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Abstract

The Stiff Stalk heterotic pool is a foundation of US maize seed parent germplasm and has been heavily utilized by both public and private
maize breeders since its inception in the 1930s. Flowering time and plant height are critical characteristics for both inbred parents and their
test crossed hybrid progeny. To study these traits, a 6-parent multiparent advanced generation intercross population was developed
including maize inbred lines B73, B84, PHB47 (B37 type), LH145 (B14 type), PHJ40 (novel early Stiff Stalk), and NKH8431 (B73/B14 type).
A set of 779 doubled haploid lines were evaluated for flowering time and plant height in 2 field replicates in 2016 and 2017, and a subset
of 689 and 561 doubled haploid lines were crossed to 2 testers, respectively, and evaluated as hybrids in 2 locations in 2018 and 2019
using an incomplete block design. Markers were derived from a practical haplotype graph built from the founder whole genome
assemblies and genotype-by-sequencing and exome capture-based sequencing of the population. Genetic mapping utilizing an update
to R/qtl2 revealed differing profiles of significant loci for both traits between 635 of the DH lines and 2 sets of 570 and 471 derived hybrids.
Genomic prediction was used to test the feasibility of predicting hybrid phenotypes based on the per se data. Predictive abilities were
highest on direct models trained using the data they would predict (0.55–0.63), and indirect models trained using per se data to predict
hybrid traits had slightly lower predictive abilities (0.49–0.55). Overall, this finding is consistent with the overlapping and nonoverlapping
significant quantitative trait loci found within the per se and hybrid populations and suggests that selections for phenology traits can be
made effectively on doubled haploid lines before hybrid data is available.

Keywords: maize; quantitative trait loci; genomic prediction; multiparent population; MPP; Multiparental Populations; Multiparent
Advanced Generation Inter-Cross (MAGIC)

Introduction
Multiparent mapping populations are an effective tool for discov-
ering quantitative trait loci (QTL) in plant and animal species.
Multiparent advanced generation intercross (MAGIC) populations
offer a powerful QTL mapping structure because intercrossing
more than 2 parents increases genetic diversity while managing
minor allele frequency and reducing haplotype length through
recombination (reviewed in Scott et al. 2020). MAGIC populations
have been used to successfully dissect the genetic control of com-
plex traits in various plant species, including Arabidopsis (Kover
et al. 2009), maize (Dell’Acqua et al. 2015), rice (Ogawa et al. 2018),
barley (Sannemann et al. 2015), wheat (Gardner et al. 2016), sor-
ghum (Ongom and Ejeta 2018), tomato (Pascual et al. 2015),
and cowpea (Huynh et al. 2018). Multiparent populations balance
the advantages and disadvantages of biparental mapping

populations and association panels. Geneticists often rely on the

cross of 2 individuals with contrasting phenotypes to generate a

population of segregating individuals and then perform linkage

analysis to associate genetic loci with the trait of interest.

Recently, increased marker density due to technological advance-

ments and rapidly declining genotyping costs allowed research-

ers to evaluate diverse association panels to assay historical

recombination to find associations between markers and pheno-

types (reviewed in Tibbs Cortes et al. 2021). Despite the success of

these methods, both techniques face intrinsic challenges.

Biparental populations rely on the genetic diversity found in just

2 parents, which can limit the scope of discovered QTLs to the

backgrounds studied. Association panels often contain rare

alleles that do not meet the minor allele frequency threshold and

are discarded due to low statistical power associated with such
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rarity. Thus, MAGIC populations seek to balance these character-
istics by incorporating more than 2 genetic backgrounds while
balancing minor allele frequency and increasing mapping resolu-
tion (Kover et al. 2009; Romay et al. 2013; Dell’Acqua et al. 2015).

To study the genetic architecture of traits relevant to maize
hybrid performance and adaptation, we developed a MAGIC pop-
ulation from 6 inbred lines spanning the diversity of the Stiff
Stalk heterotic pool. The Stiff Stalk heterotic group was founded
in the Iowa Stiff Stalk Synthetic (BSSS) breeding population,
which was initiated during the 1930s by Dr George Sprague to im-
prove stalk quality, yield, and agronomic quality of maize inbreds
(Troyer 2004). Several key inbreds were released out of BSSS, in-
cluding B14 in 1953, B37 in 1958, B73 in 1972, and B84 in 1979
(Russell 1972, 1979; Troyer 1999). Since their release, these
founder BSSS inbreds have been used extensively by breeders in
the public and private sectors in the USA, and the Stiff Stalk
group has become the de facto source of seed parent germplasm
for many hybrid breeding programs. It is estimated that B73, B14,
and B37 contributed conservatively 16.4% to germplasm released
by Monsanto Company, Pioneer Hi-Bred, International (PHI), and
Syngenta between 2004 and 2008 (Mikel 2011). In a group of 1,506
lines released under plant variety protection (PVP) certificates be-
tween the year 2000 and 2019, researchers found that one-third
of the lines had kinship estimated Stiff Stalk admixture >30%,
and 15% of lines had Stiff Stalk admixture >50% (White et al.
2020). Thus, the Stiff Stalk heterotic group remains a vital source
of commercial maize germplasm in North America. This research
utilized 6 Stiff Stalk inbreds—B73, B84, NKH8431, LH145, PHB47,
and PHJ40—that represent key founders in commercial breeding
programs. Recent work reported the genome sequences of these
inbreds (excluding B73) and found extensive genomic variation
between B73 and the other 5 parents along with conservation of
base BSSS haplotypes within each inbred (Bornowski et al. 2021).

Throughout the process of developing new inbred lines and
hybrid varieties, maize breeders balance selecting for hybrid yield
with other traits needed for successful inbred and hybrid seed
production. Traits such as flowering time and plant height are vi-
tal to the success of an inbred within the breeding program and
as a parent to a successful hybrid variety. Extensive research has
been conducted on maize flowering time, including the discovery
of a multitude of small to large effect QTL contributing to flower-
ing time and photoperiod sensitivity variation in maize (Buckler
et al. 2009; Xu et al. 2012; Wang et al. 2021) and the identification
of several genes and regulatory elements involved in the path-
way, including ID1, DLF1, ZmCCA1, ZmMADS1, ZmCOL3, Vgt1,
ZCN8, ZmCCT, ZmCCT9, ZmCCT10, and ZmMADS69 (Colasanti
et al. 1998; Muszynski et al. 2006; Salvi et al. 2007; Wang et al. 2011;
Hung et al. 2012; Alter et al. 2016; Guo et al. 2018; Huang et al. 2018;
Jin et al. 2018; Liang et al. 2019; Stephenson et al. 2019). Flowering
time and photoperiod sensitivity are determinants of maize yield
because the combination leads to adaptation of maize lines to
their intended environments, such that tropical lines with day-
light sensitivity must undergo extensive selection for adaptation
to succeed in northern regions that do not meet daylight needs of
tropical plants (Xu et al. 2012). In addition, timing of flowering
can influence the total length of time available for grain filling
post flowering and the ability of a hybrid to mature within a
frost-free seasonal interval. Within an environment, maize
hybrids with full-season relative maturities often yield more than
their shorter-season counterparts, and timing of planting date to
achieve flowering time before environment specific cutoffs is vi-
tal for maximizing yield potential (Baum et al. 2019). However,
later-maturing varieties can face risk due to early frosts and

susceptibility to seasonal drought effects (Duvick and Cassman
1999), therefore plant breeders need to carefully balance flower-
ing time and total maturity to suit their target population of envi-
ronments to maximize maize grain yield. In maize hybrid
varieties, flowering time typically exhibits heterosis where the
hybrid flowers sooner than the earlier of the 2 inbred parents, as
demonstrated by a partial diallel of ex-PVP inbreds (Li et al. 2018)
and an association panel of 302 diverse inbreds crossed to B73
(Flint-Garcia et al. 2009).

