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Abstract

Identification of adaptive targets in experimental evolution typically relies on extensive replication and genetic reconstruction. An alternative ap-
proach is to directly assay all mutations in an evolved clone by generating pools of segregants that contain random combinations of evolved
mutations. Here, we apply this method to 6 Saccharomyces cerevisiae clones isolated from 4 diploid populations that were clonally evolved for
2,000 generations in rich glucose medium. Each clone contains 17–26 mutations relative to the ancestor. We derived intermediate genotypes be-
tween the founder and the evolved clones by bulk mating sporulated cultures of the evolved clones to a barcoded haploid version of the ances-
tor. We competed the resulting barcoded diploids en masse and quantified fitness in the experimental and alternative environments by barcode
sequencing. We estimated average fitness effects of evolved mutations using barcode-based fitness assays and whole-genome sequencing for a
subset of segregants. In contrast to our previous work with haploid evolved clones, we find that diploids carry fewer beneficial mutations, with
modest fitness effects (up to 5.4%) in the environment in which they arose. In agreement with theoretical expectations, reconstruction experiments
show that all mutations with a detectable fitness effect manifest some degree of dominance over the ancestral allele, and most are overdominant.
Genotypes with lower fitness effects in alternative environments allowed us to identify conditions that drive adaptation in our system.
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Introduction
Over the course of adaptation of a clonal population, selection
acts on genetic variation that is generated within the first few
hundred generations (Lang et al. 2011; Blundell et al. 2019). The
fates of these mutations are not independent, and beneficial
mutations can be lost due to genetic drift and clonal interference
(Desai and Fisher 2007; Kao and Sherlock 2008; Lang et al. 2011;
Maddamsetti et al. 2015; Good et al. 2017; Lenski 2017). In addition,
genetic hitchhiking may result in the fixation of many neutral or
deleterious mutations (Desai et al. 2007; Lang et al. 2013; Payen
et al. 2016). Collectively, these effects can hinder efforts to deter-
mine adaptive mutational spectra. Common targets of selection
can be identified through molecular characterization of many
independently evolved lineages (Lang et al. 2013; Levy et al. 2015;
Venkataram et al. 2016; Fisher et al. 2018; Marad et al. 2018;
Blundell et al. 2019). However, relying on recurring targets is
prone to miss beneficial mutations with weak effects, low muta-
tion rates, or genetic interactions (Buskirk et al. 2017).
Unambiguously distinguishing beneficial mutations from hitch-
hikers requires measuring the fitness effect of all mutations
within an individual evolved clone via reconstructions (Chou
et al. 2011; Khan et al. 2011) or bulk-segregant approaches
(Brauer et al. 2006; Ehrenreich et al. 2010; Wenger et al. 2010;

Magwene et al. 2011b; Cubillos et al. 2013; Sigwalt et al. 2016;

Buskirk et al. 2017).
Increased ploidy state can amplify the problem for identifica-

tion of adaptive variation. Specifically diploidy appears to be the

converging ploidy in yeast under many conditions (Gerstein et al.

2006; Oud et al. 2013; Selmecki et al. 2015; Venkataram et al. 2016;

Gorter et al. 2017; Fisher et al. 2018), and although there are condi-

tions in which other ploidies may be advantageous (Zörgö et al.

2013; Hope and Dunham 2014; Zhu et al. 2016) meiosis and a

functional mating-type switching system among natural isolates

(Hanson and Wolfe 2017; Peter et al. 2018) suggest that diploidy is

the default. Ploidy state is an important determinant of yeast

physiology, affecting gene expression levels (Galitski et al. 1999;

de Godoy et al. 2008) and responses across a range of environ-

ments (Zörgö et al. 2013). Under laboratory conditions, adaptation

differences between the 2 ploidies mainly stem from gene copy

number differences, with the following important implications.

Unlike haploids, both fitness and dominance effects determine

selection in diploids (Haldane 1924; Orr and Otto 1994; Gerstein

et al. 2011, 2014; Sellis et al. 2016; Sharp et al. 2018), and domi-

nance effects, much like fitness (Wenger et al. 2011; Gerstein et al.

2012; Kvitek and Sherlock 2013; Jerison et al. 2017), are environ-

ment and genetic background dependent (Gerstein et al. 2014;
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Matsui et al. 2022). According to Haldane’s sieve, adaptive muta-
tions are expected to manifest at least some degree of domi-
nance, in order to be visible by selection in diploids (Haldane
1924; Orr and Otto 1994; Sellis et al. 2016).

Fully dominant mutations are rare relative to recessive muta-
tions (Deutschbauer et al. 2005; Zörgö et al. 2012). Therefore, dip-
loids should have access to fewer large-effect adaptive
mutations, which contributes to their comparatively slower ad-
aptation rate relative to haploids (Orr and Otto 1994; Gerstein
et al. 2011; Gerstein and Otto 2011; McDonald et al. 2016; Marad
et al. 2018; Johnson et al. 2021). Similarly, recessive maladaptive
mutations are not expected to be purged from clonally evolving
diploids (Nishant et al. 2010; Sharp et al. 2018), contributing to the
hitchhiking mutational load, their neutral evolution, and eventu-
ally to genetic diversity with adaptive and innovation potentials
(Wideman et al. 2019). In addition, aneuploidies and other struc-
tural variants are more common in diploids (Sellis et al. 2016;
Fisher et al. 2018) and can further constrain clonal adaptation
(Yona et al. 2012; Assaf et al. 2015; Sellis et al. 2016; Fisher et al.
2021).

Previously, we sequenced 2 clones each of 24 evolving diploid
yeast populations and identified adaptive mutations based on re-
currence (Marad et al. 2018). To quantify the fitness effects of all
mutations in 4 of these populations, we combined a bulk segre-
gant approach that we have successfully applied in adapted hap-
loids (Buskirk et al. 2017) with DNA barcoding (Levy et al. 2015; Liu
et al. 2019; Nguyen Ba et al. 2019; Matsui et al. 2022). We find that
while diploid clones carry on average 22 mutations each, only 1
or 2 per clone (6% total) are beneficial with effects ranging be-
tween 1% and 5.4%. For comparison, beneficial mutations in hap-
loids have larger effect sizes (1–10%) and are accompanied by
half-as-many hitchhiking mutations (Buskirk et al. 2017).
Environmental perturbations change the fitness effects of the
evolved mutations, suggesting pleiotropy and pinpointing to a se-
lective pressure driving adaptation in our environment.
Reconstructions of evolved alleles show that adaptive mutations
that were in heterozygous state in the evolved clone are fre-
quently overdominant, that the overdominance effect depends
on the background, and that adaptive mutations that were in ho-
mozygous state in the evolved clone are either partially or fully
dominant, consistent with Haldane’s sieve. These data indicate
that both smaller fitness effects and reduced availability of bene-
ficial mutations contribute to relatively slower adaptation of dip-
loids. The present study corroborates prior findings that compare
adaptation rates of clonally evolving yeast haploids and diploids
(Gerstein et al. 2011; Johnson et al. 2021).

Materials and methods
Yeast strains and strain construction
The strains used in this experiment are derived from diploid
yGIL672 (W303 background), with genotype MATa/a, and homo-
zygous for ade2-1, CAN1, his3-11,15, leu2-3,112, trp1-1,
bar1D::ADE2, hmlaD::LEU2, GPA1::NatMX, ura3D::pFUS1-yEVenus.

