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Abstract

Background—Next generation sequencing has progressed rapidly, characterizing microbial 

communities beyond culture-based or biochemical techniques. 16S ribosomal RNA gene 

sequencing (16S) produces reliable taxonomic classifications and relative abundances, while 

shotgun metagenome sequencing (WMS) allows higher taxonomic and functional resolution at 
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greater cost. The purpose of this study was to determine if 16S and WMS provide congruent 

information for our patient population from paired fecal microbiome samples.

Results—Comparative indices were highly congruent between 16S and WMS. The most 

abundant genera for 16S and WMS data did not overlap. Overlap was observed at the Phylum 

level, as expected. However, relative abundances correlated poorly between the two methodologies 

(all P-value>0.05). Hierarchical clustering of both sequencing analyses identified overlapping 

enterotypes. Both approaches were in agreement with regard to demographic variables.

Conclusion—Diversity, evenness and richness are comparable when using 16S and WMS 

techniques, however relative abundances of individual genera are not. Clinical associations with 

diversity and evenness metrics were similarly identified with WMS or 16S.
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1. Introduction

The gut microbiome is increasingly recognized as a critical determinant of health and 

disease (Lynch and Pedersen, 2016). The vast majority of microbiome analyses have 

utilized 16S rRNA gene sequencing (16S) which uses variable regions of the 16S ribosomal 

RNA gene to assign taxonomic classification and read abundance to calculate the relative 

frequency of the organisms within a sample (Vogtmann et al., 2016). 16S sequencing via 

any amplicon sequencing-based method offers advantages over WMS in terms of precision 

(specific gene targeting). Additionally, 16S has historically been less costly due to the 

simplicity of library preparation and it does not require the same level read coverage as 

WMS. 16S is a reliable method for identifying the relative frequency of organisms but does 

not provide reliable functional information about the genes encoded by these organisms 

(Laudadio et al., 2018). As a consequence, whole-metagenome sequencing (WMS) data 

has been increasingly utilized with the goal of providing functional information about the 

organisms present. WMS analyzes large swaths of genomic information, which confers 

several advantages over 16S. Most notably, WMS allows for an increased depth and 

specificity of sequenced species as well as insights into gene abundance and metabolic 

capacity (Salipante et al., 2015). Since WMS yields genomic information beyond the 16S 

rRNA gene, it also confers a better assessment of the true diversity of the sample. Thus, 

WMS can be used to provide species level resolution, as well as differences in presence 

of microbial genes, articulated pathways and metabolic functions (Salipante et al., 2015). 

Yet, a limitation of shotgun sequence data is the large number of sequence reads which 

must be mapped to databases, which requires significant expertise to balance classification 

accuracy with discarded reads. Now, it is possible to analyze 16S and WMS microbiome 

data side-by-side to investigate bacterial communities as well as the abundance of associated 

genes and metabolic pathways (Franzosa et al., 2019, 2018; Pasolli et al., 2019; Vatanen 

et al., 2019; Vila et al., 2018; Zolfo et al., 2018). Still, the extent to which these two 

sequencing methods correlate with one another is a critical assumption, which should be 

explored thoroughly.
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Few studies have had the opportunity to compare previously observed 16S gene associations 

with data from WMS on the same cohort of patients (Vogtmann et al., 2016). By subjecting 

the same sample to both sequencing methods, we aim to investigate the reliability, validity 

and reproducibility of these different approaches. To do so we utilized baseline gut 

microbiome analysis from patients receiving standard chemoradiation therapy for cervical 

cancer in order to examine and compare 16S microbiome associations with WMS data on 

a variety of clinical variables. We deployed commonly used alpha diversity metrics (Inverse 

Simpson Diversity, Shannon Diversity, Camargo Evenness, Pielou Evenness, Observed 

Operational Taxonomic Units, and the Low Abundance Rarity Index) as well as abundance 

measures, to draw comparisons between the two datasets. Additionally, we submitted the 

datasets to unsupervised hierarchical clustering in order to assess if the microbiome profiles 

associated together in a similar manner, as would be expected from two datasets derived 

from a single sample source.

2. Materials and Methods

2.1 Study design and participants

We collected rectal swab samples from a cohort of 41 patients with newly diagnosed, locally 

advanced cervical cancer undergoing treatment at The University of Texas MD Anderson 

Cancer Center and Harris Health System Lyndon B. Johnson clinic. We collected a swab 

sample from each patient before they received chemoradiation treatment. Patients with 

previous pelvic radiation or treatment for cervical cancer were excluded. This study was part 

of an IRB approved protocol (MDACC 2014–0543).

