

Technical Section

TECHNICAL NOTES AND TIPS

Open reduction of displaced intertrochanteric neck of femur fractures

G Crate¹, M Webb²

¹Kingston Hospital NHS Foundation Trust, UK ²St Georges' University Hospitals NHS Foundation Trust, UK

CORRESPONDENCE TO

Georgina Crate, E: georginacrate@doctors.org.uk doi 10.1308/rcsann.2021.0240

Figure 1 Anteroposterior image of fracture (after attempted closed reduction)

Background

Although common, neck of femur (NOF) fractures requiring surgical fixation can be difficult to manage. 1,2 This can be particularly challenging when the lesser trochanter (LT) and greater trochanter (GT) are both attached to the proximal fragment due to the resultant pull of muscles (Figures 1 and 2). Fragment-specific fixation allows reduction to be maintained while definitive cephalomedullary fixation is introduced.

Technique

Fragment-specific reduction techniques can be employed:

- 1. Reduce the LT with large bone-holding forceps.
- 2. Reduce the GT using pointed reduction forceps.
- 3. Hold reduction using 2mm crossed Kirschner wires (Figure 3).

Figure 3 Crossed Kirschner wires

Figure 2 Lateral of fracture (after attempted closed reduction)

Figure 4 EVOS plating

Figure 5 Addition of Hey-Groves bone-holding forceps before intramedullary nailing

Figure 6 Intramedullary nail insertion

Figure 7 Final anteroposterior image

4. Apply small fragment-locking plate (EVOS plate, Smith+Nephew, Croxley Park, UK) and secure with unicortical locking screws to neutralise the abduction forces (Figure 4). Plan placement so as to avoid the entry point for the neck screw.

Figure 8 Final lateral image

- Apply large bone-holding forceps to the LT to reinforce the reduction (Figure 5).
- Medialise the entry point for a trochanteric entry cephalomedullary nail (Gamma3, Stryker, Newbury, UK) as described by Westacott and Bhattacharava³ (Figure 6).

Discussion

Anatomical reduction of NOF fractures can be challenging. Fracture-specific reduction can be used to stabilise the proximal femur to allow definitive fixation, and to avoid varus reduction of unstable NOF fractures (Figures 7 and 8).

References

- National Institute for Health and Care Excellence (NICE). Clinical Guideline 124 (CG124). Hip Fracture: Management. https://www.nice.org.uk/guidance/cg124 (Updated May 2017).
- Wang ZH, Li KN, Lan H et al. A comparative study of intramedullary nail strengthened with auxiliary locking plate or steel wire in the treatment of unstable trochanteric fracture of femur. Orthop Surg 2020; 12: 108–115.
- Westacott DJ, Bhattacharava S. A simple technique to help avoid varus malreduction of reverse oblique proximal femoral fractures. Ann R Coll Surg Engl 2013: 95: 74.

Difficult supralevator abscess draining through the 'posterior umbilicus': an old approach to keep in mind

R Zinicola¹, N Cracco², P Bresciani¹

¹University Hospital Parma, Italy

²IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy

CORRESPONDENCE TO

Roberto Zinicola, E: rzmediterraneo@gmail.com doi 10.1308/rcsann.2021.0267

Background

Supralevator abscess (SLA) may be drained through the rectum or through the ischiorectal fossa according to the skeletal muscle rule. $^{\rm 1}$ In