Evolved clones of yGIL672 were isolated from generation 2,000
of a 5,000-generation experiment described previously (Marad
et al. 2018). Killing ability and sensitivity to killer toxin were
assayed as described previously (Buskirk et al. 2020) using a modi-
fied version of the standard halo assay. Killing ability was
assayed against a hypersensitive tester strain (yGIL1097) and
killer toxin sensitivity was assayed against yGIL672.

Gene deletions were introduced by amplifying the KanMX cas-
sette from the hemizygous or MATa deletion collections

(Euroscarf) and transforming using the standard lithium acetate
protocol (Gietz and Schiestl 2007). Lethality of the essential gene
deletions was verified via tetrad dissection. Evolved mutations
were introduced into the ancestral background (yGIL432,
yGIL646, and yGIL672; MATa, MATa, and MATa/a, respectively)
using CRISPR/Cas9 allele swaps as described previously (Fisher
et al. 2019). Briefly, oligonucleotides specifying the gRNA were hy-
bridized and introduced into the SWA1 and BCL1 restriction sites
of pML104 (Addgene #67638). Repair templates containing
evolved mutations were generated by amplifying �500 bp frag-
ments centered around the mutation of interest or by gBlock syn-
thesis (IDT) containing the mutation or interest along with
synonymous PAM site changes. For driving loss-of-heterozygosity
(LOH) in diploids, no repair template was provided. All plasmids
and strain constructions were validated by Sanger sequencing
(Genscript).

Barcode library transformation
Introduction of the barcoding system includes 2 sequential trans-
formations. The elements introduced in each reaction and the fi-
nal locus are shown in Supplementary Fig. 1. Briefly, the first
transformation introduces a 26-mer barcode, gal-induced Cre
recombinase, a lox site, half of URA3 next to an artificial intron,
and a kanamycin selection marker. The second transformation
introduces a second 26-mer barcode and the rest of the URA3
gene next to an artificial intron. Second round transformants se-
lection in medium lacking uracil relies on reconstruction of the
split URA3 and artificial intron splicing. The first barcode was
amplified out of a yeast library [strain XLY092 (Liu et al. 2019)] in
3 overlapping amplicons 1–2 kb long and the amplicons were in-
troduced into yGIL432 via a lithium acetate transformation (Gietz
and Schiestl 2007). The amplicons were targeted upstream of the
GPA1 locus (primers in Supplementary Table 1), replacing
the NatMX cassette that marks our ancestors and all derivatives.
The choice of GPA1 locus has the advantage of being located
close to chromosome VIII centromere, thus reducing the chance
of gene conversion and LOH. Successful transformants were se-
lected on YPD supplemented with kanamycin. Integration at the
intended locus was screened via lack of growth on media supple-
mented with ClonNAT and amplification of the expected junc-
tions and/or receptiveness to the high complexity barcode
[pBAR7-L1 plasmid library (Liu et al. 2019)]. The second barcode li-
brary was introduced to individual transformants with 1 barcode.
High efficiency in genomic integration of the high complexity bar-
code was driven by overnight galactose induction of Cre recombi-
nation. Transformants were selected on synthetic complete
media lacking uracil on 150 mm x 15 mm petri dishes and har-
vested via pooling after 2 days. The number of unique barcodes
or integration events was estimated by plating dilutions of the
transformation reaction on 100 mm� 15 mm petri dishes. The
number of transformants after induction was estimated by plat-
ing 1:10 and 1:100 dilutions on selective media and was corrected
for growth by plating 1:106 and 1:107 dilutions on YPD before and
after gal-induction.

Construction of barcoded bulk segregant pools
Sporulating cultures of evolved diploid clones were mated each
with a different pool of the barcoded strain with an estimated di-
versity of 400,000 barcodes, as follows. Four milliliters of sporu-
lating cultures (�2� 107 tetrads/ml and �30% sporulation
efficiency) were resuspended in 60 ll water and 2,000 U zymolase
(USBiological) and the samples were incubated at 30�C for 1 h.
Then 20 ll glass beads and 100 ll Triton X-100 were added, the
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samples were vortexed for 2 min, incubated at 30�C for 40 min
and vortexed for an additional 2 min; 1.8 ml water was added,
and the samples were sonicated at full power for 4 s. The solution
was mixed with the haploid mating partner on nylon membranes
(GVS, Sanford NE) at an excess of 1:100 (100 barcoded cells for
each MATa spore) using a vacuum manifold. The membranes
were incubated on a YPD plate at room temperature overnight
and subsequently the cells were harvested from the membranes
with PBS and were plated on synthetic complete medium lacking
uracil and supplemented with ClonNAT (selection for mated dip-
loids with a barcode) at different densities. Small pools were gen-
erated by picking 192 individual colonies off of each low-density
CSM-ura þ ClonNAT plate, propagating them in 96-well plates
and mixing them at equal volumes. Large pools were generated
by scraping �60,000 colonies off of high-density CSM-
ura þ ClonNAT plates. Control barcoded parental strains were
derived from yGIL672. At each step of the barcoding process, pa-
rental clones were isolated and assayed for fitness, killing ability
and sensitivity to killer toxin. Barcoded diploid segregants were
also assayed for killing ability and sensitivity to killer toxin. With
the exception of parental clones from population F04, pheno-
types of the parental clones remained consistent throughout the
barcoding process (Supplementary Fig. 2a).

Quantifying the recovery of recessive lethal
mutations
To estimate mating efficiency of query haplotypes, sporulating
cultures of diploid lab W303 derivatives, engineered with the
respective gene deletions, were digested with zymolase
(USBiological), the asci were broken, and the resulting spores
were mass mated to a haploid mating partner, as follows: 3 ml
sporulating cultures were resuspended in 60 ll water and 2,000 U
zymolase and the samples were incubated at 30�C for 1 h. Then
20 ll glass beads and 20 ll Triton X-100 were added, the samples
were vortexed for 2 min, incubated at 30�C for 40 min and vor-
texed for an additional 2 min; 1.2 ml water was added, and the
samples were sonicated at power 4 for 4 s. The broken asci mix
was mixed with the haploid mating partner either in patches on
YPD plates or in membranes using a vacuum manifold. The
resulting query diploids were quantified by plating to YPD supple-
mented with G418 and clonNAT. Percent recovery was estimated
as the fraction of colony-forming units (cfu) on YPD media sup-
plemented with G418 and clonNAT over the cfu on YPD supple-
mented with G418 (marker of the limiting mating partner) and
expressed as a percentage of the nonessential control (yur1D)
mating efficiency (Supplementary Fig. 3). For the mating effi-
ciency calculation, it was assumed that sporulation efficiency
was the same for all genotypes. Euploidy of the resulting query
diploids was verified via tetrad dissection.