Like flowering time, substantial efforts have been devoted to
understand the genetic underpinnings of maize plant and ear
height. Major mutations in the gibberellin and brassinosteroid
pathways affecting height have been identified in addition to nu-
merous QTL (reviewed by Salas Fernandez et al. 2009). Despite its
high heritability, QTL affecting height tend to have very small
effects, with the largest effect in the maize United States-Nested
Association Mapping (US-NAM) population explaining 2.1 6 0.9%
of the variation, which suggests that maize height follows an in-
finitesimal model of inheritance (Peiffer et al. 2014). In addition,
identification of QTL can depend on environmental conditions
such as drought and nutrient stress, which may reduce the rela-
tive proportion of additive genetic variance compared with geno-
type by environment and error variance (Cai et al. 2012; Wallace
et al. 2016). In general, taller plants can face increased root and
stalk lodging pressure due to the proportionally higher placement
of the ear on the stalk, which increases the ear’s leverage during
wind events or disease pressure. During the Green Revolution,
major yield gains were made in rice and wheat by decreasing
overall plant height, which reduced the risk of lodging under
more intensive agricultural management (reviewed by Khush
2001). Maize breeders consider height selection in both inbreds
and hybrids, as lodging can make harvest difficult and inefficient
for both seed parents and commercial varieties. Due to heterosis,
the hybrid is usually taller than the taller of the 2 inbred parents,
as shown in a partial diallel of ex-PVP inbreds (Li et al. 2018) and
in an association panel of 302 diverse lines crossed to B73 (Flint-
Garcia et al. 2009).

The main objectives of this work are to: (i) report a MAGIC
population based on the Stiff Stalk heterotic group and its associ-
ated genetic and phenotypic resources; (ii) dissect the genetic ar-
chitecture of flowering time and plant height within the per se
population of DH lines and 2 test cross populations; and (iii) per-
form genomic prediction to investigate the relationship between
per se and hybrid phenotypes.

Materials and methods
Population development
Inbreds B73, B84, NKH8431, LH145, PHB47, and PHJ40 were cho-
sen to represent the primary Stiff Stalk subheterotic groups
(Table 1; White et al. 2020). Biographical information for each line
was obtained from the Germplasm Resource Information
Network (GRIN) database (npgsweb.ars-grin.gov). The inbreds B73
and B84 were released from the BSSS in cycles 5 and 7, respec-
tively, and B84 contains resistance to Helminthosporium turcicum
(“Ht” currently known as Setosphaeria turcica, common name
Northern Corn Leaf Blight). Inbred LH145 was developed by
Holden’s Foundation Seed, Inc. (acquired by Monsanto Company
in 1997) from the cross of A632Ht and CM105, both of which have
B14 as a parent. Inbred NKH8431 was developed from 1 B73 de-
rived line and 2 B14 derived lines by Northrup, King & Company.
Inbreds PHB47 and PHJ40 were both released by PHI. Inbred
PHB47 was made from a cross between B37 and SD105, with 2
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backcrosses to B37 before inbred development. Inbred PHJ40 is an
early flowering flint and Stiff Stalk line developed in Ontario,
Canada, with previously demonstrated admixture with B37
(White et al. 2020). All inbred lines except B73 previously under-
went whole genome, reference guided assembly, which revealed
extensive genetic and genomic diversity between the 5 lines and
B73 (Bornowski et al. 2021).

The population, named WI-SS-MAGIC, was initiated at a win-
ter nursery during winter 2007. A detailed timeline of the popula-
tion development is presented in Supplementary File 1. Briefly,
the 6 parents were crossed in a half diallel and then every possi-
ble F1 hybrid combination cross (without reciprocals) was
attempted. In the infrequent event that a cross of 2 F1 plants
failed, additional seeds from other crosses were included in the
balanced bulk to maintain equal representation of all parents.
Random intermating was performed between rows by designat-
ing plants as either a pollen parent or seed parent and using the
individual only once for crossing. The intermating process uti-
lized a minimum of 200 plants producing a minimum of 100 har-
vested ears per generation. Balanced bulks were made after
harvesting the intermated plants. After 2 generations of inter-
mating, a subset of the population (hereafter “Subset A”) was
sent for doubled haploid (DH) induction, provided as in-kind sup-
port by AgReliant Genetics. The remaining balanced bulk was
randomly intermated for 2 additional generations and then sent
for DH induction (hereafter “Subset B”). Individuals in Subset A
were given coded names beginning with W10004 and numbered
from 1 to N, where N is the number of individuals (i.e.
W10004_0001 through W10004_04xx), and individuals in Subset B
were named using W10004 and a number from 500 to 500 þ N,
where N is the number of individuals returned (i.e. W10004_0500
through W10004_xxxx) (Supplementary Table 1).

Collection of per se DH line phenotypic data
A set of 779 DH lines was planted during summers 2016 and 2017
at the West Madison Agricultural Research Station in Verona, WI
(Supplementary Table 1). Subset A and B groups were organized
as subblocks within a randomized complete block design with 2
replications. Parents were included as checks in both subblocks.
Both trials were planted in fields that followed soybeans in the
previous year and were managed with standard agronomic prac-
tices. Detailed information about planting dates and densities,
soil types, and nutrient and pesticide management is presented
in Supplementary Table 2. Three representative plants per plot
were measured for plant and ear height. Plant height was mea-
sured as the height from the ground, in centimeters, to the collar
of the flag leaf, while ear height was the height, in centimeters,
from the ground to the base of the node subtending the upper-
most ear. Growing degree units to anthesis and silking were mea-
sured on a whole plot basis (AnthGDU and SilkGDU,
respectively). Anthesis and silking were measured as the number

of days from planting it took to observe approximately 50% of the
plants in the plot to reach pollen shed and silk extrusion, respec-
tively. Dates were converted to growing degree units using a base
temperature of 50F and maximum temperature of 86F (Pope
2008) using temperature data obtained from the weather station
located at the University of Wisconsin (UW) West Madison
Agricultural Research Station to standardize for differential daily
heat unit accumulation across years. Since lines developed
through doubled haploidy are expected to be genetically uniform,
lines with observable phenotypic segregation were discarded.
Severely lodged plants were not evaluated for height characteris-
tics. To remove outlier data points, individual plant measure-
ments were discarded if the ear height to plant height
measurement ratio was <0.25 or >0.75, and whole plot ear or
plant height measurements were discarded if the within plot var-
iance was >500 cm2.

Generation of hybrids and collection of
phenotypic data
Hybrid seed was produced by crossing the WI-SS-MAGIC popula-
tion to PHJ89 and DKH3IIH6 (hereafter 3IIH6). The hybrid popula-
tions were named SS-PHJ89 and SS-3IIH6. PHJ89 is an Oh43-type
inbred line developed by Pioneer Hi-Bred (White et al. 2020). The
inbred 3IIH6 is an Iodent-type inbred line developed by DeKalb
Genetics Corporation (acquired by Monsanto in 1998, now owned
by Bayer AG) through selfing the F1 Hybrid PHI3737 (Dekalb Plant
Genetics 1994). PHJ89 and 3IIH6 are related by pedigree through
their founder PHG47, which is one of the 2 parents of PHJ89 and
one of the parents of hybrid variety PH3737 from which 3IIH6
was generated through selfing, so they are expected to contain
regions of identity by descent (Pioneer Hi-Bred International Inc.
1992; Mikel 2011). Hybrids were grown during summers 2018 and
2019 at the UW West Madison Agricultural Research Station in
Verona, Wisconsin and at the UW Arlington Research Station in
Arlington, WI. Hybrids were blocked by tester, and each block
included at least 5 replicates each of 2 commercial hybrids
(DKC50-08RIB and DKC54-38RIB) and 2 replicates of each respec-
tive population parent–tester combination, when seed was avail-
able. All trials were incompletely replicated, where each hybrid
genotype was grown at least once in each experiment with a con-
sistent random subset replicated a second time. A total of 689 SS-
3IIH6 hybrids were grown, of which 316 were replicated, while a
total of 561 SS-PHJ89 hybrids were grown, of which 377 were rep-
licated (Supplementary Table 1). The same set of replicated and
unreplicated lines were grown across years and locations, with
unique plot randomizations for each year–location combination.
Replicated hybrids were randomized among the unreplicated
hybrids within their respective tester blocks. All trials were
planted in fields that followed soybeans in the previous year and
were managed with standard agronomic practices. Detailed in-
formation about planting dates and densities, soil types, and

Table 1. Origins of Stiff Stalk inbred lines.

