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We describe here the application of a type of artificial neural network, the Gaussian radial basis function
(RBF) network, in the identification of a large number of phytoplankton strains from their 11-dimensional flow
cytometric characteristics measured by the European Optical Plankton Analyser instrument. The effect of
network parameters on optimization is examined. Optimized RBF networks recognized 34 species of marine
and freshwater phytoplankton with 91.5% success overall. The relative importance of each measured parameter
in discriminating these data and the behavior of RBF networks in response to data from “novel” species
(species not present in the training data) were analyzed.

Rapid and accurate identification of vast numbers of phyto-
plankton cells is essential in aquatic microbial ecology, since
these microalgae collectively fuel the marine food web and
have been implicated in climate control and some form nui-
sance blooms. In the past, research has been hampered by the
laborious and time-consuming nature of the analysis (usually in
the laboratory a long time after sample collection in the field),
leading to inaccurate estimates of abundance because of loss
due to fixation and storage and to limitations on the number of
cells that can be counted. Analytical flow cytometry (AFC),
which measures various diffraction, light scatter, and fluores-
cence parameters, can provide “fingerprints” for individual
phytoplankton cells (12, 14). AFC allows easy discrimination of
phytoplankton from nonliving particles in seawater (14), and a
small number of categories (less than 10) have been distin-
guished from bivariate scatter plots (12, 14) or by using artifi-
cial neural networks (ANNs) (1, 8, 9, 22). In a preliminary
study, attempts were made to discriminate 40 microalgal spe-
cies from each other by using six AFC parameters (2), but half
of them were identified with less than 70% success due to the
overlap of character distributions. Clearly, the current analyt-
ical capacity falls well short of being able to analyze the full
taxonomic spectrum in the world’s oceans. For discrimination
of large numbers (hundreds) of taxa, different and/or more
parameters are required.

Cytometry. Currently available commercial flow cytometers
have been designed for use in the laboratory and are able to
cope with only a relatively narrow range of particle sizes. For
marine use a machine is required that can be used at sea; can
cope with a range of cell sizes to include large phytoplankton
(.5 mm in diameter), nanoplankton (2 to 5 mm), and pico-
plankton (,2 mm); is tailored specifically to allow detection of
pigments found in phytoplankton; and can sort particles elec-
trostatically or mechanically.

Data analysis problem. AFC yields vast quantities of multi-
variate data, which present a considerable challenge for data

analysis. While multivariate statistical methods have been used
(e.g., see references 4 and 6), it can be difficult to find the
appropriate technique, and problems may arise if invalid as-
sumptions are made about the data distribution, e.g., assuming
normality when data actually have a bi- or multimodal distri-
bution. The use of ANNs is a powerful alternative technique
that makes, in general, only minimal assumptions about the
nature of the data distribution.

ANNs used for identification generally consist of an inter-
connected layered structure of simple data-processing ele-
ments (nodes): an input layer, which serves merely to distribute
input data (one node per identification character); a hidden
layer, which models the data distribution; and an output layer,
which indicates the identification (one node per taxon) (Fig. 1).
When presented with a multivariate data pattern drawn from
the probability distribution of one of a number of categories
(taxa), ANNs are able to associate the pattern with the cate-
gory to which it belongs (3, 11). The ANN learns this associ-
ation in a “training phase,” during which the internal structure
is adjusted in response to presentation of a representative
sample of data patterns for each of the taxa to be identified,
together with information as to their correct identification (the
“training data”). Once successfully trained, an ANN can rec-
ognize patterns which, although never before presented, are
sufficiently similar to the training data to allow the correct
association to be drawn. The multilayer perceptron network,
also known as the backpropagation network, is the ANN par-
adigm most commonly applied to biological identification
problems, including preliminary studies that use flow cytom-
etry data (1, 2, 8, 9, 22). However, this ANN trains very slowly
and may perform poorly if the data distribution is complex
(19). Radial basis function (RBF) ANNs, on the other hand,
are at least as successful in biological identification as other
network types (18, 27, 28), train much more rapidly (28), and
allow criteria to be applied to reject as being “unknown” pat-
terns from taxa upon which the network has not been trained
(19). Rapid training is important, as when additional taxa are
encountered ANNs must be retrained. The ability to recognize
unknowns is also essential, since when natural samples are
analyzed it is likely that several or many species will be en-
countered which have not been used for training the network.