Backcrossing of evolved clones
A backcrossing approach was used to introgress putative reces-
sive lethal mutations into the ancestral background. We trans-
formed evolved clones with plasmids carrying ancestral versions
of genes harboring putative recessive lethal mutations [MoBY col-
lection (Ho et al. 2009)]. We sporulated each evolved clone and
screened a single 4-spore tetrad for the allele of interest. An ap-
propriate spore was selected and backcrossed to either yGIL432
(MATa) or yGIL646 (MATa). For each clone, we performed at least
5 backcrosses to replace the rest of the evolved background with
the ancestral. Haploid progeny of the final tetrad dissection and
haploid ancestral strains were used to generate a heterozygous
backcrossed evolved mutation (cross of a segregant with the

evolved allele and the ancestor), a heterozygous intratetrad mat-
ing (cross of segregants with and without the evolved allele), a
homozygous ancestral backcross (cross of a segregant without
the evolved allele and the ancestor), a homozygous ancestral
intratetrad mating (cross between 2 segregants with the ancestral
allele), and a homozygous mutant intratetrad mating (cross be-
tween 2 segregants with the evolved allele). Each of these 5 types
of crosses were performed in at least triplicate and the final
strains were plated on 5-FOA to select for loss of the MoBY plas-
mid.

Fitness assays
Unless otherwise stated, all fitness assays were performed under
the same conditions as the evolution experiment. The popula-
tions were diluted daily 1:210 using a Biomek FX liquid handler
into 128 ml of YPD plus 100 mg/ml ampicillin and 25 mg/ml tetra-
cycline to prevent bacterial contamination. The cultures were in-
cubated at 30�C in an unshaken 96-well plate.

The fluorescence-based fitness assays were previously de-
scribed (Buskirk et al. 2017). Briefly, saturated cultures of the
query strain and a ymCitrine-labeled version of the ancestor
were mixed isovolumetrically at Generation 0. The assays were
performed for 30–50 generations and sampled every 10 genera-
tions (4–6 timepoints total). Following each transfer, 4 ll of the
saturated culture was diluted in 60 ll PBS and the samples were
stored at 4�C for 1–2 days before being assayed by flow cytometry
(BD FACSCanto II). Data were analyzed in FlowJo. Fitness was cal-
culated as the linear regression of the log ratio of experimental-
to-reference frequencies over time in generations.

For the barcode-based fitness assays, the small pools of 192
barcoded diploid segregants were mixed with 4 independently
barcoded ancestral derivatives and between 7 and 11 indepen-
dently barcoded evolved derivatives (with appropriate volumes
adjustments to achieve equal strain representation). Each pool
was used to seed 2 columns of a 96-well plate (16 wells) and the
populations were propagated for 110 generations in the same
way as the original evolution experiment, with sampling every 10
generations. For each timepoint, each column (8 wells) was
pooled, the cells were spun down and stored at �20�C for geno-
mic DNA preparations. To monitor changes in allele frequencies,
fitness assays were performed in the same way, using the large
pools of �60,000 segregants.

Library preparations and sequencing
Barcode determination of individual segregants
To identify the barcodes of the isolated segregants in 96-well
plates, we employed a 3- (column, row, plate) dimensional pool-
ing strategy (Evans and Lewis 1989; Baym et al. 2016). Briefly, we
inoculated 13 96-deep well plates with YPD from our frozen
stocks (12 plates with segregants, 2 corresponding to each
evolved parent, and 1 with all the barcoded parents). The cultures
grew for 2 days at 30�C and then the contents of wells were
pooled by column, row, and plate, resulting in 12, 8, and 13 pools,
respectively. Genomic DNA was isolated and barcode libraries
were prepared from the pools as described below.

gDNA preparation
Cells from �1.5 to 2 ml saturated culture were resuspended in
100 ml lysis buffer (0.9 M sorbitol, 50 mM sodium phosphate pH
7.5, 240 mg/ml zymolase, 14 mM b-mercaptoethanol) and incu-
bated at 37�C for 30 min. Ten microliters of 0.5M EDTA and 10 ml
10% SDS were added consecutively, with brief vortexing after
each addition, and the samples were incubated at 65�C for 30 min
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and then on ice for 5 min. 50 ml of 5M potassium acetate were

added, the samples were mixed, incubated on ice for 30 min and

spun down at full speed in a microcentrifuge for 10 min. The su-

pernatant was transferred to a new tube with 200 ml isopropanol

and was incubated on ice for 5 min. The nucleic acid was spun

down full speed in a microcentrifuge for 10 min, washed twice

with 70% ethanol, was let to dry completely, and then resus-

pended in 20 ll 10 mM Tris pH 7.5. Overnight incubation at room

temperature or short incubation at 65�C was sometimes neces-

sary for complete resuspension. RNA was digested with the addi-

tion of 0.5 ml 20 mg/ml RNase A (ThermoFisher Scientific,

Waltham, MA) and incubation at 37�C for 1 h or at room tempera-

ture overnight.

Barcode sequencing libraries
A 2-step PCR protocol was used to amplify the barcoded locus

(primers in Supplementary Table 1). For the first amplification a

maximum of 200 ng genomic DNA (corresponding to 7.5� 106

diploid Saccharomyces cerevisiae genomes) was used as template in

a 20-ll reaction with the following composition: 20 nM each for-

ward and reverse primer (PU1 and PU2; Supplementary Table 1),

10 ng/ml gDNA, 1 mM dNTPs, 0.2 ll Herculase II fusion DNA poly-

merase (Agilent, Santa Clara, CA), 1� Herculase buffer, in the fol-

lowing conditions: hot start, initial denaturation at 98�C for

2 min, 2 cycles of 98�C for 10 s, 61�C for 20 s and 72�C for 30 s, and

final extension at 72�C for 1 min. Primers PU1 and PU2 introduce

unique molecular identifiers (UMI) and this first-step reaction is

used as is as a template for the second step reaction, which intro-

duces library-specific indexes for multiplex sequencing

(Supplementary Table 1). To the first-step reaction, 30 ll with the

following composition are added: 0.4 ml Herculase, 1� Herculase

buffer, 1 mM dNTPs, and 417 nM each of BC_i5 and BC_i7

(Supplementary Table 1), and amplification happened in the fol-

lowing conditions: hot start, initial denaturation at 98�C for

2 min, 22 cycles of 98�C for 10 s, 61�C for 20 s, and 72�C for 30 s,

and final extension at 72�C for 1 min. DNA from all libraries was

pooled isostoichiometrically, based on DNA concentrations esti-

mated by Nanodrop. A 350-bp band was gel-purified of the final

pool with the QIAGEN gel extraction kit (QIAGEN, Germantown,

MD).

Whole genome and whole genome whole population
sequencing protocol
Genomic DNA was prepared for each of the segregants, after they

were grown to saturation on YPD for whole-genome sequencing

(WGS). Whole-genome whole population time–course sequencing

of the fitness assays was performed to monitor changes in allele

frequencies. Samples were thawed from �20�C and sequencing

libraries were prepared according to Baym et al. (2015) with the

modifications described in Buskirk et al. (2017). Individual librar-

ies were quantified by Nanodrop and pooled. Gel extraction in-

cluded fragments in the 350–650 bp range.

Library QC and sequencing
Final sample quantification was done by Qubit. Final pools were

analyzed by BioAnalyzer on a High-Sensitivity DNA Chip

(BioAnalyzer 2100, Agilent), before sequencing on an Illumina

HiSeq 2500 sequencer with 250-bp single-end reads or on a

NovaSeq with 2� 150 bp paired-end reads at the Sequencing Core

Facility within the Lewis-Sigler Institute for Integrative Genomics

at Princeton University.