2.2 Patient population and treatment characteristics

Patients were enrolled in an IRB-approved (2014–0543) multi-institutional prospective 

clinical trial at The University of Texas MD Anderson Cancer Center and the Harris Health 

System, Lyndon B. Johnson General Hospital Oncology Clinic. Inclusion criteria were 

newly diagnosed cervical cancer per the Federation of Gynecology and Obstetrics (FIGO) 

2009 staging system, clinical stage IB1-IVA cancers, visible, exophytic tumor on speculum 

examination with planned definitive treatment of intact cervical cancer with external beam 

radiation therapy, cisplatin and brachytherapy. Patients with any previous pelvic radiation 

therapy were excluded.

Patients underwent standard-of-care pretreatment evaluation for disease staging, including 

tumor biopsy to confirm diagnosis; pelvic magnetic resonance imaging (MRI) and positron 

emission tomography/computed tomography (PET/CT); and standard laboratory evaluations, 

including a complete blood cell count, measurement of electrolytes, and evaluation of renal 

and liver function. Patients received pelvic radiation therapy to a total dose of 40‒45 Gy 

delivered in daily fractions of 1.8 to 2 Gy over 4 to 5 weeks. Thereafter, patients received 

intracavitary brachytherapy with pulsed-dose-rate or high-dose-rate treatments. Patients 

received cisplatin (40 mg/m2 weekly) during external beam radiation therapy according to 

standard institutional protocol. Patients underwent repeat MRI at the completion of external 

beam radiation therapy or at the time of brachytherapy, as indicated by the extent of disease. 

Patients with no residual tumor on repeat MRI were considered to be exceptional responders 
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while those with residual MRI tumor volumes ≤20% and >20% of initial volumes after 

4 to 5 weeks after initiation of RT were considered to be standard and poor responders, 

respectively.

2.3 Sample collection and sequencing

Rectal swabs were collected in clinic at the time of rectal examination prior to treatment 

using quick release matrix designed Isohelix swabs (Isohelix cat. SK-2S, Cell Projects 

LTD, Kent, United Kingdom). We placed the swabs in 400 μL of Isohelix Lysis buffer and 

stored them at −80°C within 1 hour of sample collection. One portion of each sample was 

sequenced using 16SV4 rRNA sequencing targeting the V4 region with primers 515F-806R 

(Thompson et al., 2017), while another portion was sequenced using WMS. 16S rRNA gene 

sequencing was performed through the Alkek Center for Metagenomics and Microbiome 

Research (CMMR) at Baylor College of Medicine. 16S rRNA gene sequencing methods 

were adapted from the methods developed for the Earth Microbiome Project (Thompson et 

al., 2017). Briefly, bacterial genomic DNA was extracted using MO BIO PowerSoil DNA 

Isolation Kit (MO BIO Laboratories, QIAGEN, San Diego, CA, USA). The 16S rDNA 

V4 region was amplified by PCR and sequenced on the MiSeq platform (Illumina) using 

the 2×250 bp paired-end protocol yielding pair-end reads that overlap almost completely. 

The primers used for amplification contain adapters for MiSeq sequencing and single-end 

barcodes allowing pooling and direct sequencing of PCR products. Then gene sequences 

were clustered into OTUs at a similarity cutoff value of 97% using the UPARSE algorithm 

(Edgar, 2013). To generate taxonomies, OTUs were mapped to an optimized version of 

the SILVA rRNA database containing the 16S V4 region and then rarefied at 6989 reads. 

A custom script was used to construct an OTU table from the output files generated as 

described above for downstream analyses. Here, OTUs were selected as a basis for further 

analysis because this method is currently the most common approach to 16S analysis in the 

clinical research setting.

For WMS data, genomic bacterial DNA (gDNA) extraction methods optimized to maximize 

the yield of bacterial DNA from specimens while keeping background amplification to 

a minimum were employed (Huttenhower et al., 2012; The Human Microbiome Project 

Consortium, 2012). Metagenomic shotgun sequencing was performed on extracted total 

gDNA on Illumina sequencers using chemistries that yielded paired-end reads. Sequencing 

reads were derived from raw BCL files which were retrieved from the sequencer and called 

into fastqs by Casava v1.8.3 (Illumina). Then, paired-end reads (fastq format) were filtered 

to remove Illumina PhiX sequences and trimmed for the Illumina adapters by using bbduk 

in BBTools (version 38.34) (Bushnell et al., 2017). To remove host DNA contamination, 

the trimmed reads were then mapped to a human reference sequence database (hg38) by 

using Bowtie2 (version 2.3.5) (Langmead and Salzberg, 2012). Taxonomic classification 

was performed through MetaPhlAn2 (McDonald et al., 2012). Also based on Bowtie2, 

we mapped the cleaned (unmapped to host genome) reads to a marker gene database 

(mpa_v295_CHOCOPhlAn_201901, updated 11/11/2019) to get an individual relative 

abundance table for each sample. Relative abundance tables for all samples were merged and 

converted to a BIOM format (version 1.0) (Truong et al., 2015), which was then imported 

into ATIMA (Agile Toolkit for Inclusive Microbial Analysis) (The Human Microbiome 

