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Abstract

The barley MLA nucleotide-binding leucine-rich-repeat (NLR) receptor and its orthologs confer recognition specificity to many fungal dis-
eases, including powdery mildew, stem-, and stripe rust. We used interolog inference to construct a barley protein interactome (Hordeum
vulgare predicted interactome, HvInt) comprising 66,133 edges and 7,181 nodes, as a foundation to explore signaling networks associated
with MLA. HvInt was compared with the experimentally validated Arabidopsis interactome of 11,253 proteins and 73,960 interactions, veri-
fying that the 2 networks share scale-free properties, including a power-law distribution and small-world network. Then, by successive layer-
ing of defense-specific “omics” datasets, HvInt was customized to model cellular response to powdery mildew infection. Integration
of HvInt with expression quantitative trait loci (eQTL) enabled us to infer disease modules and responses associated with fungal penetration
and haustorial development. Next, using HvInt and infection–time–course RNA sequencing of immune signaling mutants, we assembled
resistant and susceptible subnetworks. The resulting differentially coexpressed (resistant – susceptible) interactome is essential to barley im-
munity, facilitates the flow of signaling pathways and is linked to mildew resistance locus a (Mla) through trans eQTL associations. Lastly,
we anchored HvInt with new and previously identified interactors of the MLA coiled coli þ nucleotide-binding domains and extended
these to additional MLA alleles, orthologs, and NLR outgroups to predict receptor localization and conservation of signaling response.
These results link genomic, transcriptomic, and physical interactions during MLA-specified immunity.

Keywords: interologs; interactome inference; Hordeum vulgare; immunity; disease modules; yeast-two-hybrid; systems biology; pow-
dery mildew

Introduction
Plants attain a focused immune response via interconnected sig-

naling networks (Yuan et al. 2020; Ngou et al. 2022). These net-
works are activated upon recognition of conserved pathogen

molecules termed pathogen-associated molecular patterns (Lo-
Presti et al. 2015; Toru~no et al. 2016; Bentham et al. 2020).

Pathogens have adapted to suppress this response by secreting
effectors into the host cell. As a counter mechanism, families of

resistance (R) proteins have evolved, encoding a series of intracel-
lular receptors that are associated with immune activation (Lo-

Presti et al. 2015; Toru~no et al. 2016). Experimental and computa-
tional evidence have shown that most R-proteins converge to a

group of intracellular nucleotide-binding leucine-rich-repeat

(NLR) receptors, one of the largest plant protein families (Baggs
et al. 2017; Monteiro and Nishimura 2018; Sun et al. 2020;

Tamborski and Krasileva 2020; Van-Wersch et al. 2020; Barragan
and Weigel 2021). The protein structure of this family consists of

an N-terminal domain [coiled-coil (CC) or Toll-like Interleukin-1
receptor], a conserved nucleotide-binding (NB) domain shared

with apoptotic protease activating factor 1, various R-proteins

and cell death protein-4 (ARC), and a C-terminal leucine-rich re-
peat domain (LRR) (Baggs et al. 2017; Monteiro and Nishimura
2018; Van-Wersch et al. 2020). Since R-proteins have a prevalent
role in determining the outcome of plant–pathogen interactions,
they are ideal probes to dissect host immunity as well as basic
plant cell function (Bray Speth et al. 2007; Krattinger and Keller
2016; Sun et al. 2020; Sánchez-Mart�ın and Keller 2021).

Obligate biotrophic fungi, which include mildews and rusts,
cause some of the most detrimental impacts to crop production
(Dean et al. 2012). In the interaction between Blumeria graminis
f. sp. hordei (Bgh), the causal agent of powdery mildew, and its ce-
real host plant, barley [Hordeum vulgare L. (Hv)], disease is blocked
by the action of specific R-proteins, designated ML (for mildew re-
sistance locus), that respond to corresponding Bgh avirulence
effectors, designated AVR (Ridout et al. 2006; Lu et al. 2016; Saur
et al. 2019; Bauer et al. 2021). Diversification of the MLA NLR (Wei
et al. 2002; Seeholzer et al. 2010) has generated up to 30 variants
that confer specific recognition to different AVR-associated Bgh
isolates (Ridout et al. 2006; Lu et al. 2016; Saur et al. 2019; Bauer
et al. 2021). In addition, NLRs encoded by mildew resistance locus
a (Mla) alleles or orthologs appear to recognize effector targets
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from evolutionary diverged fungi, and once triggered, confer re-
sistance to powdery mildew in wheat and transgenic Arabidopsis
(Jordan et al. 2011; Maekawa et al. 2012), wheat and rye Ug99 stem
rust (Periyannan et al. 2013; Mago et al. 2015; Cesari et al. 2016)
and wheat stripe rust (Bettgenhaeuser et al. 2021).

MLA-mediated immunity involves the stabilization of the pro-
tein through interactions with the heat shock protein 90 (HSP90),
required for MLA12 resistance 1 (RAR1), and suppressor of G-two
allele of Skp1 (SGT1) complex, with differential requirements for
the various components, depending on the Mla allele (Shen et al.
2003; Bieri et al. 2004; Halterman and Wise 2004; Shirasu 2009;
Chapman et al. 2021, 2022). A RING-type E3 ligase (MIR1) has also
been reported as an interactor of MLA, attenuating defense sig-
naling by degradation of the receptor via the ubiquitin protea-
some system (Wang et al. 2016). Upon recognition of Bgh AVR
effectors, MLA accumulates in the nucleus, followed by its associ-
ation with multiple transcription factors (TFs), including WRKY1,
WRKY2, and MYB6 (Shen et al. 2007; Chang et al. 2013).

In order to establish a comprehensive view of the regulatory
programs that render a plant resistant to pathogens, deeper in-
sight into R-gene activation and the resulting signaling cascades
is needed (Martin et al. 2003; Deng et al. 2020). In this regard,
genome-wide protein interactomes are advantageous to interpret
the molecular mechanisms in immune cell signaling (Mukhtar
et al. 2011; Weßling et al. 2014). Yet, building interactomes from
experimental data is a cost and labor intensive task, and as a re-
sult, they are incomplete and only available for few model organ-
isms (Matthews et al. 2001; McWhite et al. 2020). To circumvent
this challenge, predictive approaches have been developed. One
of these is interologs inference, which consists of mining protein
interactions using ortholog information between the species of
interest and model organisms that possess experimentally vali-
dated interactions (Matthews et al. 2001). This approach has been
successfully used to generate predicted interactomes in
Arabidopsis and several crop species including rice, maize, and
tulsi (Geisler-Lee et al. 2007; Ho et al. 2012; Musungu et al. 2015;
Singh et al. 2020). Then, integration of interactomes with context-
specific data types can be performed to highlight nodes, edges,
structures, and modules associated with a phenotype of interest
(Randhawa and Pathania 2020). For example, infection time–
course transcriptomes enable the use of gene coexpression as ev-
idence to increase confidence of predicted protein–protein inter-
actions (PPIs) and build phenotype-specific subnetworks (Braun
et al. 2013; Petrey and Honig 2014; Jiang et al. 2016). In addition,
expression quantitative trait locus (eQTL) data can be used to ob-
tain disease modules (DMs) in the interactome and provide ge-
netic and physical connections between nodes, avoiding biases
given by the amount of information of well-studied disease genes
(Dwivedi et al. 2020; Wang et al. 2020).

To discover new connections in NLR-based immunity, we used
interolog inference to develop a predicted interactome for the
Triticeae grain crop, barley, using experimentally validated inter-
actions in several model organisms and crop species. Then, using
time–course gene expression and eQTL data, we assembled sev-
eral subnetworks associated with resistance, susceptibility, and
the dynamics of defense during key stages in powdery mildew in-
fection. Lastly, we used yeast-two-hybrid (Y2H) next-generation-
interaction screens (NGIS) to confirm 15 PPIs between the MLA6
NLR-receptor and barley proteins, including a new polyamine
factor 1-binding protein. We then extended these interactions to
additional synthesized MLA alleles, wheat and rye orthologs, and
NLR outgroups. Fourteen (9 validated by Y2H-NGIS and 5 from
previous literature) of the 21 MLA interactors could be

incorporated into the barley interactome and by extension, cellu-
lar compartments. These analyses enabled us to propose a pre-
dictive model of MLA cellular localization and to link the receptor
with gene coexpression during resistance.

Methods
Collection of infection time course RNA-Seq and
differential expression analysis
An infection time course of CI 16151 (Mla6, Bln1, Sgt1) and derived
fast-neutron mutants bln1-m19089 (Mla6, bln1, Sgt1), mla6-
m18982 (mla6, Bln1, Sgt1), rar3-m11526 (Mla6, Bln1, Sgt1DKL308-309),
and (mla6þbln1)-m19028 (mla6, bln1, Sgt1) was used for RNA-Seq
analysis. CI 16151 contains the functional Mla6 R gene and is re-
sistant to Bgh isolates that contain the effector, AVRa6. Bln1
(Blufensin1) is a negative regulator of pattern-triggered immunity
(PTI), whose silencing results in down-regulation of genes associ-
ated with basal defense (Meng et al. 2009; Xu et al. 2015). The re-
sistant bln1 mutant, m19089, exhibits enhanced basal defense.
Mla6 is deleted in the m18982 mutant, which is thus, susceptible.
Rar3 (required for Mla6 resistance3) is required for Mla6-mediated
generation of H2O2 and the hypersensitive response (HR). This
susceptible mutant contains a Lys–Leu deletion in the SGT1-
specific domain of SGT1, which interacts with NLR proteins
(Chapman et al. 2021, 2022). The (mla6 þ bln1) double mutant is
susceptible as it contains the same Mla6 deletion as in m18982.