Data analysis
Raw sequencing data were split by index using a dual-index bar-
code splitter (barcode_splitter.py) from L. Parsons (Princeton
University).

Fitness estimation from barcode sequencing
Lineage fitness estimation from barcode sequencing data was
performed as in Venkataram et al. (2016). Note that the fitness al-
gorithm calculates fitness per transfer and that is how it is
reported in the extended tables (Supplementary File 1). In figures
and supplementary tables, fitness is expressed per generation,
assuming 10 generations per transfer. Raw barcode counts were
prepared from barcode sequencing reads with use of existing
software and a custom python script (https://github.com/
Dangeli/Barcode-counting). Briefly, reads derived from paired-
end sequencing were merged with pear (v0.9.11) (Zhang et al.
2014). Merged reads (or reads derived from single-end sequenc-
ing) were aligned against the expected barcoded locus sequence
with bowtie2 (v2.3.4.1) (Langmead and Salzberg 2012). Barcodes
and UMI were extracted from the aligned reads and clustered us-
ing bartender (v1.1) (Zhao et al. 2018). Barcodes from reads were
updated using the cluster centers derived from bartender and
Levenshtein distance with threshold 2. The updated reads and
the UMI were used to derive raw barcode counts, which were
used as input to the lineage fitness algorithm.

WGS analysis
Data from libraries from genomic DNA were subsequently
trimmed from adaptor sequences using fastx_clipper from the
FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/down
load.html), version 0.0.14 if they originated from a single-end or
trimmomatic, version 0.36 (Bolger et al. 2014) with option PE if
they originated from a paired-end sequencing run. Each sample
was aligned to the complete and annotated W303 genome
(Buskirk et al. 2017) using Burrows–Wheeler Aligner (v.0.7.15) (Li
and Durbin 2009), option mem. BAM files were generated from
SAM files, sorted and indexed with samtools, version 1.4 (Li et al.
2009). BAM files from libraries originating from the same sample
were merged prior to sorting and indexing. Variants were called
using freebayes, version 1.1.0 (https://github.com/ekg/freebayes),
with option pooled-continuous for population data or option
pooled-discrete with ploidy 2 for clonal data. Variant call format
(VCF) files were annotated using SnpEff, version 4.3 (Cingolani
et al. 2012).

Variant discovery in evolved clones
We generated a consensus evolved variant list for each of the
evolved parents, considering segregant, parental, and population
WGS data. First, we merged BAM files derived from segregant li-
braries by common descend and from population libraries from
the same initial pool. Merged segregant datasets consisted of 21
sequenced derivatives from clone A05-C, 28 from clone A05-D, 26
from clone A07-C, 24 from clone H06-C, and 35 each from clones
F04-C and F04-D. Merged population datasets consisted of 3 fit-
ness assays each for initial evolved clones A05-C and F04-D and 2
assays each for initial evolved clones A05-D, A07-C, and F04-C.
Each assay is made up of 6 timepoints. Downstream analysis was
performed as described for WGS analysis. Variants were called
with freebayes setting the ploidy option at 8 (considering that
heterozygous mutations will appear in half the diploid deriva-
tives in heterozygosities and trying to correct for small sample
sizes). Mutations from the population merged datasets were
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called with parameters -F 0.01 -C 5 and –pooled-continuous.
Parental variants parameters are as described for clonal data in
WGS analysis. Each of these call sets were filtered as follows:
calls that mapped on 2-mm plasmid or mitochondria, calls with
low quality score (<19.99) and calls with more than 1 alternative
allele were excluded. Additionally, total coverage of variant, frac-
tion of alternative calls, as well as forward and reverse fraction of
alternative calls were considered. In particular, we included calls
with coverage z-score between �0.5 and 3 and forward to reverse
alternative allele ratio between 0.4 and 2.5. The filtered variant
list was then manually curated by visual inspection of the align-
ments on IGV (Robinson et al. 2011). We also computationally fil-
tered the list using the following criteria for inclusion: The
variant is called in the evolved parent and at least 1 more data-
set. The variant is called in a single population and not in the an-
cestor. The list that resulted after application of these criteria
overlapped with the manually curated list that resulted after vi-
sual inspection of alignments. To specifically discover homozy-
gous mutations, we applied the following 2 criteria for
consideration in each of the 3 datasets: total coverage >29 and
forward and reverse representation of the alternative allele.
Subsequently, we categorized mutations as heterozygous in the
dataset (if alternative allele to total coverage was between 0.3
and 0.7) or homozygous (if alternative allele to total coverage was
>0.7). Mutations that passed this filtering had to be called
“homozygous” in the parental dataset and “heterozygous” in
at least one of the merged segregants or merged populations
datasets in order to be categorized as homozygous in the evolved
parent.

Assign fitness values to mutations from WGS and time–
course barcode sequencing of segregants
Freebayes parameters for variant calling from clonal data were
as described in WGS analysis. Evolved mutations in the consen-
sus list were scored for presence/absence in each segregant.
Fitness values were attached to each genotype by using barcode
and well coordinate information. For mutations represented by
at least 3 fitness values in each of the presence, absence groups
we estimated their fitness effect as the difference between the
averages of the presence and absence groups. Significance was
initially assessed by t-test and rank sum test and was Bonferroni-
adjusted. Additionally, we performed ANOVA with input all
mutations that appeared significant in at least one test before
Bonferroni correction in at least one assay (including assays in
the evolutionary condition and in conditions that deviate from
the evolutionary when available).

Assign fitness values to mutations from time–course whole
population WGS data
Freebayes parameters for variant calling from individual time-
points data were -F 0.05 -C 3 and –pooled-continuous. For each of
the mutations in the consensus lists, we calculated the natural
logarithm of 2*evo/(anc-evo) per replicate assay and timepoint,
where evo represents the evolved variant coverage and anc repre-
sents the ancestral variant coverage. We also used directly the
FASTQ files from population sequencing to estimate the evolved
variant fitness over the ancestral as follows. For each variant in
the consensus list, we generated 12 search terms. The 12 terms
were 20-base strings containing either the ancestral or the
evolved allele, in the forward or reverse orientation and for three
5-base sliding windows centered around the variant position. For
all search terms, aggregate counts were generated per allele and

timepoint. In both cases, since we are mainly interested in het-
erozygous mutations, we assume that when anc > evo the popu-
lation is a mix of individuals with the ancestral allele in
homozygosity and heterozygosity with the evolved allele only.
Mutations for which anc ¼ evo or anc < evo in at least 1 time-
point were suggestive of being represented by at least a fraction
of individuals homozygous for the evolved allele. Nevertheless,
they were still included in the analysis as far as they resulted in
at least 3 timepoints for which anc > evo, since that could be an
artifact because of low locus coverage. We used linear regression
to model the natural logarithm of heterozygotes over the ances-
tor [2*evo/(anc� evo)] over time, where the slope represents the
fitness coefficient of the variant in heterozygosity. Linearity was
assessed with the Durbin–Watson statistic.