Biegert et al. Page 4

J Microbiol Methods. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Project Consortium, 2012) for statistical and diversity analysis. Additionally, we obtained 

the functional annotation of the microbial community by using HUMAnN2 (Franzosa et al., 

2018). The pipeline used for sequencing the 16S rRNA data has been previously described 

(Sims et al., 2021).

2.4 Alpha Diversity Indices

We then analyzed data from both WMS and 16S using several alpha diversity metrics 

provided in the Microbiome R package (Lahti et al., n.d.) (R version 3.6.2), in order to 

assess the richness, divergence and evenness of the microbial communities within each 

patient sample. We calculated several index measures from observed operational taxonomic 

unit (OTU) counts for 16S data and WMS data collected from MetaPhlAn2 analysis 

independently. The Shannon Diversity (SD) (Mouillot and Leprêtre, 1999) accounts for 

both the abundance and the evenness of the taxa within a given sample and Inverse Simpson 

Diversity (ISD)[21] index provides a measure of the relative abundance of the different 

species within a sample making up the sample richness. The Camargo (Camargo, 1995) 

and Pielou (Pielou, 1966) Evenness indices are designed to calculate the proportionality of 

individual species within a sample population. A high degree of evenness would imply that 

the abundances of all individuals are roughly the same, or in equal proportions. Finally, the 

richness of the datasets was calculated using observed OTU counts and the Low Abundance 

Rarity (LAR) Index measures. The observed OTUs index provides a count based on the 

presence of at least one read for a given species within a sample. The LAR index (Lahti et 

al., n.d.) instead characterizes the concentration of species within a sample which have low 

abundance, defined as those falling below the detection level of 0.2%.

2.5 Comparative Statistical Analysis of 16S and WMS

We then paired each patient value from one dataset with its corresponding value for the same 

patient in the other dataset. The amount of agreement between the two datasets, in terms of 

alpha diversity measures, was then quantified using Spearman’s rank correlation coefficient 

(R or rho) with value of 1 indicating a perfect agreement, between two sets of variables.

To assess the consistency in reporting microbial abundance between 16S and WMS, 

we identified the most abundant taxa at the genus level for each sequencing method 

independently. Then, we compiled a list of organisms on either of the lists. Thus, the next set 

of comparisons were drawn using the total number of possible taxa identified by taxonomic 

name at all phylogenetic levels (with the exception of species).

We also analyzed the datasets individually while considering patient demographic and 

clinical characteristics. We analyzed six clinical variables to assess differences in diversity, 

evenness, and richness between groups. Binary classifications were analyzed using the 

independent t-test (Age, Smoking History, Histology) while multivariable classifications 

were analyzed using One-Way ANOVA (Ethnicity, Node Level, FIGO Stage). We also 

studied age and BMI as continuous variables in relation to Inverse Simpson Diversity and 

Pielou evenness for both 16S and WMS datasets. Consensus between the two datasets was 

defined as a P-value<=0.1. The cut-off P-value of 0.1 was chosen since we aimed to test 
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for a consensus between the two sequencing methods, and not only for significance. All 

analyses were conducted using R version 3.6.2 and Microsoft Excel (2016).

2.6 Hierarchical Clustering

To further explore the consistency of the two datasets, specifically the sample grouping 

according to the putative taxa abundance profiles, we used unsupervised hierarchical 

clustering of each OTU table by the cluster software with default settings (Bronstein and 

Deutsch, 1991). We performed the clustering using correlation as the similarity metric and 

the centroid linkage as the clustering method. The data used for clustering was limited by 

only using OTUs found in more than 14 samples. The obtained heatmaps were visualized by 

the Java TreeView software (Saldanha, 2004).

3. Results

3.1 Taxonomic composition and abundance using 16S and WMS

The number of putative taxa compiled in OTU tables was dramatically different between 

the technologies and included 984 OTUs in the 16S OTU table yet only 451 in the WMS 

table. The WMS OTU table was not as sparse as the 16S table and had a different abundance 

distribution frequency display, which was close to normal (Figure 1, A). The sparse 16S 

OTU table had significantly more rare low-abundance taxa; this feature is evident from the 

frequency distribution (Figure 1, B) and is well-characterized for this type of dataset.