RBF neural networks. RBF ANNs model the distributions
of the data categories (taxa) to be recognized by superimposing
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kernels (basis functions) over the data input space. These ker-
nels (implemented by the hidden-layer nodes [HLNs]; Fig. 1)
have a defined response to input data that varies depending on
the distance of the data point from the center of the kernel.
The value of a basis function at any point in the data space is
given by a nonlinear function of the scaled distance between
that point and the basis function center. A distance scaling
parameter for each basis function controls its width or spatial
extent.

Training an RBF ANN occurs in two separate stages: deter-
mination of the position and size of the basis functions, fol-
lowed by calculation of the weight coefficients for the output
layer nodes (11, 13, 20, 27). The first stage is subdivided into
two steps: selection of the basis function centers, followed by
selection of the width of each basis function. The second stage
is a simple least-mean-squares optimization procedure, either
iterative (13) or utilizing a matrix pseudoinverse method (11,
20, 27). Optionally, these may be followed by a third stage of
gradient-descent reduction of error, during which the basis
functions and weights are simultaneously adjusted to improve
classification performance on the training data (11, 16, 25).
The training procedure may be varied by changing the algo-
rithm used to select the basis function centers and by changing
the form of the basis function around each center. Several
factors related to network configuration affect how well an
RBF ANN trains, including the number, positioning, shape
(radially or non-radially symmetric), and width of basis func-
tions. Optimal configuration must be determined by experi-
ment.

This study reports on successful discrimination of 34 marine
and freshwater phytoplankton taxa by using RBF networks
trained on 11-parameter AFC data, obtained by using the
EurOPA (European Optical Plankton Analyser) (7, 14). The
importance of each parameter to the networks in performing
this discrimination is assessed, and the ability of RBF ANNs to
reject patterns from novel taxa as unknown is examined.

MATERIALS AND METHODS
Phytoplankton cultures. Eight freshwater species (Table 1) were grown in

batch culture in Woods Hole medium (10) for 3 to 4 days at 20°C under a daily
16-h (light)–8-h (dark) regimen (100 microeinsteins m22 s22). Five species of
cyanobacteria were grown in O-2 medium (24) under the same conditions.
Twenty-one marine species (obtained from the Plymouth Culture Collection,
Marine Biological Association, United Kingdom) were grown in F/2 enriched
seawater medium (10) under continuous illumination at 300 microeinsteins m22

s21 at 17°C.

EurOPA flow cytometer and data. The EurOPA is a compact and easily
transportable flow cytometer designed specifically for the analysis of phytoplank-
ton at sea; it was developed during the course of a European Union project in the
Marine Science and Technology (MAST-II) programme (7, 14). It allows the
simultaneous collection of flow cytometric parameters for particles of up to 500
mm in width and several millimeters in length and uses argon (488-nm) and
helium-neon (633-nm) lasers selected to have wavelengths optimal for the exci-
tation of the photosynthetic pigments found in plankton, as well as data acqui-
sition electronics able to cope with a total signal magnitude range of over six
decades between the smallest and largest particles encountered during analysis
of mixed field samples (14). It also incorporates novel cytometric techniques to
improve the capacity for discrimination between species, including a diffraction
module (a 5-by-5 square array of photodiode light detectors) which captures
particle shape information through polar and azimuthal resolution of the light
diffracted at small angles to the beam by particles in flow (5). Pulse-shape
analysis of the fluorescence and light scatter signals reveals morphological in-
formation about the longitudinal profile of the particles, and a video imaging
module allows electronic image capture of particles in flow (26).