Results
Diploid populations harbor recessive deleterious
and lethal mutations
According to Haldane’s sieve, recessive beneficial mutations fail
to fix in asexual diploid populations because selection cannot act
on the heterozygote (Haldane 1924; Connallon and Hall 2018). By
similar logic, selection should not prevent the accumulation of
recessive deleterious mutations in asexual diploid populations ei-
ther. To test whether diploid populations contain recessive dele-
terious mutations we subjected 17 diploid populations from
Generation 4,000 and 9 clones from diploid populations from
Generation 2,000 of a previously performed evolution experiment
to a meiotic cycle (Marad et al. 2018). Although sporulation effi-
ciency was uniformly high, segregant viability was not. At one ex-
treme, Population C04 failed to produce a single viable spore
across 10 tetrads, indicating a severe meiotic defect, while 5 of
the 17 populations and 2 of the 9 clones had spore viability at
least as high as the ancestor (Supplementary Table 2). Overall
germination and colony size segregation patterns suggest that
there are multiple recessive deleterious mutations.

Our strategy to quantify fitness effects of evolved mutations
in diploids relies on reshuffling of the evolved mutations on the
ancestral background, achieved via bulk-sporulation of evolved
clones followed by bulk-mating of the spores to a haploid version
of their ancestor (Fig. 1). Nevertheless, haplotypes are briefly ex-
posed to haploidy, which may limit the recovery of haplotypes
with recessive lethal mutations. Prior studies have shown that
lethal haplotypes can be recovered as long as mating with a com-
plementing strain is introduced soon after meiosis (Haarer et al.
2011). To show that we can recover recessive deleterious and re-
cessive lethal mutations in our pools, we performed a pilot exper-
iment, using six strains. Five of them were hemizygous for an
essential gene, each implicated in one of the following biological
processes: protein folding (CNS1), actin turnover (COF1), cytokine-
sis (IQG1), karyogamy and spindle pole body formation (KAR1),
and secretion (SEC27), and one for a nonessential gene involved
in N-glycosylation (YUR1) as a control (Supplementary Fig. 3). In
all cases, we recovered the recessive-lethal mutation, though be-
low the expected 1/2 rate (recovery ranged from 1/1,000 for
sec27D to 1/8 for kar1D; Supplementary Fig. 3).

Diploid evolved clones carry homozygous and
heterozygous adaptive mutations
To identify beneficial mutations in diploid evolved populations,
we performed bulk-sporulation of six parental clones from
Generation 2,000, followed by bulk-matings to their ancestor,
and created large pools of barcoded diploid segregants, each
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with a random combination of heterozygous mutations (Fig. 1).
The six parental clones derived from Populations A05, A07, F04,
and H06 were chosen on the basis of high fitness, high spore via-
bility, and absence of aneuploidies in clones from the same gen-
eration (Marad et al. 2018). Because our strain background
harbors the killer virus [a cytoplasmic dsRNA virus that can im-
pact fitness (Buskirk et al. 2020)], we assayed killing ability and
toxin sensitivity for each parental clone and monitored killing
ability throughout pool construction (data for parental clones are
shown in Table 1 and Supplementary Fig. 2a). We deemed that
necessary to at least be aware of phenotypic changes that may be
associated with the killer virus.

For each evolved parental clone, we generated two segregant
pools: a “small pool” of �200 individuals and a “large pool” of
>60,000 individuals. We used the small pools to quantify the seg-
regant fitness via pooled competition assays and barcode
sequencing (Venkataram et al. 2016) and the large pool to perform
whole genome whole population sequencing. Barcoded deriva-
tives of the ancestor and evolved parental clones were spiked
into the segregant pools, which were then propagated under con-
ditions identical to the evolution experiment for 110 generations
in 2 replicates. In addition, we measured the fitness of the ances-
tor and evolved barcoded derivatives using a fluorescence-based
fitness assay (Supplementary Fig. 2a). Fitness values from these
independent assays are highly correlated (Supplementary Fig. 2b,
R¼ 0.92).

Independently barcoded derivatives of evolved clones that
originated from Population F04 displayed variability in fitness,
while technical replicates were far more reproducible (Fig. 2;

Supplementary Fig. 2). The strain background we employ harbors
killer and helper viruses that can contribute to interesting evolu-
tionary outcomes (Buskirk et al. 2020), but we are largely unaware
of how transformation and meiosis affect inheritance of these
elements. Motivated by the fitness variations of individually bar-
coded clones F04-C and F04-D, we checked the killer phenotypes
of all barcoded control strains. Barcoded derivatives of evolved
parental clones from Population F04 displayed variability in their
killer phenotypes as well (Supplementary Fig. 2a includes killing
activity data for Population F04 clones and barcoded derivatives
origin can be traced). Clones from Population F04 carry mutations
in KRE6, whose loss of function has been associated with in-
creased resistance to killer toxins (Brown et al. 1993; Kasahara
et al. 1994). Mutations in KRE6 and inconsistencies in the fitness
and killer phenotypes on barcoded clones were not observed in
other populations. Barcoding of diploid segregants was achieved
via meiosis and mating to a barcoded haploid version of the an-
cestor, and that could also affect killer phenotypes and fitness.
However, killer phenotypes were more uniform across diploid
barcoded derivatives from clones of the F04 population. Based on
that we assumed that meiosis contributed less instability in the
killer-associated phenotypes and fitness.

Homozygous and heterozygous beneficial mutations affect
the segregant fitness distribution in different ways. Homozygous
mutations in the evolved parent end up as heterozygous muta-
tions in all segregants (Fig. 1, orange mutation). In the case of a
single homozygous beneficial mutation as the only mutation
with a fitness effect, we expect a unimodal distribution of fitness
in the segregants. This pattern is observed in the segregants from
clones A05-C, A05-D, and A07-C (Fig. 2; Supplementary Table 3
and Tables E1–E6 in Supplementary File 1). We estimated the
fitness of the beneficial mutation in homozygous state from the
fitness difference between evolved and ancestor and in heterozy-
gous state from the difference between the average segregant fit-
ness and the ancestor fitness.

In contrast, the fitness distributions of segregants from the
F04-C, F04-D, and H06-C evolved parental clones suggest fitness
gains due to heterozygous adaptive mutations (Fig. 2). The
evolved and ancestral parents are not detected as outliers in
these populations, but as expected for a nontransgressive segre-
gation, they are at the extremes of the segregant distributions
(Wilcoxon P-values: ancestral—segregants comparisons <0.1 for
individual replicates and segregants—evolved comparisons <0.04
for averaged replicates).

To identify candidate homozygous beneficial mutations in
A05-C, A05-D, and A07-C and candidate heterozygous beneficial

X
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Fig. 1. Strategy used to generate diploid segregant pools. Diploid evolved
clones isolated from Generation 2000 were sporulated and mated en
masse to barcoded MATa version of the ancestor. Each unique barcode
represents a single mating event. The resulting diploids have genotypes
intermediate to their ancestor and evolved parents and carry a barcode.
Mutations homozygous in the evolved parent (in orange) end up in
heterozygosity in all segregants. Supplementary Fig. 1 shows the
barcoded locus.

Table 1. Population and clone phenotypes.