The top 10 most abundant phyla and genera found in 16S and WMS are shown in Figure 

2. There was better consensus between 16S and WMS datasets on the phyla level than 

on the genus level (Figure 2). The most abundant phyla identified in both 16S and WMS 

were Bacteroides, Firmicutes, Proteobacteria, Actinobacteria and Fusobacteria. Interestingly, 

Verrucomicrobia were found to be highly abundant only by WMS. Tenericutes were ranked 

third most abundant by 16S but had low abundance according to WMS. There was a 

significant mid-level association (rho=0.69, P-value=0.03) between the phyla abundances 

(Figure 2, A–B). No significant associations between the abundances were identified at other 

taxonomic levels.

None of the top abundant genera according to 16S were identified as the most abundant 

genera according to WMS (Figure 2, C–D). There was no overlap between the top 10 most 

abundant genera in 16S and WMS. The top 10 genera in 16S or WMS are listed in Table 

1 with ranked relative abundances in each data set. Twelve genera were present in either 

the top 10 of 16S or WMS and present at any rank level in the other data set, and thus no 

abundance comparisons were made. Most genus level abundances correlated poorly between 

16S and WMS (rho<0.15). The only genus, with relative abundance correlated well between 

the data sets, was Peptoniphilus (rho=0.68, P-value<0.01).

Consistent with the difference in frequency distribution of species abundances, the 16S 

dataset included more putative species annotated at different taxonomic levels. Furthermore, 

a high percentage of the taxa identified via 16S (58–67%) were not identified by WMS, 

potentially as a result of using marker-gene classifiers. Conversely, most taxa found in the 
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WMS table were also identified by 16S (Figure 3, A–E). This percentage decreased at low 

taxonomic levels.

3.2 Diversity, evenness, and richness by 16S and WMS

To further investigate the varied microbial compositions and abundances of taxa at most 

phylogenetic levels, we next explored the effects of different general characteristics of 

species diversity within the gut microbiomes. Surprisingly, we found that most indices of 

diversity, evenness, and richness showed significant correlation between 16S and WMS 

datasets (Figure 4). All of the diversity and richness measures were tightly correlated 

between 16S and WMS (ISD rho=0.89, P-value<0.01; SD rho=0.90, P-value=<0.01; 

observed OTUs rho=0.76, P-value<0.01; LAR rho=0.72, P-value<0.001) (Figure 4, A–F). 

Evenness indices had a weaker correlation between 16S and WMS (Camargo rho=0.41, 

P-value<0.01; Pielou rho=0.84, P-value<0.01; Figure 4, C–D), which is not surprising 

considering there was greater similarity in taxa abundances in the WMS dataset then in 

the 16S dataset (Figure 1). Despite significant differences in the rare OTUs, low abundance 

rarity indexes also significantly correlated between the datasets. The slope of the regression 

line of the association was also consistent with a significantly greater number of rare low 

abundance species in the 16S dataset than in WMS (Figure 4, E–F).

3.3 Association of demographic characteristics with diversity of microbiomes and 
specific taxa

In our next step, we investigated whether the differences and similarities considered 

above affected biological conclusions drawn from each dataset. Namely, we explored 

demographic variables (Supplementary Table 1) in association with gut microbiome 

diversity and specific taxa using either the 16S or WMS dataset. When diversity, evenness 

and richness indices were compared to baseline characteristics using both 16S and WMS 

(Table 2, [see Additional file 1]), only age was associated with ISD in both WMS and 

16S (P-value<0.1). Age was associated with SD (P-value=0.04), and Pielou evenness (P-

value=0.01) using 16S, but not WMS. Camargo evenness was associated with age only using 

WMS (P-value=0.008). LAR richness was associated with BMI using WMS (P-value=0.05) 

but not 16S. Other baseline demographic variables were not associated with diversity, 

evenness or richness using any metric. Overall, there was consensus between methods 

(both P-value<=0.1 or >0.1) across all demographics for ISD only. A positive correlation 

between age and gut diversity, and between age and evenness was identified in both 16S 

(ISD; rho=0.37, P-value=0.02. Pielou; rho=0.39, P-value=0.01) and WMS (ISD; rho=0.29, 

P-value=0.06. Pielou; rho=0.28, P-value=0.08) data (Figure 5). Both datasets failed to find a 

difference between patient populations regarding ethnicity, smoking status, tumor histology, 

nodal involvement, or FIGO stage.