Line Originator Subheterotic group PI number

B73 Iowa State University B73 PI 550473
B84 Iowa State University B73 PI 608767
LH145 Holden’s Foundation Seed, Inc. B14 PI 600959
NKH8431 (alias H8431, NPH8431) Northrup, King & Company B14 PI 601610
PHB47 (alias B47) Pioneer Hi-Bred International, Inc. B37 PI 601009
PHJ40 Pioneer Hi-Bred International, Inc. Flint PI 601321

Subheterotic groupings from White et al. (2020).
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nutrient and pesticide management is presented in
Supplementary Table 2. Flowering time growing degree units
were recorded in the same manner as previously described for
the per se population using weather data obtained from each re-
search station. Flowering time was recorded for all hybrid plots in
West Madison and for �36% and 33% of hybrid plots in Arlington
in 2018 and 2019, respectively. Plant height and ear height were
measured on 3 competitive plants per plot for all plots. Stand
counts were recorded manually, and plots were discarded if they
contained fewer than 20 plants. The 2019 West Madison trial ex-
perienced extremely wet and cold germination conditions, which
led to low stand counts for the SS-3IIH6 block. Only 19% and 38%
of the plots had stands greater than 50 and 40 plants, respec-
tively, which prompted us to discard the height data due to in-
consistent interplant competition but keep flowering time data
due to good correlations with flowering time from the previous
year. To remove outlier data points, individual plant measure-
ments were discarded if the ear height to plant height measure-
ment ratio was <0.25 or >0.75, and whole plot height
measurements were discarded if the within plot variance was
>500 cm2. Plot average height measurements and flowering GDU
measurements that were more than 3 SDs away from the experi-
ment wide mean were discarded.

Analysis of phenotypic data
A 2-stage approach was taken to analyze plot mean phenotypic
data (Supplementary Table 3). In stage 1, following the procedures
of Rogers et al. (2021), linear mixed models were fit using R/ASReml
version 4 (Butler et al. 2017; R Core Team 2018) for each population
within each environment using genotype as a fixed effect and rep-
licate as a random effect. Next, models were fit with all combina-
tions of autoregressive first order (AR1) and IID residual covariance
structures of the x and y grid coordinates of the plot locations to
account for spatial variation. The model with the lowest Schwarz’s
Bayesian Information Criterion (Schwarz 1978) was chosen to rep-
resent the environment, and the best linear unbiased estimators
(BLUEs) and SEs were extracted from the model (Supplementary
Table 4). Due to our incomplete block structure, the residual spa-
tial correlations were restricted to -0.6< r< 0.6. Any models with
correlation outside this range were reset to using no residual co-
variance structure. In stage 2, genotypes were fit as fixed effects
and environment and genotype by environment interaction terms
were set as random effects. To weight the second stage analysis,
the reciprocals of the first stage BLUE SEs were carried forward,
which represent the genotype by replication interactions, and the
unit’s variance was constrained to 1. Within each experiment, any
phenotypic BLUE that fell outside 2.5 times the interquartile range
(IQR) was discarded as an outlier. Following the data cleaning de-
scribed in the previous sections and the post hoc cleaning based on
IQR, BLUEs were calculated for 730 DH lines, 658 SS-3IIH6 hybrids,
and 535 SS-PHJ89 hybrids. Parental check lines were included in
the analysis because they constitute the same population as the
experimental lines, while commercial check hybrids were not in-
cluded in the analysis. To estimate variance components and cal-
culate heritability, the same model was used except genotype was
set as a random effect. Heritability was calculated as follows
(Cullis et al. 2006):

h2
Cullis ¼ 1� PEV=2r2

g (1)

using the prediction error variance (PEV) and genetic variance
(r2

g) obtained from the stage 2 analysis. To compare phenotypic

variances across populations, the squared coefficient of variation
was calculated to correct for the differences in scale between per
se and hybrid phenotypes (Falconer and Mackay 1989). Pearson’s
correlations within and between phenotypes were calculated on
trait BLUE values within and between the DH and 2 hybrid popu-
lations.

Genetic data
Sequencing using exome capture
Exome capture sequencing was performed on 701 DH lines from
the WI-SS-MAGIC (Supplementary Table 1) using a custom cap-
ture design acquired from Roche Diagnostics Corporation
(Indianapolis, IN). Probes were designed to target the 5’ and 3’
ends of the untranslated regions (UTRs) of the maize
B73_RefGen_v2 genic regions and presence absence variation
(PAV) regions derived from alignment of whole-genome sequenc-
ing reads of a core set of 32 inbreds to B73 reference version 2
(Brohammer et al. 2018; Mazaheri et al. 2019). In total, 82,351 genic
regions (�26.5 Mb) and 492 PAV regions (�2.8 Mb) of the maize ge-
nome were targeted using tiled, variable length probes, with an
average probe size of 75 nt (Supplementary File 2). Any overlap-
ping regions were collapsed into a single target. The target
regions ranged in size from 50 to 49,777 nucleotides (nt), with a
mean size of 353.6 nt (Supplementary File 3). Briefly, DNA was
extracted using seedling tissue using a modified CTAB method
(Saghai-Maroof et al. 1984), sheared, and hybridized with adapters
prior to SeqCap EZ solution capture, as previously described
(Mascher et al. 2013) (Supplementary File 1). DNA was then ampli-
fied, enrichment quality control performed, and libraries se-
quenced by the US Department of Energy Joint Genome Institute
(JGI) in paired end mode on the Illumina HiSeq 2500. Raw se-
quence quality was evaluated using FastQC v0.11.5 (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC
v1.0 (Ewels et al. 2016). Reads were then trimmed, low quality
bases removed, and adapters removed using Cutadapt v1.14
(Martin 2011) with the following parameters: –length 150, -m 20,
-q 20, 20, –times 2, and -g/-a/-G/-A along with their respective
adapter sequences. After cleaning, read quality and adapter con-
tent were evaluated again using FastQC v.0.11.5 and MultiQC
v1.0.

Genotyping by sequencing
Additional genotyping was performed on 144 DH lines using
Genotyping-by-Sequencing (GBS) at the University of Wisconsin
Biotechnology Center (Supplementary Table 1). Briefly, dual di-
gest GBS was performed with restriction enzymes PstI and MspI
on DNA extracted from frozen seedling leaf tissue (Elshire et al.
2011; Poland et al. 2012). DNA was sequenced using an Illumina
NovaSeq6000 in paired end mode 150 nt and analyzed using
bcl2fastq v2.20.0.422 (San Diego, CA, USA). Read 1 was demulti-
plexed and barcodes were removed using Tassel-5-Standalone
plugin “ConvertOldFastqToModernFormatPlugin” with parame-
ters “-e PstI-MspI” and “-p R1” (Bradbury et al. 2007). Read 2 was
not included in future analysis.