Seven-day-old first leaves were challenged with Bgh isolate
5874 (AVRa1, AVRa6, AVRa12) according to Caldo et al. (2004), posi-
tioned randomly in a controlled growth chamber (18�C, 8 h dark-
ness, 16 h light), and harvested into liquid nitrogen from a split-
plot design at 0, 16, 20, 24, 32, and 48 h after inoculation (HAI)
(5 genotypes � 6 time points � 3 biological replications). Total
RNA was extracted using a hot (60�C) phenol/guanidine thiocya-
nate method as previously described (Caldo et al. 2004, 2006).
Single-end mRNA libraries were prepared with the Illumina
TruSeq stranded RNA sample preparation kit (Illumina, Inc., San
Diego, CA, USA) and sequenced at the Iowa State University DNA
facility (Ames, IA, USA) using 100-bp reads and the Illumina
HiSeq2500 system. Raw reads (NCBI-GEO accession GSE101304)
were processed using Trimmomatic V0.40 (Bolger et al. 2014) and
Salmon V1.8.0 (Patro et al. 2017), taking as references the barley
TRITEX (Monat et al. 2019) and Bgh DH14 (Spanu et al. 2010;
Frantzeskakis et al. 2018) annotations. Taxon-specific normaliza-
tion to the raw counts was applied: Salmon raw count matrices
were separated for barley and Bgh and size factors were calcu-
lated using median-of-ratios normalization (Anders and Huber
2010), which were then combined to calculate the final normal-
ized counts matrix (Klingenberg and Meinicke 2017).
Differentially expressed (DE) genes were identified using a
DESeq2 V1.34.0 (Love et al. 2014) model with read counts as re-
sponse, and timepoint and genotype terms as explanatory varia-
bles. We controlled for multiple testing using Benjamin and
Hochberg methodology (Benjamini and Hochberg 1995), calling
DE genes with an adjusted P-value of <0.001.

Interactome reconstruction
We constructed a Hordeum vulgare predicted interactome (HvInt),
by adapting the interolog method outlined by Matthews et al.
(2001), Geisler-Lee et al. (2007), and Nakajima et al. (2018).
Homologs of H. vulgare with Arabidopsis thaliana, Oryza sativa, and
Zea mays were obtained from the Plant Compara tables V96 from
Ensembl Plants, filtering those that met high confidence similar-
ity scores from the gene tree (>25%) (Howe et al. 2020). Homologs
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between barley and Saccharomyces cerevisiae were determined by
InParanoid8 (Sonnhammer and Östlund 2015) by applying the
maximum score cutoff of 100%. Next, experimentally validated
PPIs for the reference organisms were mined from BioGRID
V4.1.190 (Stark et al. 2006), the PPI database for Maize (PPIM) (Zhu
et al. 2016), and the Predicted Rice Interactome Network (PRIN)
database (Gu et al. 2011). Further PPIs were obtained from the
pan–plant protein interactome (McWhite et al. 2020) and research
literature (Bieri et al. 2004; Shen et al. 2007; Mukhtar et al. 2011;
Chang et al. 2013; Weßling et al. 2014; Wang et al. 2016; Trigg et al.
2017; Smakowska-Luzan et al. 2018; Wierbowski et al. 2020). For
each species, interactions were updated to the most recent
Ensembl genome annotation and then, the compiled list was con-
verted to barley gene IDs using the high confidence homologs.
The final nonredundant interactome was obtained by removing
duplicated interactions and tracking the species where they were
originally reported. Code used to generate HvInt is posted at the
GitHub page https://github.com/Wiselab2/Barley_Interactome
[accessed 15 April 2022].

The infection–time–course expression dataset was integrated
with HvInt by adding information to the edges and the nodes. We
first assigned the weight of the edges as the pairwise distance
correlation calculated from the complete expression dataset, or
subsets of it based on the infection phenotype using a permuta-
tion test as described below (see Construction of resistant and suscep-
tible interactomes). Second, we adapted the DiffSLC (Mistry et al.
2017) pipeline to use expression data from RNA-Seq and compute
the node essentiality of the proteins in the predicted barley inter-
actome (deletion of an essential protein is associated with lethal-
ity). We characterized the predicted network, using walktrap
clustering (Sz�ekely et al. 2007) and Gene Ontology (GO) term en-
richment using the reported TRITEX annotation and
clusterProfiler V4.2.2 (Yu et al. 2012; Monat et al. 2019). Scale-free
and small-world network properties were tested for the final pre-
dicted interactome using the igraph R package V1.2.7 (Watts and
Strogatz 1998; Albert et al. 1999; Csardi and Nepusz 2006).
Network topological properties such as protein essentiality with
DiffSLC (Mistry et al. 2017), degree, betweenness (Csardi and
Nepusz 2006) and distance correlation (Sz�ekely et al. 2007) were
used to characterize the subnetworks obtained from HvInt.

DM prediction using eQTL and interactome data
We used Node2vec-Hierarchical Clustering (N2V-HC; method of
disease module identification for multi-layer biological networks)
(Wang et al. 2020) to integrate HvInt with eQTL data collected dur-
ing Bgh appressorial penetration (16 HAI) and haustorial develop-
ment (32 HAI) (Surana et al. 2017). All genetic markers with
significant eQTL associations were used as input, removing asso-
ciations with adjusted P-values larger than 0.001. The SNP and
eQTL matrices used as input to the software were built to match
the chromosome markers with linked genes (input as SNP table)
and eQTL associations (input as eQTL table). The resulting mod-
ules for each timepoint were analyzed using GO enrichment.
Results were compared and classified as core response (common
between the 2 timepoints) and unique to each infection stage.
Core and unique GO terms for the DMs were analyzed using DE
enrichment between the resistant CI 16151 (Mla6, Bln1, Sgt1) and
the susceptible m18982 (mla6, Bln1, Sgt1) genotypes, using an ad-
justed P-value threshold <0.001. If a gene associated with the GO
term was DE, then it was called DM DE. Results from these analy-
ses were summarized with a schema using Biorender.com.
Expression profiles of the DM DE genes associated with each
group were plotted using R V4.1.3 (RCoreTeam 2013).

Construction of resistant and susceptible
interactomes
Resistant and susceptible barley interactomes were obtained us-
ing expression distance correlation (Sz�ekely et al. 2007). The infec-
tion–time–course RNA-Seq was separated by disease phenotype
and used to generate conditional subnetworks consisting of sig-
nificantly coexpressed interactions (Jiang et al. 2016). The coex-
pression significance threshold used to generate each
subnetwork was obtained by building a null distribution of this
parameter. The RNA-Seq count data, grouped by phenotype,
were permuted for each timepoint leaving the replicates as a
block. The resulting distribution built from 10,000 permutations
was used to calculate empirical P-values and correlation thresh-
olds for significance of the pairwise correlation values. Using a P-
value of 0.05, we calculated the significance correlation threshold
for the resistant and susceptible subnetworks. Edges with values
below the correlation thresholds were removed from the network
to obtain the resistant [HvInt(R)] and susceptible [HvInt(S)] inter-
actomes.

The differentially coexpressed resistant [HvInt(R–S)] and suscep-
tible [HvInt(S–R)] subnetworks were obtained by removing the com-
mon interactions between HvInt(R) and HvInt(S), [HvInt(R¼S)],
from these subnetworks, respectively. The differentially coex-
pressed interactomes were further characterized using topological
properties. Significance of the differences in these properties were
calculated using Wilcoxon rank sum tests. Hypergeometric tests
were applied to look for enrichment of eQTL associations in the
HvInt(R), HvInt(S), HvInt(R–S), HvInt(S–R), and HvInt(R¼S) subnet-
works. The resistant subnetworks HvInt(R) and HvInt(R–S) were
clustered using a walktrap algorithm (Csardi and Nepusz 2006),
and clusters were analyzed using GO enrichment with
clusterProfiler V4.2.2 (Yu et al. 2012). Visualization was done using
Cytoscape V3.7 (Shannon et al. 2003) and the R package RCy3
V2.14.2 (Gustavsen et al. 2019).

Building an MLA protein–protein interactome
subnetwork anchored with validated Y2H-NGIS
data
MLA6 aa 1–225 (Halterman et al. 2001), representing the CC and
NB domains, was screened as bait using Y2H-NGIS, with a 3-
frame cDNA prey library of 1.1� 107 primary clones generated
from the infection time course (Surana 2017; Velásquez-Zapata
et al. 2021). A top list of candidate interactors was selected from
the Borda ensemble provided by Y2H-SCORES (Velásquez-Zapata
et al. 2021). Interacting prey fragments were determined using
Integrative Genomics Viewer (IGV) alignments obtained from
NGPINT (Banerjee et al. 2021), reported in-frame prey transcripts
with the highest in-frame score from Y2H-SCORES, and clones
inserted into the prey vector. After transforming the candidates
into yeast, binary Y2H tests (Dreze et al. 2010) were performed un-
der 3 levels of selective media: Diploid selection (SC–LW), interac-
tion selection (SC–LWH), and selection (SC–LWH) using 3
dilutions (10�, 10�1, and 10�2) and 0.5 mM 3-AT. Validated inter-
actions were extended to the CC þ NB domain sequences
encoded by Mla alleles Mla1, Mla3, Mla7, Mla7-2, Mla8, Mla9, Mla10,
Mla12, Mla13 (Zhou et al. 2001; Halterman et al. 2003; Shen et al.
2003; Halterman and Wise 2004; Seeholzer et al. 2010;
Bettgenhaeuser et al. 2021), and orthologs including TmMla, Sr33,
and Sr50 (Jordan et al. 2011; Periyannan et al. 2013; Mago et al.
2015). Sr22, Pbr1, Pm3a, and Zar1 were used for the outgroup
(Salanoubat et al. 2000; Srichumpa et al. 2005; Steuernagel et al.
2016; Carter et al. 2019). Protein sequences of the CC þ NB
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domains from these proteins were aligned MUSCLE V5 (Edgar
2004), and a phylogenetic tree constructed using maximum likeli-
hood with a Jones–Taylor–Thornton substitution model and a
gamma-distributed-rate among sites model using MEGA-X
(Tamura et al. 2011).