We further explored specific taxa associated with the age of cervical cancer patients using 

Linear Discriminant Analysis (LDA) Effect Size (LEfSe). The clinical variable of age, was 

classified in three different ways: over vs under 50 years of age, over vs under the median 

age (49 years), and finally the patients were split into three sections where the 14 youngest 

and 14 oldest patients were compared against each other, with middle age group omitted 

(SFig. 1). We applied the one-against-all strategy with a threshold of 3 on the logarithmic 
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LDA score for discriminative features and α of 0.05 for factorial Kruskal-Wallis test among 

classes. Regardless of the classification method used, the taxa identified as significantly 

enriched in older or younger patients were not consistent between 16S and WMS datasets.

3.4 Grouping of cervical cancer patients in terms of putative species abundances

Unsupervised hierarchical clustering of samples based on the species abundances in WMS 

and 16S (Figure 6, A–B) and OTU tables revealed 2 broad groups of patients in each 

hierarchy with significant overlap among patients comprising each group (Fisher’s Exact 

Test P-value is 0.004). Despite the significant differences in the number of genera identified 

by 16S and WMS, the hierarchical clustering of OTUs was consistent between datasets and 

revealed a set of OTUs enriched with Prevotella, Peptoniphilus, and Porphyromonas. These 

genera were more abundant in both 16S and WMS Cluster 1, but less abundant in 16S and 

WMS Cluster 2. Most notably, the grouping of patients in Cluster 1 and 2 was associated 

with the BMI index of the patients (Fisher’s Exact Test P-value is 0.002 for WMS and 

0.06 for 16S). There were significantly more patients with BMI<median (28.63) in Cluster 

1 (WMS and 16S) than in Cluster 2 (both datasets). There were 20 patients in the 16S 

Cluster 1 and 24 patients in the WMS Cluster 1. Thirteen of which were in common between 

those clusters, and they were grouped close to one another. Indicating a greater degree of 

similarity in terms of their OTU abundance profiles.

4. Discussion

This study is limited by our analytic pipelines and available samples, but the results 

suggest that 16S with OTU clustering provides a similar description of sample diversity 

and composition for gut microbiomes using paired specimens from one rectal swab from 

cervical cancer patients versus WMS. This finding is important as it allows researchers 

to analyze a larger number of samples using 16S at a fraction of the cost of WMS. 

Our developed 16S pipeline is robust and compares well to WMS as an alternative to 

QIIME2, and is a valid approach for assessing taxonomic distribution. Camargo evenness 

and skewness were the least correlated indices between the two methodologies, which 

suggests that the sequencing methods differ in terms of the proportionality of in dividual 

bacterial taxa. This might be improved using a 16S analysis pipeline that uses amplicon 

sequence variants, such as QIIME2, to retain more reads. The Camargo index has low 

sensitivity for variation in species diversity for sample sizes <3000, while the Pielou index 

is a sensitive assessment index for smaller sample sizes (<1000). Thus, the Pielou evenness 

index is more appropriate in terms of this sample size, and correlates well between the two 

datasets (Mouillot and Leprêtre, 1999). With regards to rare taxa (LAR), WMS provides 

more noise in a dataset by identifying individual genes, which may be linked to unidentified 

bacterial species. 16S combined with OTU clustering can at best provide information at 

the genus level with a high degree of confidence and relies on 97% similarity clustering 

at the OTU level. This difference is to be expected, and could be exploited in specific 

analyses, such as searching for previously identified species or particular gene functions. It 

is reassuring that there was significant consensus between the methodologies on the higher 

order levels. Much of the focus in next generation sequencing analysis is placed on the 
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smallest taxonomic level available (i.e. the genus or species level), but higher order taxa also 

provide valuable information.

Previous work has also posited a sizable amount of agreement between 16S and WMS 

sequencing techniques at higher orders of taxa (Vogtmann et al., 2016), consistent with 

these results. 16S and WMS have a significant degree of correlation; however, most of those 

studies utilize data derived from samples collected in similar but not identical contexts. 

This project provides a unique opportunity in that both 16S and WMS sequencing datasets 

were derived from a single sample collected from each patient and then bacterial DNA 

was extracted for both methods. Using this high-quality information, we investigated the 

correlation of these two datasets in terms of microbial composition abundance and alpha 

diversity, to precisely determine how well these sequencing methods corroborated. Since 

the two datasets are derived from the same samples, association with the clinical variables 

should also result in the same conclusion regardless of the sequencing method used, which 

was again confirmed. Age is perhaps the variable most strongly associated with microbiome 

diversity, which was confirmed in both datasets in our study. It is also important to note, 

hierarchical clustering analysis showed 9 (69%) out of 13 patients in Cluster1 were white, 

while only 8 (31%) of the 28 patients in the rest of the cohort were white. In addition, 12 

(92%) out of the 13 patients in Cluster1 had a disease stage of 1 or 2, compared to 19 (68%) 

out of the 28 patients in the rest of the cohort.

