesian
optimization approaches to compare their performance. We

Table5 Confusion matrix for ResNet-50 V2 optimized with GA
averaged over the five hyperparameters

Healthy Leukemia
Healthy 99.23% 0.77%
Leukemia 231% 97.69%

choose these approaches because they are widely used in
CNN hyperparameter optimization [17, 62-67].

Random search [68] is a method that selects a suitable set
of optimal hyperparameter configurations by testing random
combinations of hyperparameters. However, the method is
entirely random and uses no intelligence in selecting the

Table 6 Hyperparameter optimized with random search

Hyperparameter
Fold Dropout Learning Rate Momentum
1 0.31971 0.00519 0.40853
2 0.31971 0.00519 0.40853
3 0.31971 0.00519 0.40853
4 0.27407 0.00533 0.49753
5 0.31971 0.00519 0.40853

Table 7 Hyperparameter optimized with Bayesian optimization

Hyperparameter
Fold Dropout Learning Rate Momentum
1 0.0 0.005 0.0
2 0.00624 0.005 0.0
3 0.00610 0.005 0.0
4 0.86178 0.00944 0.35184
5 0.5 0.005 0.0

Table 8 Classification results on the test set considering training with
five different hyperparameters setting obtained from random search

HS Accuracy Precision Recall (%)  F1-Score (%)
(%) (%)

1 71.15 71.44 71.15 71.06

2 51.92 75.49 51.92 37.47

3 50.00 25.00 50.00 33.00

4 71.15 71.97 71.15 70.88

5 67.31 80.23 67.31 63.40

Average 62.31 + 0.10 64.83 + 0.22 62.31 + 0.10 55.16 + 0.18

Table 9 Classification results on the test set considering training
with five different hyperparameters setting obtained from Bayesian
optimization

HS Accuracy Precision Recall (%)  F1-Score (%)
(%) (%)

1 92.31 92.56 92.31 92.30

2 98.08 98.15 98.08 98.08

3 98.08 98.15 98.08 98.08

4 57.69 68.84 57.69 50.35

5 55.77 76.53 55.77 45.01

Average 80.39 + 0.21 86.85 + 0.13 80.39 + 0.21 76.76 + 0.26
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Table 10 Average classification
and optimization time for each

Method

Accuracy (%) Precision (%) Recall (%) F1-Score (%) Optimization Time

optimization method Random Search 62.31
Bayesian Optimization 80.39
Genetic Algorithm 98.46

64.83 62.31 55.16 22min 10s
86.85 80.39 76.76 22min 36s
98.55 98.46 98.46 78min 45s

trial points resulting in a non-adaptive approach. On the
other hand, Bayesian optimization [69] finds the value that
minimizes the objective function by building a probability
model (using the Gaussian process) based on the previous
evaluation results of the target.

For a fair comparison, we considered the same search
space evaluated in GA hyperparameter optimization (see
Table 2). The relevant hyperparameters obtained for each
fold with random search and Bayesian optimization are pre-
sented in Tables 6 and 7, respectively.

By comparing the values returned by the two optimizers,
we observed that the Bayesian optimization better explored the
search space by finding different possible optimal solutions.

Given the optimized hyperparameters obtained by random
search and Bayesian optimization, we trained the ResNet-50
V2 with 100 epochs. As shown in Table 8, the random search
optimization allowed to achieve an accuracy of 62.31%.
However, this result is only better than classification without
hyperparameter optimization (as presented in "Classifica-
tion Without Hyperparameter Optimization"). In contrast,
Bayesian optimization performed better than random search
obtained an accuracy of 80.39% as shown in Table 9. Fur-
thermore, when considering the results obtained in hyperpa-
rameter setting 2 and 3, we observed that the accuracy is very
close to the results obtained with the GA.

In order to compare the hyperparameter optimization
methods, Table 10 shows the classification performance
metrics and optimization time. It is important to note that
the GA improved leukemia image classification significantly,
although it requires more time to perform the optimization.
This result demonstrates that random search and Bayesian

Table 11 Highest accuracy of other classification methods using the
ALL-IDB2 dataset

Method Accuracy (%)
Rodrigues et al. [29] 85.00
Singhal and Singh [28] 93.84
Sahlol et al. [32] 91.80
Sus and Oliveira [30] 94.60
Faria et al. [31] 97.22
Sahlol et al. [33] 95.23
Sahlol et al. [44] 96.11
Das and Meher [45] 97.18
Our proposal (2022) 98.46

@ Springer

optimization approaches don’t explore the search space
distribution as well as the GA. At the same time, GA can
incorporate domain-specific knowledge in all optimization
phases, guaranteeing gains in all classification performance
metrics. Also, once GA obtains the best hyperparameters,
the training time becomes similar to training with manual
configuration, taking around 10 minutes.

Comparison With Literature

We also compared the best result achieved in this study in
terms of accuracy with other state-of-art work in the lit-
erature. The best result in our work was obtained with GA
hyperparameter optimization, which scored 98.46% of accu-
racy (as shown in Table 4). The best results reported in the
literature are presented in Table 11 for the same ALL-IDB2
dataset. It can be seen that our best score is upper to the best
state-of-the-art technique reported in the literature.

Conclusion

The results presented in this paper point to a promising use
of deep CNN with hyperparameter optimization to classify
ALL cases based on microscopy images. We compared the
performance of ResNet-50 V2 optimized with GA, trained
with transfer learning and data augmentation approaches.
Our best result of 98.46% was upper to the highest accuracy
score presented in the literature.

Additionally, we demonstrated that hyperparameter tun-
ing with GA leads CNN to achieve higher performance rates
against approaches without optimization and optimization
using random search and Bayesian algorithms, answering
the raised questions regarding classification performance.
Besides, we found, quantified, and presented the hyperpa-
rameters and measured the improvement they promoted in
the performance of ResNet-50 V2 over the dataset evaluated.

Moreover, the transfer learning strategy helped to reduce
the training time, enabling us to evaluate the hyperparam-
eter optimization and the use of k-fold cross-validation. Our
dataset partitioning complies with the state of the art once
our experimental protocol avoids biased model and abnor-
mal CNN behaviors.

The presented results open new opportunities towards bet-
ter machine learning based on deep CNN for automated detec-
tion of leukemia and the development of new computer-aided
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diagnosis applications. We believe that hyperparameter opti-
mization using GA and other evolutionary approaches is an
alternative to overcome challenges in deep CNNss.

As future work, we intend to evaluate other CNN archi-

tectures, different data augmentation strategies, and different
settings for GA with a more extensive set of hyperparam-
eters. Also, we plan to test the proposed method with other
datasets of images containing lymphocytes and other types
of cells to verify that our findings hold for similar datasets.
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