Skip to main content
. 2022 May 23;2022:9787643. doi: 10.34133/2022/9787643

Table 1.

Notations and nomenclatures.

FPS Farthest Point Sampling
VBS Voxelization-based Sampling
VFPS Voxelized Farthest Point Sampling
DNFEB Double-Neighborhood Feature Extraction Block
DGFFM Double-Granularity Feature Fusion Module
AM Attention Module
CA Channel attention
SA Spatial attention
DHL Double-hinge Loss
GT Ground truth
MLP Multilayer perceptron
ReLU Rectified linear unit activation
PE Position encoding
EC EdgeConv operation
AP Attentive pooling

F c , Ff Feature maps after decoding
F DGF Aggregated feature map after DGFFM
L, Lsem, Lins, LDHL, Ls, Ld, Lreg The loss functions
C The number of semantic classes
N The number of points in a point cloud
p i A point in XYZ space
f i , ri, hi, fi′, fei A point vector in feature space
K The parameter of KNN
α, β, γ, δs, δd Parameters for loss functions
Feature concatenation
max[∙] The maximum value across the inputs
IoU[∙, ∙] IoU of the two entities
MLP[∙] MLP operation with shared parameters