An important limitation of the study is that we focus solely on taxonomic characteristics 

of the gut community. The major advantage of WMS is that it provides an opportunity to 

assay functional diversity of the microbiome, a capability severely lacking in 16S data. Tools 

such as PICRUSt (Langille et al., 2013) can infer metabolic profiles from 16S data, but 

they cannot truly assemble functional pathways. Yet, the most fundamental drawback of this 

study is due to the limitations of analytic pipelines used in each approach and the databases 

available for both 16S and WMS data. Tools for analyzing 16S have been developed and 

successfully deployed far longer than WMS analysis software, while the WMS analysis 

pipelines and databases are continually being developed and shared. The differences in 

alignment techniques and databases would account for a lot of the variation in taxa names 

herein. For example, by calculating OTUs we recapitulated a popular method of alignment 

used in this field, but in doing so the data has been collapsed at the cost of potential diversity 

information. Additionally, tools used for metagenomic analysis vary based on techniques 

used such as distance metrics and clustering approaches (Bushnell et al., 2017). Here, we 

used OTU clustering at 97% similarity using previously described methodology from the 

Human Microbiome Project (The Human Microbiome Project Consortium, 2012), but this 

data could be re-analyzed using QIIME2 and amplicon sequence variant (ASV) calling 

(Bolyen et al., 2019) and result in variations in ASV vs. OTU assignment that could affect 

the analysis. Amplicon sequence variant calling with DADA2 denoising (Callahan et al., 

2016) may be a preferable system for WMS comparisons as the pipeline is more similar 

to how WMS reads are treated. Another important consideration is that the MetaPhlAn2 

tool inherent in the Humann2 pipeline uses a relatively small fraction of the data generated, 

whereas another non-marker gene based identifier such as QIIME2, Kraken 2 (Wood and 

Salzberg, 2014) or the mothur software (Schloss et al., 2009) will generate a larger and more 

varied, spread of results. Still, MetaPhlAn2 outperformed IGGsearch (Nayfach et al., 2019) 
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which was also deployed on our WMS dataset, and it remains the most popular marker-gene 

based tool in the metagenome field.

Another limitation to address, for this work and many others, is establishing a confident 

rarefication cut off for analysis. Usually this cut off value would be validated by utilizing 

a mock microbial community dataset to be analyzed alongside experimental data. Here, 

we were unable to acquire complete mock communities as such information is privileged 

and difficult to attain. However, the cut off value we used was selected because it 

was consistently stringent across both 16S and WMS datasets while retaining as much 

information as possible.

All this is to say, variations in approaches to metagenome assembly pipelines similarly could 

affect taxonomic assignment in 16S and WMS data. It is possible that a particular sequence 

relevant to both datasets would be classified differently during preprocessing, highlighting 

the necessity of universal reference databases and sequencing alignment tools and protocol 

consensus.

Given this variability in sequencing and data processing pipelines, the use of multiple 

techniques across different types of sequencing data is an excellent way to confirm 

consistency in conclusions. However, limited resources (e.g. material from clinical samples, 

bioinformatics support, time and finances) hamper the ability for this expansive and in-depth 

microbiome profiling for all studies. Although WMS has been demonstrated to confer 

significant advantages over 16S, this work suggests there is very little additional taxonomic 

information identified from WMS that was not identified in 16S data (Laudadio et al., 2018; 

Salipante et al., 2015). This can vary depending on the context of analysis, for example 

method of sample collection (i.e., whole stool vs swabs) and determining the functional 

components of the microbiome in question (Langille et al., 2013; Ranjan et al., 2016) It is 

even possible that extracting DNA from the same sample at two different times, instead of 

splitting a single extraction as was done here, may yield slightly different results.

There have been multiple studies conducted that have reported on the differences between 

16S rRNA and WGS (Chan et al., 2015; Escobar-Zepeda et al., 2018; Poretsky et al., 2014; 

Ranjan et al., 2016; Shah et al., 2011). A study conducted by Escobar-Zepeda et al. used 

multiple datasets to evaluate public databases and showed that the overall performance 

of almost all methods they evaluated using WMS was better than 16S rRNA but with a 

trade-off between sensitivity and specificity (Escobar-Zepeda et al., 2018). Another study 

comparing the databases of 16S and WMG showed that the two methods differ significantly 

in terms of community structure for most of the bacterial communities sampled (Shah et al., 

2011). In one study, stool samples were collected from one participant and the two methods 

were compared (Ranjan et al., 2016) WMS had enhanced detection of bacterial species, 

diversity, and prediction of genes as compared to 16S rRNA sequencing. Our study presents 

novel findings as it is the first to compare the two sequencing methods in patients with 

cervical cancer using rectal swabs as opposed to stool samples.