The MLA protein–protein interactome (MLAInt) subnetwork
was built by retaining the nodes in the shortest paths computed
for any pair of MLA interactors. First and second neighbors to the
nodes in this subnetwork were added to complete the MLAInt.
This subnetwork was clustered using a fast-greedy algorithm,
and clusters were analyzed using clusterProfiler V4.2.2 for GO (Yu
et al. 2012) and a hypergeometric test for eQTL (Surana et al. 2017)
enrichment. Topological properties were used to characterize
MLAInt. Visualization was done using igraph V1.2.7 (Csardi and
Nepusz 2006).

Phylogenetic trees of predicted barley TF families
Basic helix–loop–helix (bHLH) and homeobox (HB) TFs were pre-
dicted, using the TRITEX Morex r2 barley high confidence protein
reference and PlantTFDB V4.0 (Jin et al. 2017; Monat et al. 2019).
The sequences were aligned using MUSCLE V5 (Edgar 2004), and
then the trees were calculated using maximum likelihood with a
Jones–Taylor–Thornton substitution model and a gamma-
distributed-rate among sites model. The resulting trees were an-
notated using the ggtree R package V3.2.1 (Yu et al. 2017). The an-
notation consisted in plotting: (1) genes with position weight
matrix (PWM) DNA-binding domain according to our database
search (Matys et al. 2006; Weirauch et al. 2014; Jin et al. 2017); (2)
log2 of the foldchange of the RNA-Seq expression data for the
comparison between CI 16151 (Mla6, Bln1, Sgt1) wild-type geno-
type and the m18982 (mla6, Bln1, Sgt1) mutant in a time course
experiment of infection (0, 16, 20, 24, 32, and 48 HAI); and (3) pre-
viously characterized TFs in plant immunity.

Results
The barley predicted interactome shows protein
essentiality in defense
As outlined in Fig. 1, we generated a high-quality, barley interac-
tome, HvInt, based on the interologs method of Matthews et al.
(2001). Only experimentally validated interactions were used for
the prediction, including PPIs across several plant species reported
in the pan–plant protein interactome (Bieri et al. 2004; Stark et al.
2006; Shen et al. 2007; Gu et al. 2011; Mukhtar et al. 2011; Chang
et al. 2013; Weßling et al. 2014; Wang et al. 2016; Zhu et al. 2016;
Trigg et al. 2017; Smakowska-Luzan et al. 2018; McWhite et al. 2020;
Wierbowski et al. 2020). HvInt (Supplementary Data 1) contains
66,133 edges and 7,181 nodes and can be used as baseline network
to investigate different signaling events in the barley cell. Here, we
show how HvInt can be customized to study immune response,
via integration of defense-specific datasets (Fig. 1). Figure 2a illus-
trates the number of interactions mined from the different species
used for interologs prediction. About 87.8% of the predicted inter-
actions are supported by experimental validations in Arabidopsis
thaliana, followed by S. cerevisiae (11.8%), O. sativa (0.012%), and Z.
mays (0.0005%). The relative percentages of interologs are directly
correlated to the number of validated PPI available for each species
at the time of compiling HvInt, with model organisms (Arabidopsis
and yeast) foremost over cereal crops. Therefore, as a quality con-
trol, properties of HvInt were compared with the collected interac-
tions in A. thaliana [Arabidopsis thaliana interactome (AtInt)], which
comprise 73,960 interactions and 11,253 proteins (Supplementary
Data 1). This analysis demonstrated that HvInt is robust, as it

maintains the power-law and small-world properties of the AtInt
network (P-value >0.05 for the Kolmogorov–Smirnov tests, global
clustering coefficient ratio >1 and an average shortest path length
ratio �1) (Watts and Strogatz 1998; Albert et al. 1999).

We applied a walktrap clustering algorithm on HvInt using
distance correlation from expression data as edge weights
(Sz�ekely et al. 2007). For this purpose, we used RNA-Seq data from
our infection time course of the resistant barley line CI 16151
(Mla6, Bln1, Sgt1) and 4 fast-neutron derived mutants challenged
with Bgh isolate 5,874 (AVRa6), as shown in Fig. 2b (Hunt et al.
2019; Chapman et al. 2021). We acquired 54 clusters comprising
1–2,313 proteins, with 97.6% classified in the top 5 clusters (2, 8,
11, 13, and 15). We then calculated node essentiality using
DiffSLC (Supplementary Data 2), which correlates with function-
ally important nodes, whose deletion is associated with lethality
(Mistry et al. 2017). The top 1,000 essential proteins, which are in-
volved in 80.7% of the interactions in HvInt, were separated into
4 groups (top 100, 101–200, 201–500, and 501–1,000), distributed
in 8 clusters and significantly enriched in clusters 13 and 15
(Supplementary Data 2). Lastly, essential proteins were analyzed
using GO terms (Fig. 2e). The top 100 were enriched with terms
associated with ribosome and MAP kinase activity; 101–200 were
associated with channel activity, proteasome complex and ubiq-
uitin-dependent catabolism; and 201–500 were associated with
chaperone-mediated protein folding, auxin-activated signaling
pathway, and ionotropic glutamate receptor (GLR) activity.
Finally, 501–1,000 were associated with proton-exporting ATPase
activity and translation. Some of the top essential proteins are
linked with fundamental cellular processes while others have
functions associated with plant immunity (Zeng et al. 2006; Forde
and Roberts 2014; Lee et al. 2015). Key examples are described in
subsequent sections.

Disease modules (DM) reveal barley cellular
responses at Bgh penetration and haustorial
development
Proteins associated with disease phenotypes tend to be tightly
connected at the physical level, generating interaction modules
and pathways (Barabási et al. 2011; Sharma et al. 2015). The con-
cept of DM emerges then to describe this phenomenon, i.e. when
interactome clusters are functionally linked to a disease pheno-
type through genetic and physical associations (Sharma et al.
2015). We adapted the disease-module concept, originally devel-
oped in the context of network medicine (Barabási et al. 2011), to
add temporal-defense information to HvInt at 2 key infection
stages of barley by Bgh. We used N2V-HC (Wang et al. 2020) to in-
tegrate HvInt with eQTL data derived from transcriptome analy-
sis of the barley Q21861�SM89010 doubled-haploid population
during appressorial penetration (16 HAI) and haustorial develop-
ment (32 HAI) (Surana et al. 2017). The dataset contained 317
markers mapped to 1,009 genes associated with 16,943 eQTLs.
From those, we filtered out associations with adjusted P-values
larger than 0.001, ending up with 4,357 eQTLs at 16 HAI and 6,375
at 32 HAI. This resulted in DMs with proteins enriched with
eQTLs by timepoint (Supplementary Data 3).

We performed GO analyses of the DMs to further understand
the temporal response to powdery mildew. Modules were associ-
ated with individual timepoints, and a core response common to
both timepoints. At penetration, we found 85 unique GO terms
(adjusted P-values <0.05) while haustorial development had 274,
and 499 were associated with the core response. The derived GO
terms were explored further by surveying for enrichment of DE
genes (adjusted P-values <0.001) extracted from our RNA-Seq
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data described above. By comparing the resistant CI 16151 (Mla6,
Bln1, Sgt1) and the derived susceptible mutant, mla6-m18982
(mla6, Bln1, Sgt1), we could focus on gene sets that were function-
ally specific and displayed expression differences between com-
patible and incompatible interactions connected to the Mla6 NLR.
The core response consisted of 110 GO terms that had DE genes
associated at both 16 HAI and 32 HAI (shown in Supplementary
Fig. 1). The most significant were associated with vesicle traffick-
ing, transporter activity, serine/threonine kinase signaling, and
response to biotic stimulus, which is consistent for a host–patho-
gen interaction scenario. Unique GO terms at appressorial pene-
tration included protein import into mitochondrial matrix and
the polyamine biosynthetic process. In contrast, haustorial devel-
opment was characterized by the unique GO terms cell wall mac-
romolecule catabolic process, chitin catabolic process, and
pyruvate metabolic process.

An overview of key DE genes associated with core and unique
GO terms by time point is illustrated in Fig. 3a. We designated
these genes as DM DE genes (Supplementary Fig. 1 and Data 3).
Seven DM DE genes are included in the combined 16- and 32-HAI
core response: alcohol dehydrogenase, 3 kinases, receptor-like
protein kinase, GLR, and aquaporin. Thirty unique DM DE genes
were identified during fungal penetration (16 HAI), including 2
WRKY, 1 agamous MADS-box TF, 2 DETOXIFICATION proteins
and several kinases. Lastly, 67 additional DM DE genes were iden-
tified during haustorial development (32 HAI), including chiti-
nase, mildew resistance locus o (MLO)-like protein, LRR receptor-
like protein, malate dehydrogenase, and several transporters.
Then, to interrogate activity over time, DM DE genes were visual-
ized by expression profile plots, contrasting the resistant progeni-
tor, CI 16151 (Mla6, Bln1, Sgt1), to the susceptible mutant, m18982
(mla6, Bln1, Sgt1) (selected examples are shown in Fig. 3b; the
complete set is presented in Supplementary Fig. 2). Because DM

DE genes were initially selected based on eQTL associations, and
not clustered by gene expression, the patterns of transcript accu-
mulation were connected to phenotype, and thus characterized
by significant differences between the 2 genotypes across all 6
timepoints, or in contrast, an abrupt expression change at pene-
tration, or haustorial development, in one of the genotypes.

Coexpressed interactomes during MLA-specified
resistance and susceptibility
Time–course RNA-Seq data empowers rapid visualization of dif-
ferential transcript accumulation in wild-type vs mutant back-
grounds and thus demonstrates the impact of pathogens on
immune signaling pathways. To complement the DM analysis
above, we identified immune-active subnetworks under resistant
and susceptible disease outcomes by integrating HvInt with our
infection–time–course RNA-Seq data. The RNA-Seq read counts
for each group of infection phenotypes in Fig. 2b were used to cal-
culate coexpression values defined as pairwise distance correla-
tions across genes. HvInt was then subset into the resistant
[HvInt(R)] and susceptible [HvInt(S)] interactomes by retaining
significantly coexpressed pairs under each phenotype. We de-
fined significant correlation values for each subnetwork using a
permutation test (Fig. 4a; see Methods).