Practical haplotype graph
A practical haplotype graph (PHG) (version 0.0.30) was built using
B73 v5 as the reference (Bradbury et al. 2021, maizegdb.org). The
B73 RefGen_v5 annotation of genes (Zm-B73-REFERENCE-NAM-
5.0_Zm00001eb.1.gff3, available at maizegdb.org) was used to
make the initial reference ranges, which were supplied to the
“CreateValidIntervalsFilePlugin” to collapse any overlapping ranges
and format for input into PHG. B73 RefGen_v5 was loaded as the
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reference assembly using the “MakeInitialPHGDBPipelinePlugin,”
followed by the other 5 parental de novo genome assemblies using
the “AssemblyHaplotypesMultiThreadPlugin” (Bornowski et al.
2021). The “AssemblyHaplotypesMultiThreadPlugin” uses mum-
mer4 to align each assembly to the reference by chromosome in
parallel (Marçais et al. 2018). Next, B73 was added to the graph us-
ing the “AddRefRangeAsAssemblyPlugin” which allows B73 haplo-
types to be included as potential parental sequences.

A ranking file was generated by counting the number of hap-
lotypes found within each assembly. The ranking file is neces-
sary when 2 or more haplotypes are collapsed into a consensus
haplotype, where the sequence of the highest-ranking line will
represent the group. Consensus haplotypes were made using
the PHG shell script “CreateConsensi.sh” with parameters
“mxDiv¼ 0.0001” and “minTaxa¼ 1”. All other parameters were
left as default. The value of “mxDiv¼ 0.0001” was chosen such
that genic regions would only be collapsed if they were truly
identical, since over 90% of maize gene models are shorter
than 10,000 bp. After consensus haplotypes were generated,
the “ImputePipelinePlugin” with parameter “-imputeTarget
pathToVCF” was used to index the pangenome, map exome
capture and GBS reads to the graph, use a Hidden Markov
Model (HMM) to find paths through the graph for each taxon,
and call SNPs in the genic reference regions for the progeny
population. The “minReads” parameter was set to zero to allow
imputation of the paths using the aligned exome capture and
GBS reads. Exome capture reads were aligned as paired end
sequences, while the GBS reads were aligned as single end sequen-
ces. Parental assembly genic SNPs were extracted from the graph
using the “FilterGraphPlugin” and “PathsToVCFPlugin.” Due to the
expected homozygosity of the DH lines and parental assemblies,
only homozygous SNPs were generated from the PHG.

Markers were filtered and selected for mapping using Tassel-
5-Standalone (Bradbury et al. 2007). The combined file of parental
and population individuals (Supplementary File 4) was filtered to
remove any non-Stiff Stalk individuals that were included as
checks, SNPs with any missing parental data were removed, mi-
nor SNP states were set to missing to remove third, fourth, and
other alleles, and the SNP was removed if the minor allele fre-
quency was <0.05. To reduce correlation between SNPs and de-
crease QTL mapping computational time, 100,000 evenly spaced
SNPs were selected across the 10 chromosomes and converted to
numerical major or minor alleles. The SNP markers generated for
the DH lines were also used for the derived hybrids, as we did not
have genetic information on the testers.

Population genetic characteristics
Multidimensional scaling (MDS) was performed using 1.8 million
unfiltered genic SNPs to confirm lack of population structure. A
distance matrix was calculated using the “DistanceMatrixPlugin”
from Tassel-5-Standalone with default parameters (Bradbury
et al. 2007). In R, cmdscale() was used to calculate classical MDS
on the distance matrix for the first 2 dimensions (R Core Team
2018). Allele frequencies were calculated on the set of 100,000
SNPs used for QTL mapping.

QTL mapping
Quality control analyses, single-marker QTL mapping, and SNP
associations were performed using R/qtl2 with the cross-type cor-
responding to our mating design, “dh6” (Broman et al. 2019).
Whenever individuals underwent both exome capture and GBS,
the GBS reads were used to generate markers for QTL mapping.
To prepare the data, a control file was created using the function

write_control_file() from R/qtl2, which specifies the cross-type for
our population, the file names of the population and parental
SNPs, the physical map coordinates for the SNPs, the phenotype
file, the cross information file, which contains the number of
meiosis used to generate each individual, and the parental alleles
“AA” through “FF.” Due to the high density of markers, a genetic
map was approximated by converting each SNP’s megabase pair
position to centiMorgans using the B73 RefGen_v5 chromosomal
genome length of 2,132 Mbp divided by the composite US-NAM
genetic map length of 1,456.68 cM (Li et al. 2015). The control file
and all materials needed for mapping are provided as
Supplemental File 5.

Any line with segregating per se phenotypes had previously
been removed from further analysis. To identify potential sample
duplicates, the function compare_geno() was used to calculate
marker matching for all pairwise comparisons, and any pair of
individuals with >95% marker sharing was removed. Conditional
genotype probabilities, or the true genotype underlying the ob-
served markers, were calculated using an HMM in the function
calc_genoprob(), with an error probability of 0.01 (Broman and
Sen 2009, Appendix D). After calculating genotype probabilities,
the maximum marginal probability of the parental haplotypes
was calculated and the total number of crossover events per indi-
vidual was identified using the function count_xo(). Crossover
locations were estimated using the function locate_xo(). Lines
with unusually high numbers of total crossovers could be the re-
sult of sample contamination during population development or
maintenance, as the HMM cannot accurately deduce the correct
underlying parental haplotypes in nonparental regions, and in-
stead frequently switches back and forth among the parent hap-
lotypes. Lines in subset A with more than 150 crossovers or lines
in subset B with more than 250 crossovers were removed from
further analysis.

After quality control, 656 individuals remained with pheno-
types and genotypes for mapping purposes (Supplementary
Table 1). The genotype probabilities were used to calculate a kin-
ship matrix, so the analysis could account for the relatedness be-
tween individuals using the “leave one chromosome out”
method, which uses a kinship matrix derived from all other chro-
mosomes except the chromosome under study to allow for a ran-
dom polygenic effect (Yang et al. 2014). Next, single marker
analysis was performed using a linear mixed model with the kin-
ship matrix as a covariate to find associations between genotype
and phenotype. Log of odds (LOD) thresholds were determined as
the 95th percentile LOD score after 1,000 permutations of the
founder probabilities using the function scan1perm() (Churchill
and Doerge 1994; Cheng and Palmer 2013). Bayesian credible
intervals for QTL peaks were calculated using the function find_
peaks(), with LOD thresholds specific to each phenotype and
probability of 0.95. To declare 2 QTL under 1 large peak, the LOD
threshold was required to drop by at least 5. Chromosome-wide
QTL best linear unbiased predictor (BLUP) effects were calculated
using the function scan1blup(), and single locus BLUP effects
were estimated using fit1() with “blup¼T.”

In addition to single marker QTL mapping, we also performed
SNP association using the R/qtl2 function scan1snps(), with the
same kinship matrix as previously described provided to account
for population structure. Finally, not all DH lines included in
the per se mapping were used to make the hybrid populations.
To account for this difference in sampling between the per se
traits and the hybrid traits, the sets of DH lines included in each
hybrid population were used to repeat the mapping and
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permutation procedures for each per se trait that corresponded

to a hybrid trait.

Genomic prediction
To test the correlation between per se and hybrid phenotype

based on the DH population per se genetics, we performed geno-

mic prediction using the 100,000 SNP markers used for QTL map-

ping for both per se and hybrid prediction. We used the package

R/rrBLUP to perform ridge regression on the marker effects,

which is equivalent to calculating genomic estimated breeding

values using a realized relationship matrix (Hayes et al. 2009;

Endelman 2011). We used cross validation to train and test the

models predicting per se and hybrid traits. We partitioned the

phenotypic data into 5 segments and used 4 segments for train-

ing the model and the remaining portion for testing the model.