In our work, alpha diversity assessments such as overall diversity, evenness and richness can 

provide meaningful, and more important, comparable information (Figure 1) when obtained 
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with either 16S or WMS. Furthermore, the two datasets provided a high degree of consensus 

when these indices were subjected to statistical analysis. This suggests that for studies where 

overall microbiome diversity, richness and evenness are the goals of an analysis, 16S is 

more than sufficient to provide this information. For basic taxonomic descriptions, there 

was a meaningful agreement on the phyla and higher taxa levels, suggesting that 16S is 

also sufficient in this setting for hypothesis-generating data. Nonetheless, these two datasets 

did provide some differences in taxonomic assignment, particularly on the genus level, and 

relative abundances of individual taxonomies. This suggests that for studies where a broader 

repertoire of potential species are needed, both techniques may be necessary.

A good agreement in richness and diversity between 16S and WMS, in spite of the 

difference in the specific taxonomies, is not surprising. It confirms that both technologies are 

actually good in picking differences among samples within a particular ecosystem. If sample 

1 is less diverse than sample 2 according to 16S, it will also be less diverse according to 

WMS, even if specific genera identified by the technologies are different. The technologies 

are inherently different, and each relies on technology-specific computational algorithms and 

databases. In the case of WMS we sample all DNA and may even assemble a complete 

genome if it is dominated in the environment. In the case of 16S, we sample only one gene 

and identify only putative species. The fact that an organism is identified by 16S but not 

WMS, does not mean that it is an ‘incorrect’ annotation, and it should be discarded.

The results of our study show that if we use 16S and WMS as currently employed, we can 

expect broad, high level conclusions, such as grouping samples from a particular ecosystem 

according to their diversity or according to the taxa abundance profiles, will be likely 

consistent between technologies. Significant differences may emerge when we go in more 

detail, such as low-level taxonomic classification. Both technologies are fundamentally 

different and have technology-specific advantages and disadvantages that should be taken 

into consideration when designing a study

5. Conclusions

In all, this evidence suggests that using 16S alone may be sufficient in the clinical cancer 

research setting, where available patient material, time and money can be scarce. Based on 

these findings, we suggest 16S for the gut microbiome of cancer patients for initial diversity, 

richness and evenness metrics along with higher level taxonomic classification. WMS can 

provide a large swath of detailed microbial information, albeit with less sensitivity than 16S, 

and may be ideal when additional information on genus and species level identification is 

needed or to confirm conclusions drawn from 16S data.
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Highlights

• WMS and 16S were more similar in high- then low-level taxonomic 

characteristics

• Diversity metrics were tightly correlated between the technologies

• Consistency was also found in biological inferences

• Significant difference was observed in individual taxa and their abundances

• 16S may satisfy the initial diversity characterization of the gut microbiome
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Figure 1. Different distribution of putative taxa species abundance in WMS and in 16S OTU 
tables.
To display differences in abundances in terms of OTU frequencies, OTU counts were log 

transformed and presented here as histograms. WMS (A) OTU identifiers displayed reduced 

overall frequency compared to 16S (B), however the distribution of species abundance 

showed a more normal distribution.
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Figure 2. Comparison of top 10 taxa at highest and lowest taxonomic levels for WMS and 
16sRNA.
The bar plots presented show the top ten most abundant taxa present in the WMS (red), 

16sRNA (green) as identified at the Phylum (A,B) and Genus (C,D) levels of taxa. The 

two datasets have a greater level of consensus in terms of microbial abundance at higher 

taxonomic levels (eg. Phylum) than lower levels (eg. Genus).
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Figure 3. Comparison of number of overlapping taxa at each phylogenetic level for WMS and 
16S.
The bar plots show the percentage of (A) Phylum, (B) Class, (C) Order, (D)Family, and (E) 

Genus level taxa present in WMS (red), and 16S (green) which overlap in both lists. Across 

all levels, many of the WMS taxa identified were also identified in the list of 16S taxa.
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Figure 4. Correlation between WMS and 16S in terms of diversity, evenness, and richness.
In this figure, each data point represents a single patient. Consensus between both 

sequencing methods in terms of alpha diversity is calculated by a Spearman Correlation (R). 