The resistant HvInt(R) subnetwork includes all edges with
high expression distance correlation for the resistant genotypes.
This subnetwork contains 3,120 nodes and 10,693 interactions
(Supplementary Data 4) and was clustered into 33 groups with
GO enrichment annotations as shown in Supplementary Data 4.
The filtered susceptible subnetwork HvInt(S) has 12,798 interac-
tions and 3,525 proteins, clustered in 45 modules with GO anno-
tations reported in Supplementary Data 4. There is an overlap of
9,292 interactions and 2,739 proteins between the HvInt(R) and
HvInt(S) subnetworks [Fig. 4b; HvInt(R¼S)]. We then removed the

Fig. 1. HvInt bioinformatic workflow. HvInt was generated from experimentally validated orthologs from A. thaliana, O. sativa, Z. mays, and S. cerevisiae
and followed by integration of context-specific “omics” datasets associated with response to the powdery mildew pathogen. An eQTL dataset was used
for DM prediction, time–course RNA-Seq of wildtype and fast-neutron derived immune mutants to build resistant and susceptible subnetworks, and
yeast-two-hybrid next-generation-interaction screens (Y2H-NGIS) to build an MLA associated subnetwork. R, resistant; S, susceptible; HAI, hours after
inoculation.
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common interactions HvInt(R¼S) from HvInt(R) to obtain the dif-
ferentially coexpressed resistant interactome HvInt(R–S) with
1,401 interactions and 1,247 proteins (Supplementary Data 4). We
postulate that HvInt(R–S) shows unique, coexpressed interactions
associated with the barley immune response to Bgh, therefore,
represents the focus of our following analyses.

We tested for differences among the common HvInt(R¼S), the
differentially coexpressed resistant HvInt(R–S), and susceptible
HvInt(S–R) interactomes by computing different topological prop-
erties that can be associated with the information content and
flow in the networks. DiffSLC, degree, betweenness, and expres-
sion distance correlation between the 3 subnetworks were com-
pared as shown in Fig. 4c. In addition, Wilcoxon rank sum tests
were performed to quantify the significance of the differences.
These analyses showed that HvInt(R–S) and HvInt(S–R) had sig-
nificantly higher DiffSLC, degree and betweenness and lower ex-
pression distance correlation than HvInt(R¼S) (P-values
<1�10�100). This indicates that the proteins in the unique
HvInt(R–S) and HvInt(S–R) have higher essentiality than the com-
mon resistant and susceptible HvInt(R¼S) subnetwork.
Importantly, these differences are associated with higher degree
centrality, and not higher distance correlation, as the latter was
lower in the differentially coexpressed subnetworks. We focused
the following analyses on the resistant interactomes, as we were
interested in exploring their functional significance.

The differentially coexpressed, resistant subnetwork
HvInt(R–S) was analyzed using GO term enrichment. Figure 4d
shows the HvInt(R), differentiating nodes and edges from
HvInt(R–S) in red, and HvInt(R¼S) in light blue. Community
analysis revealed different distributions of these subnetworks in
each cluster, retaining GO enriched terms that have been associ-
ated with plant immunity including: calcium ion binding, protein
ubiquitination, and MAP kinase activity for the HvInt(R) cluster 1;
vesicle trafficking, protein binding and transport, SNAP receptor
activity, and GTPase activity for HvInt(R) cluster 3; translation,
protein binding, and photosynthesis for HvInt(R) cluster 8; iono-
tropic GLR signaling pathway and transporter activity for
HvInt(R) cluster 13. All terms are reported in Supplementary
Data 4. Finally, using hypergeometric tests, enrichment of eQTL
associations was calculated for each subnetwork, taking HvInt as
reference. eQTLs were split by timepoint, using genome-wide or
only Mla associations, a previously reported trans eQTL hotspot
(Surana et al. 2017). From all the listed tests, significant enrich-
ment (adjusted P-values <0.001) of Mla eQTL associations was
only identified in the resistant networks HvInt(R) and HvInt(R–S)
at 32 HAI during haustorial development (test adjusted P-values
7.76� 10�5 and 5.56�10�13, respectively). From a total of 1,247
proteins in HvInt(R–S), 299 are associated with the Mla trans
eQTL, accounting for 23.9% of the total number of nodes (1.7
times more than HvInt which contains only 14% of associations).

Interactors of MLA are conserved across orthologs
and other plant NLRs
Previously, we developed the Y2H-SCORES statistical software,
and as proof of concept, used a Y2H-NGIS to identify 14 new inter-
acting proteins of the MLA6 CC and NB domains (Velásquez-
Zapata et al. 2021). To continue to build HvInt resources in this
study, we also confirmed a new polyamine factor 1-binding pro-
tein, predicted to mediate translocation of NLRs between the nu-
cleus and the cytoplasm, as an additional interactor for the
MLA6CCþNB domain. Then, because isoforms of the MLA immune
receptor have been shown to function in a number of plant–fungal
interactions (Jordan et al. 2011; Periyannan et al. 2013; Mago et al.

2015; Cesari et al. 2016; Krattinger and Keller 2016; Bettgenhaeuser
et al. 2021; Sánchez-Mart�ın and Keller 2021), we further tested
these 15 MLA6CCþNB interactors against 9 additional MLA alleles, 3
MLA orthologs, as well as 4 diverse NLRs to explore the extent of
signaling domain binding. Binary Y2H tests were performed with
synthesized CC þ NB domains that correspond to specific sub-
clades of MLA alleles as shown in the phylogenetic tree in Fig. 5a,
i.e. MLA12, MLA13, MLA9, and MLA7 (designated MLA13-type);
MLA7-2, MLA10, MLA3, and MLA6; as well as MLA1 and MLA8
(MLA1-type). The MLA13-type CC þ NB domain present in MLA7,
MLA9, MLA12, and MLA13 differs from MLA6 by Q91K, P150T, and
D177G amino-acid substitutions. MLA7-2 differs from the MLA7
variant by an EL110 insertion. MLA3 has a hybrid structure—the
same as MLA13 at Q91K and P150T, but switches to MLA6 at D177.
MLA10 differs from MLA13-type by a single E41D change in the CC
domain, and MLA1 and MLA8 are further diverged from MLA6,
with S92F, L102F, and P150T (Halterman et al. 2001, 2003; Zhou
et al. 2001; Shen et al. 2003; Halterman and Wise 2004; Seeholzer
et al. 2010; Bettgenhaeuser et al. 2021). Positive interactions were
found for all the validated targets with MLA3, MLA6, and the
MLA13-type CC þ NB baits as shown in Fig. 5b and Supplementary
Fig. 3, with some variation in the strength of the interactions.
MLA10 had 1 negative interaction with the OBERON 2-like protein
while the MLA7-2 CCþ NB lost 3 interactions with PI4K-a, disulfide
isomerase and PPR 336, and the MLA1-type had 2 negative confir-
mations with PI4K-a and PPR 336.

As illustrated in Fig. 5a, phylogenetic analysis of the CC þ NB
domains of MLA orthologs and other diverse NLRs grouped Sr33
and TmMLA in a cluster, followed by Sr50, Sr22, PBR1, ZAR1, and
PM3A. Sr33 (Periyannan et al. 2013), Sr50 (Mago et al. 2015), and
TmMla (Jordan et al. 2011) had several positive interactions, ex-
cepting golgin 5, and differential strength with OBERON 2-like,
PI4K-a, disulfide isomerase, PPR 336, and the POLAR protein.
Unexpectedly, we also identified interactions with some outgroup
NLRs, including 13 with PBR1 (Carter et al. 2019) and 4 with ZAR1
(Salanoubat et al. 2000). Interestingly, the CC þ NB of the wheat
powdery mildew resistance protein, PM3A (Srichumpa et al. 2005),
and the wheat stem rust NLR, Sr22 (Steuernagel et al. 2016) dis-
played no PPI with these MLA targets. Nevertheless, these results
suggest that many of the identified interactors are MLA-
associated and that they can be conserved across this NLR fam-
ily. All bait and prey sequences are reported in Supplementary
Text 1. Differences among MLA and the other NLR baits are
reported in the protein alignment in Supplementary Text 2 and
the full Y2H experiment is shown in Supplementary Fig. 3.

Phylogenetic and network analysis of MLA
interactors predict NLR localization and signaling
To further explore signaling events triggered by MLA, we gath-
ered all reported MLA protein interactors for further analysis.
These included HSP90, SGT1, MIR1, WRKY1, WRKY2, and MYB6
(Bieri et al. 2004; Shen et al. 2007; Chang et al. 2013; Wang et al.
2016). We started by positioning the interactors in HvInt, for a to-
tal of 14 targets, including 9 validated by us using Y2H (Dreze
et al. 2010), and 5 previously reported in the literature. Table 1
summarizes all previous and novel interactions for MLA and
other NLR proteins, their descriptions, conservation of the inter-
action, as well as A. thaliana orthologs and the predicted cellular
location in the TAIR database (Berardini et al. 2015). Predicted cel-
lular localizations included nuclear, cytoplasmic, and organelle-
associated proteins. Predicted functions included transcription,
vesicle transport, protein folding and degradation, among others.
These analyses suggest novel localizations of the MLA receptor
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Fig. 2. HvInt, the predicted barley interactome. a) Venn diagram with the number of interactions in HvInt across the species of origin. b) Wild-type CI
16151 (Mla6, Bln1, Sgt1) and derived immune mutants bln1-m19089 (Mla6, bln1, Sgt1), mla6-m18982 (mla6, Bln1, Sgt1), rar3-m11526 (Mla6, Bln1, Sgt1DKL308-

309, and (mla6þbln1)-m19028 (mla6, bln1, Sgt1) 7 days after inoculation with Bgh isolate 5874 (AVRa6). R, resistant; S, susceptible; mutant alleles are
designated below the images in red. c) GO term enrichment of the top essential proteins in HvInt.
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Fig. 3. Identification of DMs at Bgh appressorial penetration and haustorial development. a) Schematic summary of the DM DEs at penetration (16 HAI)
and haustorial development (32 HAI), separated by core and unique responses. Created with BioRender.com. b) Examples of time–course expression
patterns of DM DE genes by type of response; CI 16151 (Mla6, Bln1, Sgt1) in black and m18982 (mla6, Bln1, Sgt1) in red, significant differences (adjusted P-
values <0.001) are designated by an asterisk. The complete set of DM DE transcript patterns is presented in Supplementary Fig. 2.
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Fig. 4. Construction of resistant and susceptible interactomes. a) Experimental and permuted distributions of the expression distance correlations in
HvInt by disease phenotype, Resistant (R) or Susceptible (S); significance thresholds (P-value <0.05) are marked. b) Distribution of interactions and
proteins in the resistant [HvInt(R)] and susceptible [HvInt(S)] interactomes, separating by common [HvInt(R¼S)] and difference [HvInt(R–S), HvInt(S–R)]
subnetworks. c) Network properties of the resistant interactome, separated by common interactions with the susceptible network [HvInt(R¼S)] and the
resistant unique interactions [HvInt(R–S)]. d) Clustering and GO annotation of the resistant interactome HvInt(R), separating the differentially
coexpressed subnetwork HvInt(R–S) and the common HvInt(R¼S). Each cluster is grouped in a circular layout.
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and molecular mechanisms that regulate its function over the

course of fungal infection and disease resistance.
Two MLA interacting TFs, bHLH and HB, were not present in

the current HvInt. Therefore, these were characterized using phy-

logenetics and annotation of the TF gene families (Fig. 6a).