Eleven-parameter data (Table 2) were collected for each of 34 marine and
freshwater phytoplankton species (Table 1) by using the EurOPA. Seven of the
parameters were fluorescence and light scatter measurements, and the other four
were from the diffraction module. The data for each species were plotted on
two-dimensional scatterplots, on which gates were placed to eliminate clusters
corresponding to background noise and contamination. Approximately 1,000
gated events were selected for each species. From these, two independent data
sets each containing 400 events were created for each species by random selec-
tion without replacement. These were used to create files of training and test
data, each containing 400 events per species. The performance of each ANN was
assessed by measuring the overall proportion of test patterns that were identified
correctly, and a “misidentification matrix” was constructed (3) showing the pro-
portion of the test patterns for each species that were identified by the network

FIG. 1. Schematic diagram of an RBF neural network classifier. Raw data
are distributed from the input layer via a “hidden” layer of processing units or
nodes to an “output layer” where the network’s decision is formed. The bias node
has a constant output value irrespective of input: its use allows output layer
nodes to add a constant offset.

TABLE 1. Percent correct identification of test data for all 34
species (400 test patterns per species), after gradient descent
optimization procedure, with an RBF ANN having 68 HLNs

with Gaussian kernels positioned by the LVQ algorithm

Species Width
(mm)

Length
(mm)

% Correct
identification Notesa

Alexandrium tamarensis 25–30 35–45 98.2 m
Anabaena flos-aquae 4–6 10–1,000 96.0 fc1
Aphanizomenon sp. 4–7 30–600 92.5 fc1
Chlamydomonas sp. 10–20 15–30 84.0 f
Chlorella salina 4–6 4–6 82.2 m
Chlorella vulgaris 4–6 4–6 94.2 f
Chroomonas salina 5–7 9–11 99.2 me
Chrysochromulina camella 5–7 6–8 90.8 m
Cryptomonas baltica 7–9 10–15 98.5 me
Cryptomonas calceiformis 7–9 10–15 99.0 me
Dunaliella tertiolecta 6–8 7–9 94.8 m
Emiliania huxleyii 4–6 4–6 96.8 m
Gymnodinium simplex 6–10 6–10 85.5 m
Gyrodinium aureolum 35–45 35–45 96.2 m
Halosphaera russellii 12–15 15–20 84.2 m
Heterocapsa triquetra 15–27 15–27 92.8 m
Microcystis aeruginosa 4–6 4–7 96.8 fc
Nitschia palea 40–70 40–70 89.0 m
Ochromonas sp. 3–12 3–12 94.8 me
Oscillatoria sp. 1–3 10–500 97.0 fc1
Oscillatoria redeckii 1–3 10–500 97.0 fc1
Phaeocystis globosa 3–4 3–4 88.8 m
Porphyridium pupureum 4–6 4–6 98.2 m
Prymnesium parvum 3–4 3–5 95.8 m
Pseudopedinella sp. 8–10 8–10 68.2 m
Pyramimonas obovata 4–8 4–8 87.2 m
Rhodomonas sp. 5–7 10–12 99.0 me
Scenedesmus quadricauda 10–20 20–30 94.2 f2
Scenedesmus subspicatum 3–4 8–12 87.5 f
Selenastrum capricornutum 2–3 6–8 80.8 f
Skeletonema costatum 4–6 6–8 87.2 m
Staurastrum sp. 30–40 35–50 96.8 f
Tetraselmis rubens 5–7 10–12 71.0 m
Thalassiosira rotula 8–10 8–10 97.2 m

a m, marine species; f, fresh water species; c, containing phycocyanin (cya-
nobacteria); e, containing phycoerythrin. Colony types: 1, filamentous; 2, coeno-
bium of four cells.
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as each of the possible classifications. The use of an independent test data set is
essential to evaluate the network’s ability to generalize.