The slope of the correlation is represented by a red line, while the blue dotted line represents 

the ideal correlation (R=1) and the 95% confidence interval is represented by a grey shaded 

area. The data derived from 16S rRNA gene sequencing correlates well with the diversity 

assessment values derived from WMS for diversity and richness. The evenness measures 

suggest that the sequencing methods differ in terms of the proportionality of individual 

bacterial taxa.
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Figure 5. Correlation between age and Inverse Simpson Diversity and Pielou Evenness for 16S vs 
WMS.
The slope of the correlation is shown in red while the 95% confidence interval is indicted 

by the grey shaded region. Spearman Correlation shows a weak association between age and 

the Inverse Simpson Diversity Index value (A,B) as well as the Pielou evenness Index value 

(C,D), for both 16S and WMS data.
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Figure 6. Unsupervised hierarchical clustering of samples in terms of putative species 
abundances.
To generate these heat maps, only OTUs found in more than 14 samples were considered; 91 

OTUs in 16S OTU table (A) and 103 in the WMS OTU table (B). Overlay between 16S and 

WMS sample Clusters are shown at the bars above the heat map, while demographic data is 

presented at the bottom.
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Table 1.

Comparisons of Top Ranked WMS and 16S Genera.

Genus Name WMS Rank 16S Rank Spearman R p Value

Bacteroides 1* 12 0.29 0.0639

Prevotella 2* 70 0.21 ns

Parabacteroides 3* 88 0.09 ns

Porphyromonas 4* 126 −0.1 ns

Akkermansia 5* 129 0.18 ns

Alistipes 6* 13 −0.27 0.0828

Faecalibacterium 7* - - -

Campylobacter 8* 115 0.05 ns

Peptoniphilus 9* 56 0.68 1.14E-06

Oscillibacter 10* 34 0.12 ns

Mycoplasma 58 9* 0.24 ns

Coprobacter 73 7* 0.22 ns

Jonquetella 119 5* −0.18 ns

Nocardioides - 1* - -

Lachnoanaerobaculum - 2* - -

Clostridium sensu stricto 1 - 3* - -

Ruminococcaceae UCG_014 - 4* - -

Selenomonas_4 - 6* - -

Eubacterium coprostanoligenes group - 8* - -

Christensenellaceae R_7_group - 10* - -

The top ten most abundant Genera identified in WMS or 16S (identified with *) are shown next to their counterpart and the associated rank. Genera 
present in both lists were correlated in terms of abundance using Spearman R. Resulting p values are shown as not significant (ns), less than 0.1, or 
less than 0.05 (bold). Genera present in one dataset, but not the other ( - ) could not be correlated.
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Table 2

Correlation between WMS and 16S in terms of Diversity, Evenness, and Richness.

Clinical 
Variable

Diversity Evenness Richness

Inverse Simpson Shannon Camargo Pielou Observed OTUs LAR

WMS 16sRNA WMS 16sRNA WMS 16sRNA WMS 16s 
RNA WMS 16SRNA WMS 16sRNA

Age 0.0631 0.0166 ns 0.0396 0.0077 ns ns 0.0111 ns ns ns ns

Ethnicity 
(W,B,H,O) ns ns ns ns ns ns ns ns ns ns ns ns

Smoking 
History 
(Y/N)

ns ns ns ns ns ns ns ns ns ns ns ns

Histology 
(Adeno/
Squam)

ns ns ns ns ns ns ns ns ns ns ns ns

Node level ns ns ns ns ns ns ns ns 0.0748 ns ns ns

FIGO Stage ns ns ns ns ns ns ns ns ns ns ns ns

BMI ns ns ns ns ns ns ns ns ns ns 0.0468 ns

In this table, patient demographics and clinical assessments were collected and used as classification criteria to investigate differences between 
these characteristics in terms of alpha diversity measurements discussed earlier. Both datasets were analyzed using either a parametric t-test 
[Smoking History (Yes/No), Histology (Adenocarcinoma/Squamous Cell Carcinoma)], linear regression [Age and BMI], or One-Way ANOVA 
[Ethnicity (White, Black, Hispanic, Other), Node Level (Common Iliac/External Iliac/Internal Iliac/None/Para-Aortic), FIGO Stage (IA1, IB1, IB2, 
IBI, IIA, IIB, IIIB, IVA)]. The resulting p value measures are indicated on the table as being either non-significant (ns), less than 0.1 or less 
than 0.05 (bold). Consensus between both methods, whole-metagenome sequencing and 16sRNA sequencing, indicates the validity of using either 
method for exploring that clinical variable.
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