Annotation included available knowledge of a role in immunity

(Coego et al. 2005; Cabello et al. 2012; Gao et al. 2014; Xu et al. 2014;

Bruessow et al. 2021), the presence of a PWM (Matys et al. 2006;

Weirauch et al. 2014; Jin et al. 2017), and the expression fold-

change values between the wild-type CI 16151 (Mla6, Bln1, Sgt1)

and susceptible m18982 (mla6, Bln1, Sgt1) mutant, covering 0–48

HAI. We found 173 members of the bHLH family in barley, as

shown in Fig. 6a. The MLA-interacting bHLH interactor is diver-

gent from other TFs characterized in defense response or pos-

sessing a PWM. The MLA-interacting bHLH appears to have a

similar expression pattern in CI 16151 (Mla6, Bln1, Sgt1) and

m18982 (mla6, Bln1, Sgt1) across the time course. We performed a

similar analysis for the HB protein finding 109 family members.

The MLA-interacting HB belongs to a previously studied clade,

with a PWM reported and one related TF involved in plant resis-

tance (Gao et al. 2014). The expression heatmap shows overex-

pression of the MLA-interacting HB in CI 16151 (Mla6, Bln1, Sgt1)

when compared with m18982 (mla6, Bln1, Sgt1).

We then computed an MLA-associated interactome (MLAInt),

which consisted of proteins in the shortest paths between each

pair of MLA interactors that do not pass-through MLA, adding the

first and second neighbors to the resulting network

(Supplementary Data 5). MLAInt has 1,566 nodes and 13,203

edges clustered into 8 groups, with the 14 MLA targets distributed

in 5 of the MLAInt clusters (Fig. 6b and Table 1). As suggested by

Table 1, MLA interactors point to different possible cellular local-

izations through experimental evidence of the Arabidopsis ortho-

logs. These were further supported by the predicted function and

localization of the MLAInt clusters. MLA interactors and other pro-

teins in MLAInt were clustered in different cellular localizations,

giving them functional independence within the network. GO

term analysis of the MLAInt clusters highlights cellular processes

associated with MLA-target signaling including vesicle-mediated

transport (cluster 2), MAP kinase cascades (cluster 3), vacuolar

transport, endosome, transmembrane receptor protein serine/

threonine kinase activity (cluster 5), signaling and innate

immune response (cluster 7), and trans-Golgi network and endo-

some (cluster 8).
MLAInt has significantly higher essentiality than HvInt in

immunity (DiffSLC), degree centrality, betweenness and expres-

sion distance correlation, as supported by Wilcoxon rank sum

Fig. 5. Interactors of MLA CCþNB alleles, orthologs and NLR outgroups. a) Phylogenetic analysis of CCþNB domains of MLA-associated alleles and NLRs
using a protein alignment with MUSCLE (Edgar 2004) followed by a maximum likelihood tree estimation; identical sequences are enclosed in boxes.
Evolutionary distance is shown at the bottom of the tree. b) Y2H binary confirmation of the interactors (across the top) aligned with the phylogenetic
tree in (a) (top to bottom). AD designates activation domain (left); BD designates binding domain (top). Empty designates vector without insert. SC-LW
media was used as control for diploid growth, and the interaction was tested using selection with SC-LWH media using 3 dilutions (100, 10�1, 10�2). The
image shown was taken from the 100 dilution at 0.5 OD and photographed 7 days after plating. The full experiment with all 3 dilutions and the 3-AT
specificity control is shown in Supplementary Fig. 3.
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tests (P-values 8.68� 10�93, 0, 2.58�10�29, 1.04�10�158, respec-
tively). The expression distance correlation was also compared
by separating the datasets by defense phenotype for each subnet-
work, finding higher values for MLAInt in all cases (Wilcoxon
rank sum tests P-values 2.71�10�53 for resistant genotypes and
4.7�10�33 for susceptible genotypes). Then, we measured the
shortest paths between MLA and the proteins in the HvInt,
HvInt(R¼S), and HvInt(R–S) networks. Distances between MLA
and HvInt(R–S) are significantly lower than between MLA and
HvInt or HvInt(R¼S) (t-test P-values 2.4�10�10 and 1.2�10�10, re-
spectively). MLA and 4 of its interactors were found as part of
HvInt(R–S) including SGT1, HSP90, WKRY2, and the ubiquitin Cue
protein. Among them, SGT1 and HSP90 had the highest values of
protein essentiality, degree and betweenness (within the top 20%
of the values for the nodes in the network) and had significant
eQTL associations with Mla. These observations link MLAInt and
MLA interactors with resistant subnetworks.

Discussion
In this report, we aimed to create a comprehensive overview of
the different mechanisms that govern NLR-specified immunity in
the large-genome cereal, barley (Deng et al. 2020) and extend
these to species and fungal interactions within the Triticeae. We
used interolog inference to develop a predicted interactome
(HvInt), which was integrated with context-specific datasets to
model the immune response of barley to the powdery mildew
pathogen. There are a few caveats associated with this analysis,
however. First, there were much greater numbers of experimen-
tally validated PPIs in the model organisms, Arabidopsis and yeast;
this resulted in a bias toward these species for the number of
interactions in HvInt. Secondly, there was a possibility of ancient
genome duplications present in the lineages used (Paterson et al.
2004); this could lead to recovery of both orthologs and their di-
versified copies, although we selected the top candidates based

Table 1. MLA and NLR conserved interactors.

Gene ID and description Conservation of PPIs with MLA alleles and NLRs
as tested in Fig. 5 or inferred from the literature

A. thaliana ortholog
and cellular locationa

MLAInt clusterb

HORVU.MOREX.r2.3HG0259240 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT4G33650 C2
Dynamin 3A NLRCCþNB: Sr33, TmMLA, Sr50, PBR1 Cytoplasm, plasma membrane
HORVU.MOREX.r2.7HG0598540 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT2G17990 C2
Polyamine 1-binding protein NLRCCþNB: Sr33, TmMLA, Sr50, PBR1, ZAR1 Cytosol, plasma membrane
HORVU.MOREX.r2.3HG0192030c MLACCþNB: 1-type (Wang et al. 2016) AT3G54360 C3
MIR1 Cytosol, nucleus
HORVU.MOREX.r2.3HG0226630c MLA1LRR, MLA6Full length D502V autoactive

(Bieri et al. 2004; Chapman et al. 2022)
AT4G23570 C3

SGT1 Cytosol, nucleus
HORVU.MOREX.r2.5HG0406220c MLA1LRR, MLA6LRR (Bieri et al. 2004) AT5G56030 C3
HSP90 protein Golgi, cytoplasm
HORVU.MOREX.r2.5HG0439020 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT3G54630 C3
Kinetochore NDC80 NLRCCþNB: Sr33, TmMLA, Sr50, PBR1, ZAR1 Nucleus
HORVU.MOREX.r2.6HG0471210c MLACC: 1-type, 3, 6, 7-2, 10, 13-type (Shen et al. 2007) AT1G80840 C3
WRKY1 Nucleus
HORVU.MOREX.r2.7HG0616250c MLACC: 1-type, 3, 6, 7-2, 10, 13-type (Shen et al. 2007) AT4G31800 C3
WRKY2 Nucleus
HORVU.MOREX.r2.7HG0616280 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT4G31805 C3
POLAR protein NLRCCþNB: Sr50, TmMLA, PBR1 Cell periphery, cytoplasm, nucleus
HORVU.MOREX.r2.7HG0618510 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT5G32440 C3
Ubiquitin Cue protein NLRCCþNB: Sr33, TmMLA, Sr50, PBR1 Nucleus
HORVU.MOREX.r2.5HG0370990 MLACCþNB: 6, 7-2 AT5G48160 C5
OBERON 2-like protein NLRCCþNB: TmMLA, Sr50, PBR1, ZAR1 Nucleus
HORVU.MOREX.r2.1HG0038710 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT4G39050 C5
Kinesin NLRCCþNB: Sr33, TmMLA, Sr50, PBR1, ZAR1 Microtubule, nucleus
HORVU.MOREX.r2.3HG0255360d MLACCþNB: 3, 6, 10, 13-type AT3G02650 C7
Pentatricopeptide repeat