Computer hardware and software. All RBF networks were implemented by
software written in C by one of the authors (M.F.W.) on a PC.

Optimizing the number of basis functions. The number of basis functions was
varied between one and four for each of the 34 classes. The upper limit of 136
basis functions (i.e., four per taxon) was determined primarily by memory limi-
tations of the computer hardware that restricted the number of HLNs and
associated weight values that could be stored (although this is no longer a
problem with the increasingly powerful machines now becoming available).

Selecting between nonradially symmetric and radially symmetric basis func-
tions. The use of the Euclidean distance metric yields hyperspherical (i.e., radi-
ally symmetric) basis functions, whereas the Mahalanobis-generalized distance
allows networks with hyperelliptical (i.e., non-radially symmetric) basis functions,
which can give better modelling of elongated data clusters. All the basis functions
used were Gaussian. Radially symmetric basis functions had the following form:

Gk~x! 5 expS2 ~x 2 mk!
T ~x 2 mk!

l2sk
2 D

where x is the presented pattern and mk is the center of basis function k, sk is the
root-mean-square average Euclidean distance between mk and the cluster of
training data patterns associated with it (i.e., those training patterns which are
closer to mk than to any of the other basis function centers), and l is the distance
scaling parameter controlling the basis function width. Non-radially symmetric
basis functions had the following analogous form:

Gk~x! 5 expS2 ~x 2 mk!
T O

k

21
~x 2 mk!

Nl2
D

where (k is the variance-covariance matrix for the cluster of training patterns
around mk and N is the number of dimensions of the input data.

Optimizing basis function width. The shape of the Gaussian basis functions
can be adjusted by changing the width parameter l. As l is decreased, the width
of each basis function (the size of the receptive field) decreases, and the func-
tions become more sharply peaked around the center. Broader functions can
allow smoother interpolation between basis functions. l was varied between 1
and 14.

Basis function center selection strategy. Three methods of center selection
were compared: random selection of patterns from the training data set, random
selection followed by the K-means algorithm (13, 23), and random selection
followed by the Kohonen LVQ algorithm (15, 16).

Use of gradient-descent algorithm. The gradient descent algorithm was ap-
plied after the networks had been trained. The procedure allows simultaneous
iterative adjustment of all network parameters (the basis function center posi-
tions, the basis function size and shape, and the values of the weighted connec-
tions between the hidden and output layers) in order to minimize the identifi-
cation error on the training data (11, 17, 25).

Construction of optimal RBF network to discriminate 34 species. After the
experiments to determine effects of network configuration on training, an RBF
network was trained to discriminate between all 34 species simultaneously. Two
non-radially symmetric Gaussian basis functions were used per output class (i.e.,
68 HLNs) with a width parameter l of 1.25, the centers of which were selected
through use of the Kohonen LVQ algorithm. This particular architecture was
found (see below) to be a good compromise, producing networks which were
computationally efficient (necessary for pattern identification at rates compara-
ble with data acquisition rates), yet with near-optimal classification performances
(typically within 1% of the optimal performance).

After the training step, the ability of the network to identify the 400 test data
patterns correctly for each species was measured. The gradient-descent optimi-

zation algorithm was applied to reduce identification error as far as possible on
the training data, and the network was tested again to find the extent of the
identification performance improvement.

Effect of exclusion of individual parameters. To investigate whether any of the
11 parameters were redundant in making the identifications, each was removed
in turn from the training data patterns, and an RBF network using the above
architecture trained on the resulting reduced-dimensionality data. Additionally,
networks with the above architecture were trained utilizing the seven fluores-
cence light scatter-size measurements alone (parameters 1 to 7) and the four
diffraction-pattern parameters alone (parameters 8 to 11). After training, the
abilities of the networks to identify the test data patterns correctly were com-
pared to the results for a network that used all 11 parameters.