Population Estimated
population
fitness (%)a

Population
killing

activityb

Clone Meiotic
progeny

viability (%)

Clone
killing

activityb

A05 5.47 0.67 A05-C 49.50 0.67
A05 5.47 0.67 A05-D 50 0.33
A07 5.60 0.67 A07-C 17.50 0.67
H06 6.14 1 H06-C 51 1
F04 6.41 1 F04-C 45 0.67
F04 6.41 1 F04-D 92.50 1

Killing activity is scored as 0 (none), 0.33 (intermediate low), 0.67 (intermediate
high), and 1 (same as in the ancestor).

a Fitness values are from Marad et al. (2018).
b Sensitivity assay showed that all clones were equally resistant to the killer

toxin, and same as the ancestor
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mutations in F04-C, F04-D, and H06-C, we sequenced the ances-
tral and evolved parental clones as well as a total of 160 segre-
gants across the six small pools. We genotyped each segregant
and identified the corresponding barcode sequence. The evolved
parental clones carry on average 1 homozygous and 20 heterozy-
gous mutations (all mutations shown in Supplementary Table 4).
Both parental clones from population A05 have a single homozy-
gous mutation in a previously identified common target of selec-
tion, ACE2 (Oud et al. 2013; Ratcliff et al. 2015; Fisher et al. 2018).
Parental clone A07-C has 3 homozygous mutations, including in
WHI3 and CTS1. CTS1 is the most common mutational target
across diploid populations and CTS1 mutations are always ob-
served in homozygosity due to their proximity to the highly
recombinogenic rDNA locus (Marad et al. 2018). WHI3 is not a
known target of selection. The third homozygous mutation in
A07-C is at an intergenic position on chromosome II. Parental
clone from population H06 carries heterozygous mutations in
common targets of selection PDR5 and PTR2. Population F04 car-
ries heterozygous nonsynonymous mutations in the common
targets of selection ACE2, and KRE6 (Marad et al. 2018).
Interestingly, the two parental clones from population F04 show
subtly different behavior in all assays. Segregants from F04-C
show more of a continuum of fitness values between ancestral
and evolved parents (Fig. 2), with the evolved parental clone
appearing as an outlier in one replicate. Furthermore, the genetic
data suggest that F04-C, but not F04-D, carries at least one reces-
sive deleterious mutation (Supplementary Table 2).

Most genome evolution in clonally evolved
diploids is nonadaptive
In addition to identifying candidate beneficial mutations, we

measured the fitness effects of all heterozygous mutations in
each evolved clone using two methods. First, we combined the

genotype information of a subset of segregants from WGS and
the fitness from barcode sequencing. The fitness effect of each

variant was estimated as the difference in mean fitness of segre-
gants with and without the variant (Fig. 3; Supplementary Table

5). To assess significance of the effect we used Bonferroni-
corrected t-tests and Wilcoxon rank-sum tests (Tables E7–E12 in

Supplementary File 1). Few heterozygous mutations appeared

significant in the evolved clones that harbored beneficial homo-
zygous mutations, and none were significant after the Bonferroni

correction (Tables E7–E9 in Supplementary File 1). In populations
with heterozygous beneficial mutations, we initially identified up

to four putatively significant mutations (Fig. 3). However, after
correcting for cosegregation of mutations in our sequenced segre-

gants (ANOVA, Tables E10–E12 in Supplementary File 1), we show
that there are two adaptive mutations in each clone (Table 2).

Clones from population F04 carry heterozygous beneficial muta-
tions in ACE2 and KRE6 with average fitness effects 1.33% and

1.89%, respectively, for clone F04-C and 1.76% and 2.42%, respec-
tively, for clone F04-D. Clone H06-C carries adaptive mutations in

PDR5 and PTR2 with average fitness effects 3.57% and 2.03%, re-

spectively.
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Fig. 2. Fitness distributions of diploids derived from mating between a haploid version of the ancestor and the meiotic progeny of evolved diploid
clones. The assays were barcode-based and the fitness was estimated with the algorithm published in Venkataram et al. (2016). Fitness correlations
are shown for 2 replicates per clone. Ancestor and evolved parents are annotated in cyan and orange, respectively. Derived diploids are annotated in
gray. Clones for which there are WGS data available are annotated with a closed circle. Outliers were identified via boxplot and Rosner tests performed
in R (Supplementary Table 3; Tables E1–E6 in Supplementary File 1). Pearson’s correlations for each replicate pair are shown at the top left of each panel.
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To corroborate these results, we also quantified the fitness
effects of heterozygous mutations by propagating the large segre-
gant pools (�60,000 segregants each for clones A05-C, A05-D,
A07-C, F04-C, and F04-D) for �110 generations. We estimated the
fitness effect by tracking the frequency of each mutation by WGS
every 20 generations with a minimum of 60� coverage. These
data were noisy and contained a high rate of both false-positives
and false-negatives (Supplementary Tables 6 and 7).
Nevertheless, the KRE6 mutation was identified in both clones
from population F04, but in one replicate each and significance
after correction holds only for the one clone. ACE2 appeared sig-
nificant in a single replicate with both methodologies but was not
significant after correction.

Overall, we find that the majority of heterozygous mutations
(�96%) in our evolved clones do not have a detectable effect on
fitness, with the remaining �4% having modest fitness benefits
ranging from 1.3% to 3.6% (Tables 2 and 3). Among homozygous
mutations, which make up �10% of the total evolved, the propor-
tion of beneficial mutations is much higher (38%) and their fit-
ness effects are larger (4.2–5.4%). Considering both heterozygous
and homozygous mutations, �6% have a detectable fitness effect
in our evolved diploid parental clones.

Heterozygous beneficial mutations are frequently
overdominant
Short-term evolution in diploids is predicted to favor selection for
overdominant mutations (Sellis et al. 2011, 2016). We determined
the dominance of candidate beneficial mutations using three
approaches: forcing LOH in the evolved strains, backcrossing the
evolved strains, and/or reconstructing the evolved mutations in
the ancestral background. We selected putative beneficial muta-
tions that satisfy the following three criteria based on our

previous work (Marad et al. 2018). First, we chose mutations in
common targets of selection. Second, we considered mutations
in euploid populations. Third, we excluded populations with
linked heterozygous mutations to avoid losing heterozygosity at
multiple loci (Fisher et al. 2018).

We used CRISPR/Cas9 to force gene conversion of individual
heterozygous evolved alleles within evolved strains toward ho-
mozygosity for either the ancestral or evolved allele. We per-
formed competitive fitness assays on these strains and the
evolved heterozygote to ascertain the fitness effects of the muta-
tions in the context of the evolved background (Fig. 4a and
Table 2). Three mutations (bck1-S945S, bst1-S740R, and
ubp12-V279L) have no detectable fitness effect on the evolved
background upon LOH in either direction (t-test, P> 0.3). Three
mutations (pse1-Q6562*, kre6-S453L, and kre6-A521T) are over-
dominant, with highest fitness while in heterozygosity (t-test,
P< 0.05 for the pse1-Q6562* and kre6-A521T alleles and P ¼ 0.057
for the kre6-S453L allele). PSE1 had been previously identified as
an adaptive target, exclusively in a heterozygous form (Fisher
et al. 2018). Of those, we were unable to recover the homozygous
mutant for kre6-A521T suggesting lethality. The last mutation
(ace2-R669*) showed partial dominance. ACE2 is a common target
that is observed in both heterozygous and homozygous forms
(Marad et al. 2018).