336 protein (PPR 336)
NLRCCþNB: TmMLA Mitochondrion

HORVU.MOREX.r2.1HG0071390 MLACCþNB: 3, 6, 7-2, 10, 13-type AT1G79830 C8
Golgin 5 NLRCCþNB: PBR1 Golgi, cytoplasm, nucleus
HORVU.MOREX.r2.1HG0058670 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT3G24140 NA
Basic helix–loop–helix (bHLH) NLRCCþNB: Sr33, TmMLA, Sr50, PBR1 Nucleus
HORVU.MOREX.r2.3HG0208220 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT2G34730 NA
WPP protein NLRCCþNB: Sr33, TmMLA, Sr50, PBR1 Mitochondrion, nucleus
HORVU.MOREX.r2.4HG0338560 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type Nucleus NA
Homeobox (HB) protein NLRCCþNB: Sr33, TmMLA, Sr50, PBR1
HORVU.MOREX.r2.5HG0402280 MLACCþNB: 1-type, 3, 6, 10, 13-type AT1G04980 NA
Disulfide isomerase NLRCCþNB: TmMLA Chloroplast, ER, cytosol, nucleus
HORVU.MOREX.r2.5HG0404360 MLACCþNB: 3, 6,10, 13-type Cytosol, ER NA
PI 4-kinase alpha (PI4K-a) NLRCCþNB: Sr50, PBR1
HORVU.MOREX.r2.7HG0598410 MLACCþNB: 1-type, 3, 6, 7-2, 10, 13-type AT4G27680, AT5G53540 NA
AAA-ATPase 1 NLRCCþNB: Sr33, TmMLA, Sr50, PBR1 Plasma membrane
HORVU.MOREX.r2.6HG0484160c MLACCþNB: 1-type (Chang et al. 2013) Nucleus NA
MYB6

Information including gene ID, description, conservation of PPIs across tested NLRs, A. thaliana ortholog, TAIR predicted cellular localization, and MLAInt cluster
number.
a Predicted localization based on experimental evidence of Arabidopsis orthologs.
b NA designates not assembled into the original HvInt, and thus, not present in MLAInt.
c Interaction confirmed in independent investigation.
d The PPR 336 prey (HORVU6Hr1G017930) is not reported in TRITEX (Monat et al. 2019). HORVU.MOREX.r2.3HG0255360 is the closest gene ID in this assembly.
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on protein similarity and gene trees (Sonnhammer and Östlund
2015; Howe et al. 2020). Nevertheless, conservation of protein
interactions across plant species has been shown by McWhite

et al. (2020), a principle that we could leverage to move forward
with the subsequent analyses of HvInt. To start, we measured
general network properties of HvInt and compared it with the

Fig. 6. Phylogenetic and network analysis of MLA interactors to predict receptor localization and signaling response. a) A total of 173 and 109 TFs from
the bHLH and HB families were compared, annotating the resulting trees with the log2 of the fold change expression of CI 16151 (Mla6, Bln1, Sgt1) when
compared with the m18982 (mla6, Bln1, Sgt1) genotype at each timepoint [0, 16, 20, 24, 32, 48 HAI (with 48 HAI on the outside)]. Information about the
availability of PWMs id marked in blue. Gray color in the heatmap indicates that the gene was not present in the expression dataset. TFs involved in
plant defense are highlighted with different colors in the phylogenetic tree and with the name on the outer edge of the trees. b) Clustering of the MLA-
associated interactome (MLAInt). Proteins in MLAInt were classified in 8 clusters (showed in colors) that were associated with different marked cellular
localizations and functions based on GO analysis. MLA interactors are shown by the cluster where they are positioned.
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Arabidopsis experimental interactome (AtInt), which we obtained
by collecting experimentally validated interactions in this organ-
ism (Supplementary Data 1). We found they have a power-law
distribution (scale-free) and are small-world networks. These
properties are important as they account for robustness of the
interactome, buffering perturbation effects and optimizing infor-
mation transfer (Watts and Strogatz 1998; Albert et al. 1999). We
extended these principles for the subsequent analyses that we
performed using the HvInt and subnetworks, integrating them
with barley defense-associated datasets, including results from
eQTL, immune signaling mutants, infection–time–course tran-
scriptome, and Y2H PPI interactions.

Integration of eQTL and interactome data predicts
DMs during Bgh penetration and haustorial
development
Disease-modules (Barabási et al. 2011) were used to characterize
immune signaling at 2 key infection stages of barley by Bgh.
Using GO terms and DE enrichment, we separated predicted
module functions into core and unique responses. Among unique
DM DE genes at Bgh penetration (16 HAI) we found WRKY2, a pre-
viously reported interactor of MLA. WRKY2 has been shown to
regulate the expression of genes involved in PAMP-triggered de-
fense (Shen et al. 2007) and to be associated with race-nonspecific
resistance mediated by MLO (Spies et al. 2012). The identification
of WRKY2 validated our computational approach, which we then
went forward to identify additional disease interactions. Other
responses were associated with the regulation of reactive oxygen
species (ROS), including mitochondrial import inner membrane
translocase subunit Tim16/Pam16, respiratory burst oxidase ho-
molog (RBOH), and the N-carbamoyl-putrescine amidase.
Transitioning to Bgh haustorial development (32 HAI), we found
chalcone synthase, a gene involved in phytoalexin metabolism,
to be DM DE. Chitinases, which we also found overexpressed at
this timepoint, are secreted by the host cell to degrade fungal walls
and elicit PAMP-triggered immunity (PTI) through chitin recognition
(Pusztahelyi 2018). Accumulation of chitinases has also been
reported in the extra-haustorial complex during Bgh infection
(Lambertucci et al. 2019). Similarly, other protein families that were
also reported in the extra-haustorial complex were also found as
DM DE at 32 HAI including genes associated with the TCA cycle and
pyruvate metabolism. Remarkably, among this group there is also a
malate dehydrogenase (HORVU.MOREX.r2.1HG0067490) that was
characterized as target of the Bgh effector BEC1054/CSEP0064
(Pennington et al. 2016).

We postulate that common GO terms at both stages of fungal
development represent core responses that the host cell main-
tains during immunity, and these may be driven by the same or
different genes. Often these core responses had annotations di-
rectly related to plant defense, including vacuolar transport, lig-
nification, and GLR signaling. DM DE genes associated with
vacuolar transport included KEULE and charged multivesicular
body protein 5 (MVB5). Previous studies have found that the
KEULE interacts with the SYP121 SNARE protein (ROR2), which
confers penetration resistance of barley to Bgh and control the
formation of the SNARE complex (Heese et al. 2001; Collins et al.
2003). MVBs have also been found to be transported to Bgh pene-
tration sites and contribute to callose deposition (Böhlenius et al.
2010). Cinnamyl alcohol dehydrogenase was also found as DM DE
in both timepoints, an enzyme that is involved in the lignification
of the cell wall and in the activation of the salicylic acid (SA) de-
fense pathway (Stadnik and Buchenauer 2000). Lastly, we identi-
fied a GLR involved in potassium transport to be DM DE at both

stages. This family of proteins has been found to act as sensors in
plant resistance (Forde and Roberts 2014). The glr3.3 knock out
mutant in Arabidopsis has shown increased susceptibility to obli-
gate biotrophs such as Hyaloperonospora arabidopsidis and modula-
tion of ROS and nitric oxide production (Manzoor et al. 2013),
while the triple mutant glr2.7 2.8 2.9 is more susceptible to
bacterial infection, dampening PTI (Bjornson et al. 2021). The
above examples illustrate the power of the DM concept for
targeted mining of interactomes, yet many more DM DE remain
to be characterized during disease development (Supplementary
Data 3).

Resistant coexpressed interactomes are
significantly associated with Mla eQTL
We used coexpression data to identify PPI subnetworks associ-
ated with disease phenotypes (Dong et al. 2015; Jiang et al. 2016;
Mishra et al. 2017). Using distance correlation, we measured the
nonmonotonic behavior of our expression dataset (Sz�ekely et al.
2007) to obtain the resistant HvInt(R), susceptible HvInt(S) and
the differentially coexpressed interactomes HvInt(R–S) and
HvInt(S–R). The biological significance of these subnetworks lays
on the assumption that coexpressed proteins are part of the
same or overlapping pathways and coordinated by a common set
of transcriptional regulators. At the physical level, the interac-
tions in these networks may be part of the same protein com-
plexes and then, high coexpression values increase the
confidence of the predicted interactions. Our analyses indicate
that the differentially coexpressed subnetworks, HvInt(R–S) and
HvInt(S–R), have properties that predict their importance and
role in defining the barley response to Bgh. For example, higher
essentiality (DiffSLC), degree centrality and betweenness, and
lower distance correlation, provide more robustness in signaling
and carry more information (Koschützki and Schreiber 2008;
Mistry et al. 2017). Lower distance correlation values indicate a
higher variability in the gene expression of the nodes, which is
consistent with a differential response during defense between
resistant and susceptible genotypes. Yet, despite the topological
similarities between HvInt(R–S) and HvInt(S–R), only the resistant
networks showed significant enrichment of eQTL associations
with Mla.

GO enrichment of HvInt(R–S) indicates that this network is as-
sociated with multiple biological processes in plant defense, such
as MAP kinase activity (Cui et al. 2019). Other GO terms including
protein binding, folding, and ubiquitination were also enriched.
The chaperone DnaK (Hsp70) and calreticulin were associated
with these terms. Chaperones stabilize protein complexes and
interactions. One Hsp70 isoform has already been shown to par-
ticipate in the response to salt, drought and heavy metal stress in
barley, while another isoform is associated with response to fun-
gal attack (Landi et al. 2019). Calreticulin is involved in calcium
signaling and folding of glycoproteins, proteins from this family
have been involved in the defense response to biotrophic patho-
gens, and to the stabilization of the EFR NLR in Arabidopsis (Qiu
et al. 2012). Lastly, protein degradation via ubiquitination/protea-
some 26S controls the dynamics of cellular functions such as
hormone signaling, transcription, and NLR-triggered immune re-
sponse, including accumulation of MLA (Wang et al. 2016).