Rejection of data patterns from novel taxa. An RBF network with the above
architecture was constructed and trained to discriminate between 20 species by
using all 11 parameters. These 20 species were a randomly selected subset of the
34 species present in the original training data. The network was then used to test
two possible criteria for the rejection of data patterns from “novel” taxa, i.e., the
14 species not used for training: (i) rejection if the summed value of all the basis
functions (i.e., the sum of the outputs of all the HLNs of the network excluding
the bias node) was less than a threshold value u and (ii) rejection if the output
of the closest basis function (i.e., the HLN with the largest output) was less than
u. Two indicators of performance were measured for each criterion: the propor-
tion of the test data patterns for the 20 “known” species that were rejected
(incorrectly) and the proportion of test data patterns for the 14 “novel” species
that were rejected (correctly). For each criterion, investigation was made of the
effect of varying the threshold value u from 0.0 (i.e., no rejection) upwards on the
proportion of test data patterns from the 20 known and 14 unknown species that
were rejected.

RESULTS AND DISCUSSION

Optimization of RBF networks. Increasing the number of
basis functions (up to the limits imposed by the computer
hardware) always improved performance on test data for net-
works employing radially symmetric (i.e., Euclidean-distance)
basis functions (Fig. 2a). Increasing the basis function width
parameter improved performance up to a point for such net-
works, although the value for which the performance ap-
proached its maximum was different for the different basis
function selection procedures (Fig. 2b). While use of the LVQ-
supervised clustering algorithm to adjust the center selection
produced networks with much better performance where basis
functions were comparatively “narrow,” increasing the width of
the basis functions removed this discrepancy, and for wider
basis functions the performance of networks employing LVQ
to select centers was no better than that of networks employing
random centre selection. Use of the K-means algorithm to
adjust the center selection was always least successful.

Use of non-radially symmetric basis functions improved per-
formance markedly when the LVQ center selection strategy
was employed. The improvement was less for the other center
selection strategies (which both gave results comparable to, but
generally marginally better than, networks with radially sym-
metric basis functions with the same width parameter). In-
creasing the number of HLNs had far less effect on the opti-
mum performance than in the case of radially symmetric basis
functions. The optimum width parameter value was approxi-
mately 1.25 (Fig. 2c).

Generally, two HLNs per output class, implementing non-
radially symmetric basis functions with the centers initially
selected by using the LVQ strategy offered a reasonable com-
promise between performance and computational efficiency.
(This is less of a problem with faster machines with more
memory.) Doubling the number of HLNs from 68 to 136 mar-
ginally improved performance on test data (by 1%) but also
doubled the computational effort. The fact that two non-radi-
ally symmetric HLNs per class were sufficient for these data
may reflect the fact that the class data distributions were gen-
erally uni- or bimodal. More complex data distributions would
require the use of a larger number of HLNs per class for
optimal performance. The LVQ algorithm combines the de-

TABLE 2. Parameters measured by the EurOPA instrument

Parameter type and no. Parameter

Fluorescence-light scatter
1 .....................................................Time of flight
2 .....................................................Forward light scatter
3 .....................................................Perpendicular light scatter
4 .....................................................Red fluorescence excited at 488 nm
5 .....................................................Orange fluorescence excited at 488 nm
6 .....................................................Green fluorescence excited at 488 nm
7 .....................................................Red fluorescence excited at 630 nm

Diffraction module
8 .....................................................Vertical bar
9 .....................................................Horizontal bar
10 ...................................................Outer ring
11 ...................................................Inner ring
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sirable property of allocating more basis functions to cover
densely populated regions with the use of class membership
information to produce a set of basis functions that reflect the
population densities of each class rather than of the combined
density of all classes together. A width parameter l of 1.25 was
optimal with this configuration, though notably this is much
wider than recommended in some of the literature (11, 13) by
a factor 2.9 (and by 7.0 for Euclidean basis functions).