We predicted the phenotypes for each of the 5 testing segments

and calculated the correlation between the predicted and ob-

served phenotypes, which comprised 1 replication. We repeated

this process 100 times for each of the phenotypes. To indirectly

predict the hybrid phenotypes from the parental per se pheno-

types, we calculated the correlation between the testing set pre-

dicted per se phenotypes and the observed hybrid phenotypes.

Results
Phenotypic variation
Plant height and AnthGDU in the per se and hybrid populations

showed normal distributions, and heritability ranged from 0.83 for

SS-3IIH6 AnthGDU to 0.89 for SS-PHJ89 AnthGDU (Fig. 1;

Supplementary Table 5). The genetic variance for per se, SS-3IIH6,

and SS-PHJ89 AnthGDU was 2,781.6, 1,148.6, and 944.3 GDU2, re-

spectively, while the genetic variance for per se, SS-3IIH6, and SS-

PHJ89 plant height was 386.3, 150.1, and 144.6 cm2, respectively.

Similarly, the squared coefficient of variation for per se, SS-3IIH6,
and SS-PHJ89 AnthGDU was 18.00, 9.24, and 7.33, while the squared
coefficient of variation for per se, SS-3IIH6, and SS-PHJ89 PH was
124.93, 26.79, and 22.35, respectively. All traits except per se
AnthGDU and SS-PHJ89 AnthGDU exhibited transgressive segrega-
tion, where one or more progeny DH lines had more extreme values
than all the parents (Fig. 1). The parental line PHJ40 was the earliest
flowering individual in the per se and SS-PHJ89 experiment.

Anthesis and silking were highly correlated within both DH
lines and hybrids, ranging between Pearson’s r¼ 0.83 for per se
SilkGDU to per se AnthGDU to r¼ 0.93 for SS-3IIH6 SilkGDU to
AnthGDU (data not shown). The correlation between per se
AnthGDU and SS-3IIH6 AnthGDU was r¼ 0.64 and per se
AnthGDU to SS-PHJ89 AnthGDU was r¼ 0.66 (Fig. 2, a and b).
Correlation between AnthGDU for the 2 hybrid populations was
higher at r¼ 0.69 (Fig. 2c). Plant height and ear height were also
highly correlated within DH lines and hybrids. Correlations be-
tween plant height and ear height were r¼ 0.79 within both the
per se and SS-3IIH6 populations and r¼ 0.83 within the SS-PHJ89
population (data not shown). Per se to hybrid plant height corre-
lations were r¼ 0.64 between DH lines and SS-3IIH6 and r¼ 0.71
between DH lines and SS-PHJ89 (Fig. 2, d and e). Hybrid-to-hybrid
plant height correlation was r¼ 0.72 (Fig. 2f). The high correlation
between hybrids is expected, due to both the highly additive na-
ture of flowering time and height and the relatedness between
testers 3IIH6 and PHJ89.

On average, the SS-3IIH6 population was 71.5 cm taller and
shed pollen 90.2 GDU earlier than its DH counterparts, and the
SS-PHJ89 population was 82.0 cm taller and shed pollen 101.1
GDU earlier than its DH founders. Finally, height and flowering
were also correlated within populations, where r¼ 0.35, 0.41, and
0.59 for the per se, SS-3IIH6, and SS-PHJ89 populations, respec-
tively (Supplementary Fig. 1).

Fig. 1. Distributions of phenotypic BLUEs and heritabilities. Distributions for anthesis growing degree units (GDU) and plant height for the UW-MAGIC-
SS per se population, SS-3IIH6 hybrid population, and SS-PHJ89 hybrid population. Trait heritabilities are in the upper left of each plot. Population
parent BLUEs are plotted as colored lines behind each distribution.
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Practical haplotype graph
The 39,035 B73 RefGen_v5 annotated gene models were used as
initial reference ranges, and after collapsing overlapping ranges,
36,399 genic ranges remained, and 36,401 intergenic ranges were
inserted between genic ranges for a total of 72,800 ranges. The
average genic range width was 4,755 bp, while the average inter-
genic range width was 53,811 bp. The theoretical maximum num-
ber of haplotypes per reference range is 6, which represents
either all inbreds having sequence that aligns to the reference (in-
cluding reference to reference alignment), or 5 inbreds that have
alignment with the reference and 1 with a missing haplotype.
Not all assemblies had sequence that aligns to every range owing
to structural variation between the parental genomes. Each pa-
rental assembly had different numbers of total haplotypes align-
ing to B73, from 51,070 haplotypes for PHJ40 to 66,890 for B84.
PHJ40 is known to be more structurally diverse from the other
founders (Bornowski et al. 2021), and the next lowest number of
aligned haplotypes was 62,144 for LH145. After collapsing haplo-
types into consensus sequences, the average number of haplo-
types per PHG reference range was reduced from 5.7 to 3.3
(Fig. 3a). Identity by descent relationships are present between all
of the lines due to their common heritage from the BSSS, and
these relationships are strongest between B73 and B84, B73 and
NKH8431, and NKH8431 and LH145. Consensus parental and
population haplotype identification numbers are presented in
Supplementary Table 6.

Population genetic characteristics
MDS confirmed the lack of population structure within our popu-
lation (Fig. 3b). The parental inbred lines fell on the perimeter of
the point cloud, with no discernable clustering of progeny indi-
viduals. Allele frequency distributions for the major and minor
alleles appeared as expected, with peaks near 1/6 and 2/6, corre-
sponding to private and 2-way sharing of alleles within the
parents, respectively (Fig. 3c). The founder probabilities and the
total number of observable crossovers were calculated using R/
qtl2. The 2 population subsets had overlapping distributions for

the total number of crossovers per individual. While examining
the locations and total numbers of crossovers present within
individuals, we found some areas of the genome in certain indi-
viduals contained unusually high numbers of crossovers. Such
areas indicated that the HMM failed to choose a single founder
for the area, and instead rapidly switched between founders.
While some individuals had high total genome wide incidence of
crossovers, which indicates a sample mix-up, some lines had iso-
lated areas of high crossover in only a few regions. Small areas of
high crossover could be caused by several factors, including re-
sidual heterozygosity in the founder inbreds, introgression from
the DH inducer (Li et al. 2009), contamination during population
development from an inbred closely related to one of the found-
ers, or technical issues during the SNP calling pipeline. In addi-
tion, using a PHG with imputation to generate SNPs for the
population forced each individual to have haplotypes only from
the population founders which complicates identifying areas of
inducer introgression or contamination. Most importantly, QTL
mapping results did not change significantly between the raw,
full set of lines and the cleaned, reduced set of lines filtered for
high total crossovers (150 crossovers for subset A, 250 crossovers
for subset B), indicating that our results were robust to this low
level of uncertainty.

After removing individuals with high numbers of total cross-
overs and the other quality filters, the subset A (4 total meioses
to generate DH lines) had an average of 60.7 crossovers, while
subset B (6 total meioses to generate DH lines) had an average of
99.9 crossovers (Fig. 3d). The parental haplotypes for a set of 8
population individuals revealed a mosaic of the founder geno-
types (Supplementary Fig. 2). The top row of individuals belongs
to the subset A and showed longer parental haplotypes than the
bottom row of individuals, which belong to subset B. In many
individuals, there were chromosome sections plotted in white,
which corresponded to areas where the founder probabilities did
not rise above 0.5. This is expected, due to the related nature of
the population founders and the segments of identity by descent
between them. For example, large stretches of identity by descent

Fig. 2. Phenotypic correlations between populations for flowering time (a, b, c) and plant height (d, e, f). Scatterplots of BLUEs demonstrate the positive
correlation within traits, between populations. Pearson correlations are shown in the lower right.