The enrichment of Mla eQTL associations in HvInt(R–S) indi-
cates that the expression of these genes is controlled by signaling
and/or transcriptional cascades in which Mla participates.
Support for this hypothesis can be found when we consider that
HvInt(R–S) was built from RNA-Seq data with active Mla6 tran-
script accumulation [CI 16151 (Mla6, Bln1, Sgt1) and m19089
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(Mla6, bln1, Sgt1)]. HvInt(S–R), in contrast, was generated from
mutants with inactive or depleted Mla6-associated expression
[m18982 (mla6, Bln1, Sgt1), m19028 (mla6, bln1, Sgt1), m11526
(Mla6, Bln1, Sgt1DKL308-309)] and had no enrichment of Mla eQTL
associations. Further characterization of the predicted barley
interactome can help to explain the association between MLA
and proteins that regulate the expression of these genes.
Incompleteness of the HvInt network limits this approach, as no
interologs were found for most of the TFs that interact physically
with MLA. However, as genome resources increase (Sánchez-
Mart�ın and Keller 2021), these gaps will continue to fill in.
Inference of gene regulatory networks can then be used to model
the regulation mechanisms associated with MLA and to comple-
ment the analyses that we performed using PPI networks.

Conservation of MLA interactors with other NLRs
provides clues as to their signaling specificity
Based on the functional evidence that links MLACCþNB self-
association and activation of cell death, the reported interactors
represent an important part of the MLA-immune signaling re-
sponse. Previous studies have shown that MLA10CCþNB self-
interacts in yeast while shorter CC domains failed to reconstruct
the associations, suggesting that MLA10CCþNB has a higher stabil-
ity (Maekawa et al. 2011). In addition, self-association of the CC
domain is essential for immune signaling of the Mla orthologs
Sr33 and Sr50 in wheat and rye, respectively (Casey et al. 2016)
while triggering cell death in wheat (Cesari et al. 2016). At the
structural level, available data shows different polymerization
states across MLA and its orthologs. MLA10CC appeared as a di-
mer in its crystal structure while Sr33CC appeared as a tetramer
(Maekawa et al. 2011; Casey et al. 2016). Higher order polymeriza-
tion states have been reported for other NLRs, such as the pen-
tamer obtained from the full length ZAR1 protein (Wang et al.
2019). It also has been shown that a variety of CC-NLRs use their
N-terminal domains to transactivate other receptors
(Wróblewski et al. 2018). Our interaction data suggest that the
functionality of the CC domain may be linked to the NB domain,
therefore it is possible that the polymerization of MLA reaches
higher levels if a longer sequence of the protein is considered.
Many studies have shown that the N-terminal region of NLRs is
involved in triggering cell death (Casey et al. 2016; Cesari et al.
2016; Wróblewski et al. 2018). The MLA10CC domain activates cell
death in N. benthamiana, and mutations of this domain impair the
response (Maekawa et al. 2011).

In this study, we used phylogenetics of the MLA6CCþNB do-
main, in concert with the 15 interactors, as a preface to determin-
ing MLA signaling networks. Among MLA alleles, 4 of the 15 preys
had differential negative/weak interactions—these help to deter-
mine specificity of the MLA isoforms based on their polymor-
phisms. Taking MLA6 as reference, we found that interactions
with PI4K-a and PPR 336 appear to be dependent on mutations in
the CC domain, for example, the EL110 insertion of MLA7-2 or the
S92F and L102F mutations in the MLA1-type group. The MLA1-
type group also contains MLA8, an allele that possesses dual spe-
cificity with Rps7 for recognition to wheat stripe rust
(Bettgenhaeuser et al. 2021). We observed that the interaction be-
tween MLA and disulfide isomerase is disrupted by the EL110 in-
sertion; also, interactions between MLA and the OBERON 2-like
protein were absent or very weak in alleles that contained the
P150T mutation positioned between the CC and the NB domains
of MLA.

The next step was to investigate the more distantly related CC
þ NB in wheat orthologs TmMLA (Jordan et al. 2011) (powdery

mildew resistance); wheat Sr33 (Periyannan et al. 2013) and rye
Sr50 (Mago et al. 2015) (Ug99 stem rust resistance). Here, as
expected, we identified additional negative/weak interactions,
notably the golgin 5 and POLAR proteins. Because the number of
polymorphisms between MLA and these proteins are higher, we
did not have resolution at the amino acid level to determine what
mutations triggered these differential interactions. Despite this,
superposition of the structures of Sr33 and MLA (Casey et al.
2016) led us to conclude that the interaction with golgin 5 may be
dependent of the amino acids that comprise the alpha 1 or alpha
4 domains of these NLRs. Lastly, we encountered interactions
with 2 NLRs from the outgroup; barley PBR1 (AvrPphB Response 1)
and Arabidopsis ZAR1. Protease activity mediated by AvrPphB
from Pseudomonas syringae pv. phaseolicola cleaves barley PBS1,
thereby activating HvPBR1, similar to Arabidopsis RPS5 (Carter
et al. 2019). ZAR1 regulates resistance to P. syringae in Arabidopsis
through the recognition of the HopZ1a effector (Lewis et al. 2010).
The high overlap of interactions with HvPBR1 points to similarity
of its structure with MLA, despite their differences at the amino
acid level. Positive interactions with ZAR1, which were also con-
served across all the NLRs that had positive interactions, may
provide clues on conservation of NLR signaling across different
species.

MLA interactors confer information about NLR
functionalities and cellular localizations
Using ortholog-aided association to its protein targets, we
obtained a predictive model of MLA cellular localization during
Bgh infection. Studies on MLA10 showed that cell death is trig-
gered while the protein is localized to the cytosol, while disease
resistance requires nuclear localization (Shen et al. 2007; Bai et al.
2012; Cesari 2018). Our model indicates that one likely localiza-
tion of MLA during the infection time course is the nucleus. This
result is supported by previous evidence that points to an early
nuclear localization of MLA during Bgh infection (Shen et al.
2007). Our model suggests that MLA could localize to the cytosol
and possibly to other compartments as well, including the
plasma membrane, the Golgi apparatus, the endoplasmic reticu-
lum (ER), and mitochondria. Positive interactions for Sr33 and
Sr50 suggest that these receptors may localize to the nucleus, the
cytosol, and the plasma membranes while TmMLA and PBR1
may also localize to the mitochondria and Golgi, respectively
(TmMLA interacts strongly with PPR 336, and PBR1 with golgin 5).

Predicted localizations were also supported by the MLAInt
clusters; groups of proteins within the clusters were associated
with different organelles or functional cellular substructures. For
example, as illustrated in Fig. 6b, MLAInt cluster 3 has the highest
number of MLA interactors with 8 proteins predicted to be local-
ized to the nucleus, including previously reported TFs WRKY1/2
and MYB6 (Shen et al. 2007; Chang et al. 2013). MLAInt cluster 5,
the second group that contained nuclear MLA interactors, con-
tained the OBERON and kinesin proteins. Functional annotations
of this cluster indicate these proteins may be involved in path-
ways different than the other nuclear MLA interactors, with en-
richment in vesicle transport and cell surface receptor signaling.
According to our predictions, these 2 MLA targets share a series
of receptor-like kinase interactors, important drivers of defense
response. Here, we linked these proteins with NLR and effector
signaling in Arabidopsis by showing their interactions with ZAR1.
More experimental evidence points to this conclusion as OBERON
and kinesin are hubs targeted by pathogen effectors from P. syrin-
gae and H. arabidopsidis (Mukhtar et al. 2011).
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Two MLA TF interactors with nuclear localization were char-
acterized using phylogenetic analysis, as they did not have inter-
actors reported in HvInt. The MLA-interacting bHLH occupies an
unexplored clade, separated from the orthologs of bHLH84, a TF
that enhances autoimmunity of the NLR mutant snc1 (Xu et al.
2014), and from bHLH059, a temperature–responsive SA immu-
nity regulator in in Arabidopsis. The MLA-interacting HB protein
was found to be closely related to the barley ortholog of AtHB13,
a TF involved in tolerance to cold stress (Cabello et al. 2012) and
further showed to confer resistance to powdery mildew, downy
mildew, and green peach aphid in Arabidopsis (Gao et al. 2014).
The clade that contains the MLA-interacting HB and the barley
ortholog of AtHB13 is separated from OCP3, another HB protein
that confers resistance to necrotrophic pathogens in Arabidopsis,
suggesting that the MLA-interacting HB may have specificity in
the response to biotrophs.

Lastly, we report a conserved MLA interactor, a polyamine-
modulated factor 1-binding protein, that may mediate the trans-
location of the MLA and other NLRs between the nucleus and the
cytoplasm. The Arabidopsis ortholog of this protein, AT2G17990,
is a calcium-dependent kinase adaptor protein involved in vacuo-
lar biogenesis and trafficking (Kwon et al. 2018). This protein has
1 interactor reported in HvInt, the nuclear pore complex protein
MOS7/NUP88 (Park et al. 2014), which is a constituent of a nuclear
pore involved in the translocation and nuclear concentration of
the R-protein SNC1, and the immune regulators EDS1 and NPR1
(Wiermer et al. 2010). This link between MLA, TmMLA, Sr33, Sr50,
PBR1, ZAR1, and MOS7/NUP88 may indicate this nuclear pore
mediates the translocation of these receptors to the nucleus.

Presently, only the nucleus and the cytosol are reported cellu-
lar localizations of the MLA immune receptor (Shen et al. 2007).
Our localization model points to other structures as well, al-
though these are based on evidence from other species, and thus,
need further study. First, we found a group of targets that shared
nuclear and other cellular localizations such as the cell periphery
and the ER. The plasma membrane, as a novel NLR cellular local-
ization, helps to explain cell death by triggering changes of elec-
trochemical potential (Dangl and Jones 2019; Van-Wersch et al.
2020). The POLAR protein in Arabidopsis relocates the BIN2 pro-
tein and other GSK3-like kinases from the nucleus to the plasma
membrane regulating their activity and attenuating MAPK signal-
ing (Houbaert et al. 2018). This mechanism may also mediate the
translocation of MLA to the plasma membrane, considering that
the NLR ZAR1 is positioned to this location to activate the im-
mune response (Wang et al. 2019). The MLA interactor dynamin
3A, also predicted to localize to the plasma membrane, belongs
to a protein family that in Arabidopsis controls cell death after
powdery mildew infection (Tang et al. 2006). Another MLA target,
the AAA-ATPase (not present in HvInt), was also predicted to be
localized to the plasma membrane. This protein belongs to a
group recently found to interact with NLRs and associated with
triggering the HR by mediating electrochemical gradients (Lee
et al. 2022).