Performance of optimal network. The optimal network iden-
tified 90.3% of the test data patterns correctly after training.
Application of the gradient-descent optimization procedure
improved this to 91.5% (Table 1), with the largest single im-
provement occurring through a reduction in the percentage of
Oscillatoria misidentified by the network as Aphanizomenon
(from 10.2 to 2.0%). Six species were recognized with 98.0%
success or better (Alexandrium tamarensis, Chroomonas salina,
Cryptomonas baltica, Cryptomonas calceiformis, Porphyridium
pupureum and Rhodomonas). All other species were recog-
nised with at least 80% success, with the exceptions of Tetra-
selmis rubescens (71.0% success, confused primarily with Gym-
nodinium simplex and Chlorella salina) and the Pseudopedinella
species (68.2% success, confused primarily with Halosphaera
russellii but also with Phaeocystis globosa). The excellent per-
formance of the network described here for recognition of 34
species is far superior to the performance of any of the neural
networks described previously for identifying phytoplankton
(1–4, 9, 16, 22), in terms of the simultaneous recognition of a
large number of species with a high recognition accuracy.

Effect of exclusion of parameters. It is important to know
how well phytoplankton can be discriminated if one (or indeed
more than one) parameter is missing. For example, if the flow
cytometer is being used at sea, parameters may be lost because
of problems with optical alignment or failure of one of the
lasers in a multilaser instrument such as the EurOPA. The four
fluorescence parameters appeared to be the most important
(since their individual exclusion resulted in the largest decrease
in the proportion of successfully identified test data patterns),
although no single parameter decreased performance by more
than 5% when excluded (Table 3). Clearly, good identification
was achieved even when one parameter was missing, and the

FIG. 2. Effect of basis function width, shape, and placement strategy on the
proportion of test data patterns for 34 species that were identified correctly. (a)
Effect of basis function width, for radially symmetric basis functions. Basis func-
tion centers were a randomly selected subset of the training data. Curves for four
different network sizes are shown: 34 HLNs (■), 68 HLNs (Œ), 102 HLNs (‚),
and 136 HLNs (E). (b and c) Effect of basis function center selection strategy for
radially symmetric basis functions (b) and non-radially symmetric basis functions
(c) (formed by using the Mahalanobis distance). Curves for two network sizes (34
HLNs [open symbols] and 136 HLNs [closed symbols]) are shown for three
selection strategies: random selection (squares), random selection followed by
K-means unsupervised clustering (inverted triangles), random selection followed
by LVQ supervised clustering (triangles).

TABLE 3. Effect of exclusion of each parameter on the percent
correct identification of an RBF ANN trained

to discriminate 34 speciesa

Parameter omitted

% Correct
identification

Training
data

Test
data

None 91.9 90.3
Time of flight 90.7 89.0
Forward light scatter 90.8 89.0
Perpendicular light scatter 90.6 89.0
Fluorescence blue-red 86.8 85.2
Fluorescence blue-orange 89.9 88.5
Fluorescence blue-green 89.2 87.4
Fluorescence red-red 87.1 85.4
Vertical bar 92.0 90.4
Outer ring 91.0 89.6
Horizontal bar 91.8 90.3
Inner ring 91.7 90.2

All diffraction module parameters 90.4 88.8
All parameters not belonging to diffraction module 48.6 46.7

a Networks used 68 non-radially symmetric Gaussian basis functions (width
parameter l 5 1.25), the centers of which were selected by using the Kohonen
LVQ algorithm.
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effect of the loss of several parameters could be investigated in
a similar way.