K. J. Michel et al. | 7



between B73 and B84 due to their selection out of the BSSS would
make assigning population haplotypes to either of the parents
difficult, and this issue is compounded by the presence of BSSS
lines in the pedigrees of the other population parents. After re-
moving individuals with high crossovers, some regions of local
high crossover frequency remained, potentially due to introgres-
sion from the DH inducer which has been previously observed (Li
et al. 2009) or possible factors such as residual heterozygosity in
founder inbreds.

QTL mapping
QTL mapping and SNP association
To analyze flowering time and plant height, we took both a QTL
mapping and SNP association approach. QTL mapping through
single marker analysis as implemented by R/qtl2 relies on linear
regression of the phenotypes on the matrix of founder probabili-
ties, while SNP association regresses the phenotypes on the bial-
lelic marker states. We found high concordance between QTL
mapping and association analysis, where the most significant
loci were identified for all traits by both approaches
(Supplementary Figs. 3 and 4). Thus, we will refer to the QTL
mapping results to represent our findings.

Flowering time
Mapping for AnthGDU revealed several significant peaks across
the 10 chromosomes in the WI-SS-MAGIC DH population
(Fig. 4a; Supplementary Fig. 5). The most significant peaks

appeared on chromosome 3 at 156.3, 163.1, and 168.5 Mbp and
on chromosome 8 at 127.9 Mbp (Supplementary Table 7). Peaks
for anthesis and silking highly colocalized, which is expected
due to the high correlation of the phenotypic values at r¼ 0.83
(Supplementary Fig. 3). In the hybrids, the large significant
peak on chromosome 8 disappeared in the SS-PHJ89 population
but remained significant in the SS-3IIH6 population (Fig. 4, b
and c). We calculated BLUP QTL effects for per se AnthGDU on
chromosomes 3 and 8 and found allelic series at the significant
loci on both chromosomes (Fig. 5). On chromosome 3, PHB47
provided the early flowering allele and LH145 provided the late
flowering allele, while on chromosome 8 PHJ40 provided the
early allele, and B73 and B84 provided later alleles. It is notable
that LH145 was the second earliest parent of the population
and PHB47 flowered near the mean of the population, demon-
strating that alleles for early and late flowering segregate
within the parents. Using a single QTL model to fit the BLUP
effects for the chromosome 3 peak at 163,105,981 bp, the most
extreme alleles from the parents showed a �27.2 6 8.6 GDU ef-
fect for PHB47 and þ22.6 6 8.9 GDU effect for LH145. For the
peak on chromosome 8 at 127,898,534 bp, the most extreme
effects were -24.4 6 8.9 GDU from PHJ40 and þ17.4 6 8.9 GDU
from B73.

Plant height
Like flowering time, many significant peaks were also found for
plant and ear height, such as on chromosomes 1, 2, 3, and 10

Fig. 3. Population genetic characteristics. a) Distribution of the number of consensus haplotypes found per reference range. b) Multidimensional scale
plot using 1.8 million genic SNPs, with the population parents plotted in red. c) Distribution of the minor allele frequencies for 100,000 filtered numeric
SNPs, with vertical lines plotted at expected peaks of 1/6 and 2/6. d) Histogram of the number of crossovers per individual for the 2 population subsets
prior to filtering lines with high total crossovers. Six lines with more than 600 crossovers are not included. Vertical lines indicate the thresholds used for
discarding lines at 150 crossovers for subset A (generated using 4 meioses) and 250 crossovers for subset B (generated using 6 meioses).
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(Fig. 6a; Supplementary Fig. 5 and Supplementary Table 7). Fewer
loci colocalized for plant and ear height compared with AnthGDU
and SilkGDU (Supplementary Fig. 4). A peak appeared for plant
height on chromosome 6 at 105.8 Mbp in the SS-3IIH6 population
that was not present in the per se or SS-PHJ89 population
(Fig. 5b). We investigated the parental effects of the peak on chro-
mosome 6 at 105,826,214 bp for both hybrid populations and
found that the LH145 allele had an effect of þ3.6 6 1.7 cm, while
the B73 allele had an effect of �4.9 6 2.0 cm in the SS-3IIH6 popu-
lation (Supplementary Fig. 6). Here again, per se B73 was the tall-
est of the parents while per se LH145 was the second shortest
and their allelic effects were opposite of their overall phenotypes,
but their hybrid phenotypes were both closer to the population
mean. For comparison, the insignificant chromosome 6 locus in

the per se and SS-PHJ89 populations showed no such differentia-

tion between the parents (Supplementary Fig. 5). The genetic var-

iance for plant height in the SS-3IIH6 population was 151.1 cm2,

so the allelic effects were a small proportion of the total variance.

Genomic prediction
Because information on the DH lines was available before hybrid

test crosses were made, we tested the predictive abilities of sev-

eral direct and indirect genomic prediction models (Fig. 7). As

expected, the most successful models were those that were
trained on the data that were most directly related to the pre-

dicted set, such as prediction within the hybrid SS-PHJ89 set and

within the SS-3IIH6 set for plant height (r¼ 0.63 and r¼ 0.60, re-

spectively) and prediction within the per se set for anthesis

Fig. 4. Anthesis GDU QTL mapping. Population specific LOD scores are plotted for each panel. Dashed vertical lines show known flowering time genes.
a) QTL peaks for the per se population for each of the 10 chromosomes. b) QTL peaks for chromosome 8 of the SS-3IIH6 population and the DH lines
that were used to generate the population. c) QTL peaks for chromosome 8 of the SS-PHJ89 population and the DH lines that were used to generate the
population.
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(r¼ 0.62). Predictive abilities between test cross populations were
moderate, with AnthGDU predictive abilities for SS-3IIH6 to SS-
PHJ89 and vice versa of r¼ 0.55 and 0.54, and plant height at
r¼ 0.58 and 0.53, respectively. The correlations of the indirect
predictions of per se to hybrid phenotypes were lower, but still
greater than r¼ 0.49. It is important to note that correlations do
not consider the difference in scale between the per se and hybrid
populations and cannot account for the population mean heter-
otic effect on both flowering time and plant height between the
populations. Finally, we wanted to test the feasibility of using
predicted per se data to discard DH lines from our breeding pro-
gram that either are too tall or flower too late for our environ-
ment. We compared the predicted per se AnthGDU and per se
plant height values to their observed values, and colored DH lines
based on their status in the top 15th percentile for either the pre-
dicted or observed value (Supplementary Fig. 7). We maintained
this color scheme when plotting the DH line’s observed hybrid
values to assess the combination of genomic prediction ability

and tester response. Overall, we found that the DH lines in the

top 15th percentile for the predicted trait but not for the observed

trait tended to be the DH lines that would make hybrids that are

satisfactory to our breeding program’s needs, while DH lines that

were in the top 15th percentile of observed values tended to have

higher hybrid values. These results are expected, especially con-

sidering the high correlations between per se and hybrid pheno-

types and the lower predictive ability of the per se to hybrid

models.