Independently, we introgressed pdr3-Y276S and kre6-S453L in
the ancestral background to generate heterozygotes and homozy-
gotes. We chose pdr3-Y276S because this mutation cosegregated
with a small colony phenotype (Supplementary Table 2). For each
mutation, we performed five rounds of backcrossing to replace
most of the evolved background with the ancestral, while select-
ing for the allele of interest. Haploid segregants from the fifth
backcross were used to construct diploids heterozygous and
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homozygous for the query allele, whose fitness was determined
against a fluorescent version of the diploid ancestor (Fig. 4b and
Table 2). We found that both the pdr3-Y276S and the kre6-S453L
mutants are beneficial (4.0% and 3.3%, respectively) when het-
erozygous, but strongly deleterious (�10.2% and �15.0%, respec-
tively) when homozygous (Fig. 4b). Though both the forced LOH
experiment and the backcrossing experiment show that the kre6-
S453L mutation is overdominant, the deleterious effect of the ho-
mozygous mutation is far less severe in the evolved background
(compare Fig. 4a with b).

Adaptive mutations are pleiotropic
Evolution experiments in yeast that favor selection of
fast-settling mutants have targeted genes implicated in cell wall
metabolism (Koschwanez et al. 2013; Ratcliff et al. 2015).
Spatiotemporal heterogeneity arising from the lack of agitation
during growth, leads to nutrient, and oxygen gradients, providing
the selective forces driving adaptation (Lang et al. 2011; Frenkel
et al. 2015). We observed that the genetic targets of selection in
our system impinge on similar biological processes across ploi-
dies, such as cell wall metabolism, drug transport and nutrient
sensing, and signaling. Here, we sought to identify these common
selective pressures, by modifying the evolutionary environment.

We measured the fitness of evolved clones H06-C and F04-D,
as well as a reconstructed heterozygous kre6-S453L strain in the
ancestral background, in environments that prohibit cell settling
in order to disrupt spatial heterogeneity by agitating the 96-well
plates during growth (Fig. 5a). We also experimented by removing
the antibiotics, which were included to prevent bacterial contam-
ination (Lang et al. 2011). Although we know that ampicillin and
tetracyclin do not affect yeast growth, we are unaware on how
their presence may affect adaptation. Clone H06-C displayed a
strong tradeoff on the well-mixed environments, in which it had
an almost 5% fitness deficit compared with its ancestor, while
the presence of antibiotics in the growth medium did not further
affect its fitness in either the well-mixed or the static environ-
ment. Clone F04-D is always more fit than its ancestor, but the
fitness advantage was decreased without antibiotics and/or with
agitation. Interestingly, the heterozygous kre6-S453L strain and
the F04-D clone (which contains this mutation) had the lowest
fitness in the well-mixed environment with antibiotics, suggest-
ing that antibiotics contributed a relative fitness deficit in the
well-mixed environment.

To determine if this was a general effect of cell wall muta-
tions, we measured the fitness effects of cell wall mutants that
had emerged during haploid evolutions, as well as null alleles of
adaptive targets (Lang et al. 2013; Buskirk et al. 2017), in static and
well-mixed environments (Fig. 5b, only in the presence of antibi-
otics). KRE6 and KRE5 mutations showed a range of tradeoffs,
with KRE5 being the most compromising in the well-mixed envi-
ronment (Fig. 5b, left panel). We also tested the fitness effects of
null alleles for CNE1, ROT2, STE11, and YUR1, of which only YUR1
is involved in the cell wall metabolism. CNE1 and ROT2 deletions
did not phenocopy the evolved alleles (Buskirk et al. 2017), as
they displayed no fitness effect in the evolutionary condition.
The STE11 and YUR1 deletions displayed a fitness advantage
in the static environment, but only YUR1 manifested a strong
tradeoff in the well-mixed environment. Collectively, these
data suggest that adaptation in our environment that relies on
modifications of the cell wall is typically lost under well-mixed
environments.

To identify mutations with pleiotropic effects, we assayed fit-
ness of the small pools of barcoded segregants under theT
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different environments (Supplementary Fig. 4 and Tables 8–11;
Tables E11–E14 in Supplementary File 1). We found that remov-
ing antibiotics causes a wider spread in the fitness distributions
of both pools (Supplementary Fig. 4), observation for which we do
not have an explanation. As expected, the evolved parent H06-C
displayed strong trade-offs in the well-mixed environments, but

only a few segregants appeared to approach the fitness deficits of

the evolved parent, suggesting a multiallelic effect. Interestingly,

PTR2 is adaptive in all environments, but PDR5 is adaptive only in

static environments. In addition, a mutation in FLO9 appears to

have a small fitness deficit in the well-mixed environments

(�0.7% in three out of the four assays) and a mutation in ASK10 a

small fitness advantage in the mixed environment without anti-

biotics. Assays of the segregant pool from clone F04-D supported

the fitness advantage of KRE6 and ACE2 mutations, but in only

one replicate of the evolutionary condition, presumably because

of the scarcity of information in this round. Unexpectedly, ACE2

had a small positive effect (�1%) in the well-mixed environ-

ments. KRE6 did not appear as consequential in any other envi-

ronment. Three more mutations (a missense in SNU114, a

missense in VPS41 and an intergenic mutation) had a significant

deficit in a single environment each (in well-mixed no antibiotic,

in well-mixed with antibiotic, and in the evolutionary condition,

respectively) but only in one of the two replicates. In conclusion,

it seems that the highest fitness mutations confer smaller effects

in alternative environments, without necessarily being maladap-

tive, whereas fitness deficits may originate from molecular

Table 3. Adaptive genome evolution in diploid and haploid
populations.

Background Mutationsa Beneficial
mutationsa

Adaptive
evolution
(%)

Nonadaptive
evolution
(%)

Diploid
Heterozygous 139 6 4 96
Homozygous 8 3 38 62
Total 147 9 6 94

Haploid
Total 116 24 21 79

a We considered each clone as an independent genotype, therefore
mutations that appear in both clones from the same population are counted
twice. Otherwise, the number of hitchhikers would be artificially inflated
relative to beneficial mutations.
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changes with no detectable fitness effect under the evolutionary
environment.

Discussion
Recessive beneficial mutations are unlikely to become fixed in
diploid populations, a phenomenon known as Haldane’s Sieve
(Haldane 1924; Connallon and Hall 2018). Diploids, therefore,
adapt more slowly than haploids (Zeyl et al. 2003; Gerstein et al.
2011) and have a different spectrum of genetic changes (Fisher
et al. 2018; Marad et al. 2018; Johnson et al. 2021). Here, we quanti-
fied the fitness effects and the degree of dominance of all muta-
tions that emerged in six clones during diploid evolution using
bulk-segregant fitness assays, genetic reconstructions, and back-
crossing. Collectively, four principles emerge from this study.
First, diploid populations accumulate many recessive deleterious
or lethal mutations that reduce spore viability. Second, all benefi-
cial mutations in diploids display some degree of dominance
with respect to fitness. Third, most heterozygous beneficial
mutations are overdominant. Fourth, adaptation in our environ-
ment is predominately driven by spatial heterogeneity.