The ER was also found to be associated with MLA-signaling
since the interactor disulfide isomerase (PDI) is predicted to be lo-
calized to this compartment sometime during the infection cycle.
PDI is an enzyme that catalyzes protein disulfide bonds, helping
to the correct folding and aggregation of proteins at this compart-
ment (Ray et al. 2003). PDIs also have a role in the response to abi-
otic and biotic stresses (Kayum et al. 2017). Finally, we found 2
MLA interactors with unique predicted cellular localizations, dif-
ferent than those already discussed: the pentatricopeptide repeat
protein, assigned to MLAInt cluster 7, localized to the

mitochondrion, and golgin 5 (MLAInt cluster 8), localized to the
Golgi apparatus. Fluorescent expression of MLA10 indicates a
protein distribution similar to the morphology of the Golgi appa-
ratus (Shen et al. 2007); golgin 5, localized to this compartment, is
involved in vesicle tethering and regulation of intraorganelle
transport by interacting with the small GTPase Rab6
(Latijnhouwers et al. 2007; Muschalik and Munro 2018).

Our predictive model for MLA signaling suggests that there is
a transcriptional network mediated by MLA, which is likely trig-
gered at early timepoints of infection (Moscou et al. 2011). This re-
sponse leads to the accumulation of MLA itself at about 16 HAI
(at Bgh penetration). This model also suggests that the immune
receptor has functions in the cytoplasm and other cellular com-
partments, where it contributes to cell death. Further questions
remain in this model, including where and when the recognition
of effectors occurs and its influence in the translocation of MLA
to different cellular compartments. Topological properties of
MLAInt indicate a cohesive response of the subnetwork in de-
fense signaling. In addition, distances between MLA and the pro-
teins in HvInt(R–S) were shorter than for any other subnetwork,
and enrichment of Mla eQTL associations was only found with re-
sistant coexpressed subnetworks. This could indicate a potential
involvement of the resistance protein in the signaling and tran-
scriptional regulation of the proteins in HvInt(R–S). These results
support a link among Mla trans eQTLs, MLA signaling and gene
coexpression during resistance to Bgh.

Data availability
Strains and plasmids are available upon request. Supplemental
files available at figshare: https://doi.org/10.25386/genetics.
19089992. Supplementary Data 1 contain the predicted barley
interactome (HvInt) and experimentally validated Arabidopsis
interactome (AtInt). Supplementary Data 2 contain node proper-
ties of HvInt and enrichment of essential proteins across clusters.
Supplementary Data 3 contain DMs and DM DE genes at Bgh pen-
etration and haustorial development. Supplementary Data 4 con-
tain resistant and susceptible interactomes. Supplementary Data
5 contain the MLA interactome (MLAInt). Supplementary Figure 1
contains core and unique DM GO terms associated with DE genes
by timepoint. Supplementary Figure 2 contains complete time–
course expression patterns DM DE genes by type of response.
Supplementary Figure 3 contains complete Y2H validation of
interactions for the CC þ NB domains of Mla alleles, orthologs
and outgroup NLRs. Supplementary Text 1 contains bait and prey
sequences used for Y2H binary validation among Mla alleles,
orthologs, and outgroup NLRs. Supplementary Text 2 contains
the protein alignment of the Mla alleles, orthologs, and outgroup
used for Y2H tests. Code used to support the main findings of this
manuscript are at the GitHub page https://github.com/Wiselab2/
Barley_Interactome [accessed 15 April 2022]. MIAME-compliant
Barley1 GeneChip profiling data (Affymetrix part number 900515)
from the Q21861 � SM89010 eQTL analysis are available as acces-
sion GSE68963 at NCBI’s Gene Expression Omnibus (GEO).
Conversion of the GeneChip Probe sets to gene IDs was done
using Ensemble and Biomart. Infection–time–course RNA-Seq
datasets are available in NCBI-GEO under accession
number GSE101304 (https://www.ncbi.nlm.nih.gov/gds/?term=
GSE101304). R code and the ReadMe file for the NGPINT and Y2H-
SCORES software used to identify MLA interactors are provided at
the GitHub page https://github.com/Wiselab2/ [accessed 15 April
2022]. Raw Y2H-Seq reads are at NCBI-GEO under the accession
number GSE164815 (MLA6CCþNB).
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Ver Loren van Themaat E, Brown JKM, Butcher SA, Gurr SJ, et al.

Genome expansion and gene loss in powdery mildew fungi reveal

tradeoffs in extreme parasitism. Science. 2010;330(6010):

1543–1546. doi:10.1126/science.1194573.

Spies A, Korzun V, Bayles R, Rajaraman J, Himmelbach A, Hedley PE,

Schweizer P. Allele mining in barley genetic resources reveals

genes of race-non-specific powdery mildew resistance. Front

Plant Sci. 2012;2:113.doi:10.3389/fpls.2011.00113.

Srichumpa P, Brunner S, Keller B, Yahiaoui N. Allelic series of four

powdery mildew resistance genes at the Pm3 locus in hexaploid

bread wheat. Plant Physiol. 2005;139(2):885–895. doi:10.1104/pp.

105.062406.

V. Velásquez-Zapata et al. | 19

http://www.r-project.org


Stadnik MJ, Buchenauer H. Inhibition of phenylalanine ammonia-

lyase suppresses the resistance induced by benzothiadiazole in

wheat to Blumeria graminis f. sp. tritici. Physiol Mol Plant Pathol.

2000;57(1):25–34. doi:10.1006/pmpp.2000.0276.

Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M.

BioGRID: a general repository for interaction datasets. Nucleic Acids

Res. 2006;34(Database Issue):D535–D539. doi:10.1093/nar/gkj109.

Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse

MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JDG, et al. Rapid

cloning of disease-resistance genes in plants using mutagenesis

and sequence capture. Nat Biotechnol. 2016;34(6):652–655. doi:

10.1038/nbt.3543.

Sun Y, Zhu YX, Balint-Kurti PJ, Wang GF. Fine-tuning immunity:

players and regulators for plant NLRs. Trends Plant Sci. 2020;

25(7):695–713. doi:10.1016/j.tplants.2020.02.008.

Surana P. Membrane trafficking in resistance gene-mediated defense

against the barley powdery mildew fungus. Iowa State

University; 2017.

Surana P, Xu R, Fuerst G, Chapman AVE, Nettleton D, Wise RP.

Interchromosomal transfer of immune regulation during infec-

tion of barley with the powdery mildew pathogen. G3 (Bethesda).

2017;7(10):3317–3329. doi:10.1534/g3.117.300125.

Sz�ekely GJ, Rizzo ML, Bakirov NK. Measuring and testing dependence

by correlation of distances. Ann Stat. 2007;35(6):2769–2794. doi:

10.1214/009053607000000505.

Tamborski J, Krasileva KV. Evolution of plant NLRs: from natural his-

tory to precise modifications. Annu Rev Plant Biol. 2020;71:

355–378. doi:10.1146/annurev-arplant-081519-035901.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:

molecular evolutionary genetics analysis using maximum likeli-

hood, evolutionary distance, and maximum parsimony methods.

Mol Biol Evol. 2011;28(10):2731–2739. doi:10.1093/molbev/msr121.

Tang D, Ade J, Frye CA, Innes RW. A mutation in the GTP hydrolysis

site of Arabidopsis dynamin-related protein 1E confers enhanced

cell death in response to powdery mildew infection. Plant J. 2006;

47(1):75–84. doi:10.1111/j.1365-313X.2006.02769.x.

Toru~no TY, Stergiopoulos I, Coaker G. Plant-pathogen effectors: cel-

lular probes interfering with plant defenses in spatial and tempo-

ral manners. Annu Rev Phytopathol. 2016;54(1):419–441. doi:

10.1146/annurev-phyto-080615–100204.

Trigg SA, Garza RM, MacWilliams A, Nery JR, Bartlett A, Castanon R,

Goubil A, Feeney J, O’Malley R, Huang S-SC, et al. CrY2H-seq: a

massively multiplexed assay for deep-coverage interactome

mapping. Nat Methods. 2017;14(8):819–825. doi:10.1038/nmeth.

4343.

Van-Wersch S, Tian L, Hoy R, Li X. Plant NLRs: the whistleblowers of

plant immunity. Plant Commun. 2020;1(1):100016.doi:10.1016/

j.xplc.2019.100016.

Velásquez-Zapata V, Elmore JM, Banerjee S, Dorman KS, Wise RP.

Next-generation yeast-two-hybrid analysis with Y2H-SCORES

identifies novel interactors of the MLA immune receptor. PLoS

Comput Biol. 2021;17(4):e1008890.doi:10.1371/journal.pcbi.

1008890.

Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang H-W, Zhou J-

M, Chai J, et al. Reconstitution and structure of a plant NLR resis-

tosome conferring immunity. Science. 2019;364(6435):44. doi:

10.1126/science.aav5870.

Wang T, Chang C, Gu C, Tang S, Xie Q, Shen Q-H. An E3 ligase affects

the NLR receptor stability and immunity to powdery mildew.

Plant Physiol. 2016;172(4):2504–2515. doi:10.1104/pp.16.01520.

Wang T, Peng Q, Liu B, Liu Y, Wang Y. Disease module identification

based on representation learning of complex networks integrated

from GWAS, eQTL summaries, and human interactome. Front

Bioeng Biotechnol. 2020;8:418.doi:10.3389/fbioe.2020.00418.

Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ net-

works. Nature. 1998;393(6684):440–442.

Wei F, Wing RA, Wise RP. Genome dynamics and evolution of the Mla

(powdery mildew) resistance locus in barley. Plant Cell. 2002;

14(8):1903–1917. doi:10.1105/tpc.002238.

Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe

P, Najafabadi HS, Lambert SA, Mann I, Cook K, et al. Determination

and inference of eukaryotic transcription factor sequence specificity.

Cell. 2014;158(6):1431–1443. doi:10.1016/j.cell.2014.08.009.

Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N,
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