Discussion
QTL mapping in multiparent populations
Several multiparent populations have been developed in maize,

including MAGIC populations from Italy and Spain (Dell’Acqua

et al. 2015; Jim�enez-Galindo et al. 2019), 4-parent populations

from China and the USA (Ding et al. 2015; Mahan et al. 2018), and

nested association mapping populations from the USA, China,

Fig. 5. Founder anthesis GDU QTL BLUP effects. BLUP effects for each parental contribution are plotted for the 2 chromosomes containing the most
significant peaks for flowering time. Vertical lines are plotted denoting 3 major flowering time loci.
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and Europe (Yu et al. 2008; Bauer et al. 2013; Li et al. 2013; Giraud

et al. 2017). The existing MAGIC, US-NAM, and CN-NAM popula-

tions use a variety of inbreds that sample the diversity of maize

genetics, and the European NAM populations focus on the Dent

and Flint heterotic groups in addition to factorial crosses made

between recombinant inbred lines. Our population concentrates

the founders within the Stiff Stalk heterotic group. An advantage

to focusing on the Stiff Stalk group is that maize breeding relies

on recycling genetics within heterotic groups to make new

parents and crossing parents between groups to make hybrids. In

a factorial mating design between Flint and Dent multiparent

populations, it was discovered that the majority of general com-

bining ability QTL were specific to 1 heterotic group (Giraud et al.

2017; Seye et al. 2019). Thus, blending the genomes of parents

within a single heterotic group vs across the diversity of maize

creates a more applicable population to study the subset of

alleles present within Stiff Stalk seed parent germplasm released

in North America. Breeding based on heterotic groups is expected

to drive diverging allele frequencies between groups and con-

straining our mapping population to a single heterotic group

allows us to examine the effects of these alleles on agronomic

and yield related traits within their intended context. In addition,

within the ex-PVP lines with combined Stiff Stalk admixture

>50% from White et al. (2020) and including B73 and B84, 14.1% of

rare Stiff Stalk alleles (minor allele frequency <0.05) are segregat-

ing within the WI-SS-MAGIC parents (data not shown, SNP data

from Mazaheri et al. 2019). Recombining 6 parents increases the

power to examine the effect of these rare alleles on phenotypes

compared with a diversity panel. Mixing multiple founders takes

advantage of historical recombination in addition to

Fig. 6. Plant height QTL mapping. Population specific LOD scores are plotted for each panel. Dashed vertical lines show known height genes. a) QTL
peaks for the per se population for each of the 10 chromosomes. b) QTL peaks for 3 chromosomes of the SS-3IIH6 population and the DH lines that were
used to generate the population. c) QTL peaks for 3 chromosomes of the SS-PHJ89 population and the DH lines that were used to generate the
population.
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recombination introduced through population development.
Multiple founders within a single population allows the study of
allelic series at loci of interest, such as for AnthGDU on chromo-
somes 8 and 3 (Fig. 5).

QTL mapping in the WI-SS-MAGIC
Large efforts have been made by the plant research community
to elucidate the control of complex traits such as flowering time
and height. Several of the significant flowering time loci were
near the location of other known flowering time genes. For exam-
ple, chromosome 3 contains ZmMADS69, also known as Zmm22,
and chromosome 8 contains ZmRap2.7 and ZCN8, as noted in
Fig. 4a. All 3 genes are known to regulate flowering time (Guo
et al. 2018; Liang et al. 2019). Despite the high correlations be-
tween per se and hybrid flowering, several QTL that were signifi-
cant in the per se population lost their significance in one or both
hybrid populations. The large peak on chromosome 8 containing
ZmRap2.7 and ZCN8 was not significant in the SS-PHJ89 popula-
tion, despite retaining its significance in the group of DH lines
used to make the hybrid population (Fig. 4c). The same locus
remained significant in the SS-3IIH6 population, albeit with a
smaller LOD score (Fig. 4b). Loss of significance indicates a loss in
variation, such that the tester may have a dominant allele that
masks the variation within the DH population. This suggests that
there are contrasting loci present between the 2 testers, where
PHJ89 has a dominant locus relative to the per se population
while 3IIH6 does not.

The most significant locus for plant height on chromosome 1
was located at 225.4 Mbp and it contained brd1, a gene which is
involved in the brassinosteroid pathway and for which a mutant
allele causes severe dwarfism (Makarevitch et al. 2012). Likewise,
the most significant locus on chromosome 3 at 8.9 Mbp contained
another gene discovered through mutational studies, DWARF1
(d1), which is involved in the gibberellin pathway (Chen et al.
2014). Most interestingly, a peak on chromosome 6 at 105.8 Mbp
appeared for plant height in the SS-3IIH6 population, but not in
the SS-PHJ89 population (Fig. 5b). This peak is near ubi3,

previously found to be associated with height traits (Ding et al.
2017). Previous studies have identified an epistatic interaction be-
tween ubi3 and br2 (Xiao et al. 2021).

Ding et al. (2017), used a near isogenic line from the US-NAM
family B73�Tzi8 crossed to B73 to finemap the QTL to 95–96
Mbp on chromosome 6. Like our study, Xiao et al. (2021), found a
plant height QTL near 95.8 Mbp on chromosome 6 within 1 test
cross population but not in the inbred population, and provides a
schematic outlining the epistatic derepression uncovered by this
locus. In theory, there is the potential to study epistasis between
more than 2 founders within a MAGIC population. For the WI-SS-
MAGIC population, comparing the founder states for 2 loci results
in 36 total digenic classes. We separated our population into
these classes for the 2 most significant loci for per se AnthGDU
and found the mean number of individuals per class was 14.8,
with a range of 2–45 individuals (Supplementary Fig. 8). Smaller
population size in some of the sets exacerbates this issue of
power. We repeated the procedure for the SS-3IIH6 plant height
loci on chromosome 10 and 6 and found a mean of 7.3 individuals
per class, with a range of 0–17, and 11 classes had fewer than 5
observed individuals (Supplementary Fig. 9). The limited number
of observations per digenic class restricts the ability to statisti-
cally evaluate interaction between loci.

Our results demonstrate that QTL detection depends on the
genetics of the tester when mapping in hybrid populations. While
it is possible that the absence of a signal in the hybrid population
could be due to environmental or genotype by environment
effects, the high heritabilities support the large role of genetic
variation.

QTL mapping in DH lines and hybrids
Previous work in mapping QTL across testers has found high con-
cordance between plant height QTL discovered in different test
cross populations and minimal digenic epistasis, despite evidence
for epistasis under generation means analysis (Lübberstedt et al.
1997; Melchinger et al. 1998). Tester relatedness also influences
the ability to discover QTL, where a tester unrelated to the

Fig. 7. Predictive abilities for direct and indirect genomic prediction models. Predictive abilities for 100 replications of each model. Direct models were
trained using the population phenotype they would predict, while indirect models were trained with the per se or opposite hybrid population and used
to predict each phenotype.
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population uncovers QTL for additive traits more effectively than
related testers (Frascaroli et al. 2009). Another study of a biparen-
tal RIL population crossed to 4 testers found that mapping the
mean test cross height was sufficient to identify shared loci be-
tween testers (Austin et al. 2001). Recent work by Xiao et al. (2021),
examining heterosis for over 42,000 hybrids generated by cross-
ing 1,428 multiparent lines with 30 testers found that epistasis
plays a role in generating heterosis, contradicting previous work
demonstrating the low impact of epistasis (Hinze and Lamkey
2003; Mihaljevic et al. 2005).