Our results support theoretical predictions and prior experi-
mental results suggesting that heterozygous beneficial mutations
are likely to be overdominant (Haldane 1924; Sellis et al. 2011,

2016; Johnson et al. 2021). Even those mutations that are not over-
dominant (like ace2 in Population F04) are at least partially domi-
nant. We previously observed the inverse pattern for beneficial
mutations that evolved in haploid populations: they are either re-
cessive or underdominant (Buskirk et al. 2017; Fisher et al. 2018;
Marad et al. 2018). Using data from our diploid, autodiploid and
haploid datasets (Lang et al. 2013; Buskirk et al. 2017; Fisher et al.
2018; Marad et al. 2018), we summarize the patterns of domi-
nance for haploid and diploid laboratory evolution experiments
(Fig. 6). Beneficial mutations that arose on the haploid and dip-
loid backgrounds occupy separate but overlapping regions of this
space. Note that the same genes often underlie adaptation in
both haploids and diploids, but their dominance effects depend
on the background in which they arose.

We show that a bulk-segregant approach can be used to iden-
tify and quantify the fitness effects of all heterozygous mutations
in evolved diploid clones. By mating immediately after breaking
the tetrad asci, our method can recover recessive lethal muta-
tions in the final pools, an essential feature for the recovery of
strong effect overdominant alleles. Tetrad dissection data show
that our evolved clones harbor recessive deleterious and/or reces-
sive lethal mutations (Supplementary Table 2). According to our
proof-of-principle experiment with known recessive lethal muta-
tions (Supplementary Fig. 3), alleles with strong deleterious
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effects may be under-represented in our pools. We used the WGS
information from the sequenced segregants and the first se-
quenced timepoint from the population data to search for under-
represented nonsynonymous mutations in coding sequences
(Supplementary Fig. 5 and Table 12). Mutations in four genes
(HIS6, CEP3, GAS5, and POR1) are under-represented among the
segregants as estimated by both sequencing of the segregant pool
and individual segregants. Of those the frameshift mutation in
CEP3 is expected to be deleterious, as the gene encodes an essen-
tial kinetochore protein. The rest of the mutations are missense,
making it difficult to interpret potential deleterious effects. HIS6
and GAS5 are involved in histidine and cell wall biosynthesis, re-
spectively, and POR1 encodes for a mitochondrial porin.

By including the ancestor and evolved diploid parents into the

segregant pools, we can identify homozygous beneficial muta-
tions in the evolved parent and quantify their combined fitness
effects. This is a useful feature of our assay because, although
homozygous mutations contributed only �5% of the total genetic
variation, they contributed �33% of the adaptive variation
(Table 3). Additionally, the method can identify adaptive varia-
tion that is missed by approaches that identify genes mutated
more often than expected by chance across replicate populations,
such as PDR5 and PTR2.

Time–course sequencing of segregant pools assays were less
reproducible in diploid segregant pools with 60� to 360� whole-
genome coverage compared with haploid segregant pools se-
quenced with 100� coverage (Buskirk et al. 2017). We attributed
this to the higher precision requirements for accurate fitness pre-
diction of heterozygous mutations. For example, an evolved mu-
tation in a haploid segregant pool starts at 50% and fixes at 100%,
whereas an evolved heterozygous mutation in a diploid segregant
pool starts at 25% and fixes at 50%. In addition, LOH rates are
high and more variable across the genome, compared with point

mutations (Lee et al. 2009; Peter et al. 2018), which would add
noise to this approach. Despite the noise in our bulk-fitness
assays, both the fitness distributions of all segregants and the
genotyping of individual segregants are consistent with a small
number of adaptive mutations in our diploid populations.

The differences in adaptation rates as suggested by the fitness
increases during the diploid and haploid evolutions are striking:
diploid fitness increased by an average of 5.8% over 4,000 genera-
tions (or �1.5% per 1,000 generations; fitness increase was linear),
whereas haploid fitness increased by 8.5% over 1,000 generations
(of which �6% was gained within the first 500 generations)
(Marad et al. 2018). Because diploids are more fit compared with
haploids (Venkataram et al. 2016; Fisher et al. 2018) some of this
difference in adaptation rate may be attributable to diminishing

returns (Kryazhimskiy et al. 2014; Johnson et al. 2019, 2021).
Nevertheless, we find that most of the variation that emerges
during short-term clonal evolution in diploids does not contribute
to adaptation, as only 6% of the identified mutations have a de-
tectable effect on fitness. We identify both heterozygous and ho-
mozygous beneficial mutations. Consistent with our work in
haploids we did not identify any beneficial synonymous or inter-
genic mutations in diploids. Diploid populations also carry a load
of recessive-deleterious and recessive-lethal mutations. In con-
trast, 20% of mutations in haploid populations were shown to be
beneficial and <1% deleterious (Buskirk et al. 2017).

By altering specific environmental parameters, we found that
cell settling at the bottom of the vessel exerts a dominant selec-
tive pressure, driving adaptation in our system. Populations
growing statically in liquid media are subjected to nutrient and
oxygen gradients, as well as the spatial structure imposed by the
shape of the well, which has been previously shown to drive evo-
lutionary dynamics and adaptations in that and similar systems
(Ratcliff et al. 2012; Frenkel et al. 2015). When adapted clones were
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exposed to a well-mixed environment, they lost their competitive
advantage over their ancestor. However, the specific patterns of
the evolved parents and their segregants’ fitness effects across
environments suggest complex origins of these trade-offs, due
only in part to the adaptive mutations. Trade-offs have been ob-
served before upon reversion of the selective pressures that drive
adaptation in a system. Specific examples include adaptations
driven by carbon limitation resulting in fitness costs in carbon ex-
cess (Wenger et al. 2011), loss of signaling/regulatory pathways
driven by environmental constancy (chemostat) but becoming
maladaptive in oscillating environments (batch culture) (Kvitek
and Sherlock 2013) and adaptive responses to high salinity
(Hietpas et al. 2013).

Maintenance of heterozygosity in overdominant loci is af-
fected by the rate of mitotic recombination during asexual propa-
gation and the frequency of sexual reproduction (Sellis et al. 2011,
2016; Fisher et al. 2021). In fully asexual diploid populations, LOH
depends on mitotic recombination rates in combination with the
distribution of fitness and dominance effects of linked heterozy-
gous loci (Fisher et al. 2021). In sexual populations, the mainte-
nance of heterozygosity is affected by the frequency of sexual
reproduction and the degree of outcrossing. During evolution
experiments, frequent sexual cycles (1 every 30–120 generations)
purge deleterious variants (including recessive and overdomi-
nant) (Burke et al. 2014; Kosheleva and Desai 2018). However, in
nature, Saccharomyces yeasts undergo infrequent sexual cycles (in
the order of 1 every 1,000 mitotic divisions) (Tsai et al. 2008; Lee et
al. 2022), and while most mating events result from inbreeding
(Ruderfer et al. 2006; Tsai et al. 2008), the exact rate of outcrossing
depends on the environment (Magwene et al. 2011a), In fact, both
theory and simulation have shown that even in obligate sexual
populations, overdominant mutations can be maintained by bal-
ancing selection for thousands of generations (Sellis et al. 2011).
All these suggest that overdominant mutations are likely to con-
tribute disproportionately to short-term adaptation in diploid
populations.

Data availability
The raw short-read sequencing data reported in this paper are
deposited under accession no. PRJNA775967 in the NCBI
BioProject database. Custom code for barcode sequencing data
processing https://github.com/Dangeli/Barcode-counting.

Supplemental material is available at GENETICS online.
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