FPS |
Farthest Point Sampling |
VBS |
Voxelization-based Sampling |
VFPS |
Voxelized Farthest Point Sampling |
DNFEB |
Double-Neighborhood Feature Extraction Block |
DGFFM |
Double-Granularity Feature Fusion Module |
AM |
Attention Module |
CA |
Channel attention |
SA |
Spatial attention |
DHL |
Double-hinge Loss |
GT |
Ground truth |
MLP |
Multilayer perceptron |
ReLU |
Rectified linear unit activation |
PE |
Position encoding |
EC |
EdgeConv operation |
AP |
Attentive pooling |
|
F
c
, Ff
|
Feature maps after decoding |
F
DGF
|
Aggregated feature map after DGFFM |
L, Lsem, Lins, LDHL, Ls, Ld, Lreg
|
The loss functions |
C
|
The number of semantic classes |
N
|
The number of points in a point cloud |
p
i
|
A point in XYZ space |
f
i
, ri, hi, fi′, fei
|
A point vector in feature space |
K
|
The parameter of KNN |
α, β, γ, δs, δd
|
Parameters for loss functions |
∪ |
Feature concatenation |
max[∙] |
The maximum value across the inputs |
IoU[∙, ∙] |
IoU of the two entities |
MLP[∙] |
MLP operation with shared parameters |