We documented our population’s response to 2 testers to bet-
ter understand the heterotic effect of Iodent (3IIH6) and Oh43
(PHJ89) type testers on the WI-SS-MAGIC population.
Understanding per se phenotypes requires mapping in an inbred
population, while understanding an inbred’s response to a tester
requires evaluating and mapping traits in the hybrid population.
We found the hybrid populations to have less than half the varia-
tion of the per se population, which could indicate that nonaddi-
tive gene action is affecting the phenotypes. The interplay of
dominant and recessive loci only manifests in the hybrid popula-
tion, either creating or concealing phenotypic variation depend-
ing on the gene action of the trait. Our study found evidence for
contrasting allelic states between the 2 testers in several regions
of the genome based on disappearance and appearance of QTL,
including a dominant locus for flowering time on chromosome 8
in PHJ89 compared with 3IIH6, and a putatively epistatic locus
revealed for plant height in 3IIH6. Despite the strong positive cor-
relation between the hybrid phenotypes, several loci were found
in only one of the hybrid populations (Supplementary Fig. 5).
Perfect correlation between the test cross phenotypes would lead
to the discovery of the same QTL between the 2 populations, yet
the deviation from a one-to-one relationship between the test
cross phenotypes leads to the discovery of unique QTL in the hy-
brid populations. Choice of tester influences hybrid performance
and QTL mapping results, as evidenced by studies previously de-
scribed and our findings. Despite the high correlation between
the phenotypes of the hybrid populations and the expected iden-
tity by descent between the 2 testers, unique QTL were discov-
ered for each trait in each population.

Genomic prediction of hybrid phenotypes
In maize breeding programs, per se phenotypes are often avail-
able before hybrid varieties can be tested. Using per se and hybrid
data from our study, we investigated the association between per
se and hybrid flowering and height traits. We wanted to test the
feasibility of predicting correlations of hybrid flowering time and
height based on DH line measurements for the purposes of dis-
carding lines that flower too late or are too tall for our breeding
program. We also wanted to evaluate the predictive ability be-
tween the 2 hybrid populations as breeding programs often use
multiple testers as materials advance through selection pipe-
lines.

We found that the hybrids flowered earlier and were taller
than their maternal DH parents, confirming heterotic relation-
ships for flowering and height found in other studies (Flint-
Garcia et al. 2009; Li et al. 2018). Previous studies have found in-
creased predictive abilities when incorporating parental inbred
information (Liang et al. 2018; Jarquin et al. 2019), and we also
found moderate prediction abilities for hybrid flowering time and
plant height when the models were trained using the per se data.
This stands in contrast to work by Galli et al. (2020), who found
that genomic predictive ability in a partial diallel of 49 lines de-
creased when including information about the parents from

genome wide association. As expected, the models with the high-
est predictive abilities were those that were trained on the data
they were designed to predict, although we achieved predictive
abilities between r¼ 0.49 and r¼ 0.55 for models predicting hybrid
traits that were trained with per se data. Correlations between
per se and hybrid populations do not consider the difference in
magnitude between them, such as the average difference be-
tween per se and hybrid flowering of 90 GDU or difference in
height of 71 cm. Heterosis due to small genome-wide effects pro-
duces a relatively uniform incremental decrease in flowering
time and increase in height across all lines, while variation within
inbreds and within hybrids is largely due to similar large effect
QTL likely in combination with undetected small effect loci.
These findings are consistent with the overlapping and nonover-
lapping QTL that were found between the per se and hybrid pop-
ulations because the difference between the predictive abilities
for direct and per se to hybrid models cannot account for the
dominance or epistatic effect of the tester at individual loci. In
addition, the masking of per se QTLs within either of the hybrid
populations is conceptually consistent with the lowered predic-
tive ability of using per se data to predict hybrids. We also found
that the errors between predicted and observed per se pheno-
types were a source of selection error that led to discarding DH
lines that would have generated acceptable hybrids.

Finally, we also used the highest associated SNP from each
LOD peak as fixed effects in the genomic prediction model but
found that including the fixed marker effects lowered the predic-
tive ability compared with using only the realized relationship
matrix (data not shown). This finding supports previously simu-
lated results demonstrating that known genes are only beneficial
to models when they are few in number and explain large propor-
tions of the variance (Bernardo 2014).

Relevance to maize breeding
This method has applications in maize breeding because genomic
prediction could be used to make selections prior to generating
test cross seed for an entire population. Alternatively, a smaller
subset of an inbred population could be grown as a model train-
ing set with several testers prior to generating larger hybrid popu-
lations. Genomic prediction could then be used to discard the
poorest performing lines, which would increase genetic gain by
increasing the selection intensity on the population. Overall, our
results indicate that plant breeders should be less aggressive
when using predicted per se data to predict hybrid performance
because the errors in genomic prediction can lead to discarding
hybrid lines incorrectly. Plant breeders must balance their selec-
tion for maize yield with the adaptation requirements and archi-
tectural risk for root or stalk lodging when developing new inbred
lines, as demonstrated by including information for flowering
time and plant height in this study. Flowering time and moisture
at harvest are also indications of overall relative maturity, which
is an important characteristic that plant breeders use to place va-
rieties across geographies and that farmers use to balance risk
and make planting time and cultivar decisions. Our results indi-
cate that flowering time and height have high correlations be-
tween DH lines and hybrids within these DH line–tester
combinations yet experience different profiles of QTL significance
across the genome. While the goal of maize breeding efforts is to
increase or protect hybrid yield, most genetic research efforts fo-
cus on using inbreds to study complex traits. Understanding how
traits manifest in a parental inbred vs its hybrid progeny is a criti-
cal area of maize breeding and quantitative genetics research.
For example, parental per se measures of grain yield have been
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previously used to increase prediction ability of hybrid perfor-
mance (Schrag et al. 2010). Deviations from the purely additive re-
lationship of inbred flowering time or plant height to hybrid
phenotype can be investigated to add to the underlying under-
standing of the gene action that supports genomic prediction.

Conclusions
In conclusion, several known loci were uncovered in different
combinations within the per se and test cross sets of a MAGIC
population. Dominance of 1 tester over the population caused
the loss of a highly significant peak for anthesis, while the pres-
ence of the other tester revealed putative epistatic variation for
plant height. The 6 parents of the population are all members of
the Stiff Stalk heterotic group, which is the canonical source of
seed parent germplasm in the USA. These lines represent the di-
versity of both the subheterotic groups within the Stiff Stalk pool
and the major plant breeding entities operating in the 1970s and
1980s and are no longer under intellectual property protection. In
addition to dissecting the genetic architecture of these complex
traits, this study provides a description of a new population re-
source available to maize researchers. Multiparent populations
are a unique mapping resource to study the effect of more than 2
parental alleles on quantitative traits, and they are a means to in-
crease the diversity of alleles under study while managing minor
allele frequency. Further, the genome assemblies of the 6 parents
with annotation from a 5-tissue transcriptome atlas (Bornowski
et al. 2021; Li et al. 2021) are available for study, which increases
the variety of opportunities for maize researchers. This popula-
tion could be used to assay the effect of the alleles present within
the population on combining ability, adaptation, genotype by en-
vironment interaction, stability, and provide a new paradigm for
studying traditional and genomic selection. The practicality of
leveraging linkage mapping of highly polygenic traits to make
selections within breeding programs has been limited in the past,
especially for traits that follow an infinitesimal model such as
maize height (Peiffer et al. 2014). Nevertheless, further study of in-
dividual loci can impact plant breeding through mutational stud-
ies made possible by gene editing, in addition to current efforts in
commercial plant breeding accomplished through genomic selec-
tion.
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to giants? Plant height manipulation for biomass yield. Trends

Plant Sci. 2009;14(8):454–461. doi:10.1016/j.tplants.2009.06.005.

Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley

R, Ananiev EV, Svitashev S, Bruggemann E, et al. Conserved non-

coding genomic sequences associated with a flowering-time

quantitative trait locus in maize. Proc Natl Acad Sci U S A. 2007;

104(27):11376–11381. doi:10.1073/pnas.0704145104.

Sannemann W, Huang BE, Mathew B, L�eon J. Multi-parent advanced

generation inter-cross in barley: high-resolution quantitative

trait locus mapping for flowering time as a proof of concept. Mol

Breed. 2015;35(3):86. doi:10.1007/s11032-015–0284-7.
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