Exclusion of certain parameters adversely affected the
identification of some species more than others, revealed by
examination of the misidentification matrices (Table 4). This
indicates that the particular parameter is an important dis-
criminatory character of the flow cytometric “fingerprint.” For
example, in comparison to the network trained by using all
parameters, exclusion of parameter 4 (fluorescence blue-red)
markedly decreased the identification success of Chrysochro-
mulina camella, Tetraselmis rubens, Gymnodinium simplex,
Pseudopedinella spp., Chlorella salina, Selenastrum capricornu-
tum, and Skeletonema costatum. In particular, there was a large
increase in the confusion between Chrysochromulina camella
and Chlorella salina, with the proportion of the former misi-
dentified as the latter increasing from 1.0 to 12.2% and of
the latter misidentified as the former increasing from 0.0 to
15.8%. Parameter 5 (fluorescence red-red) was found to be
important in the discrimination of Chrysochromulina camella
from Thalassiosira rotula, Pseudopedinella spp. from Halospha-
era russellii and Phaeocystis globosa, and Selenastrum capricor-
nutum from Nitschia palea.

Occasionally, exclusion of a parameter resulted in a slight
increase in successful identification of a species (Table 4). This
probably only reflects slight differences in the location of de-
cision boundaries and was not accompanied by an increase in
overall successful identification.

Addition of the four diffraction parameters to the other
seven parameters increased overall performance on the test
data by around 1%, in comparison to the network trained by
using only the other seven parameters. This indicates that its
inclusion gives little advantage for the majority of species. A
network using the four diffraction parameters alone only
achieved about 47% success overall. However, some species
were successfully discriminated solely on the basis of the four
diffraction parameters, e.g., Dunaliella tertiolecta (92.8% suc-
cess), Cryptomonas calceiformis (87.8% success), Staurastrum
(81.0% success), Chlorella vulgaris (79.5% success), and Micro-
cystis spp. (78.2% success). Thus, for some species the particle

shape is a particularly distinctive feature, and the information
gathered by the diffraction module is useful in the discrimina-
tion of these species.

Rejection of data patterns from “novel” taxa. For criterion
1 (a constraint on summed output of all HLNs), as the thresh-
old value was increased, the proportion of rejected data pat-
terns from the 14 novel species initially rose sharply to around
20% and thereafter showed an approximately linear depen-
dence on u (Fig. 3a). The proportion of rejected data patterns
from the 20 known species was quite low for u values of #0.5
but thereafter increased more rapidly than the proportion of
rejected patterns from the novel species. Criterion 2 (a con-
straint on the value of the maximum HLN output) gave a much
better ratio between the proportion of novel species rejected
against the proportion of known species rejected (Fig. 3b). For
example, use of criterion 1 with a u of 0.7 caused the propor-
tion of correctly identified data patterns for the known species
to decrease from 93.8% (no rejection) to 86.8% but success-
fully rejected 52.8% of the data patterns from the novel spe-
cies. Use of criterion 2, with a u value of 0.4, caused virtually
the same decrease in the proportion of correctly identified data

FIG. 3. Use of a threshold parameter u as a constraint on the summed output
of all HLNs (a) and the maximum HLN output value (b) to reject data from
“novel” species (not present in the training data). The proportion of test data
patterns failing to satisfy the constraint, and therefore rejected as unknown, is
shown for the 20 trained species (E) and the 14 novel species (Œ).

TABLE 4. Percent identification success when single parameters
were excluded during training of RBF networks (with

architecture as in Table 2) to discriminate
34 plankton species

Species None

% Identification with excluded
parametersa:

1 2 4 5 6 7 1–7

Chlorella salina 83.0 81.5 79.5 62.8 81.8 79.8 71.5 11.8
Chlorella vulgaris 93.2 93.5 93.0 91.8 93.5 94.0 92.8 79.5
Chrysochromulina camella 91.0 90.5 90.5 65.8 88.5 90.5 70.8 41.5
Cryptomonas baltica 98.5 98.2 98.5 98.5 92.0 96.2 98.8 71.2
Cryptomonas calceiformis 99.0 99.0 98.8 98.8 97.8 98.8 98.8 87.8
Dunaliella tertiolecta 94.0 92.2 93.8 94.8 94.2 91.2 95.2 92.8
Gymnodinium simplex 83.8 83.5 83.8 70.0 79.8 70.2 76.2 32.2
Halosphaera russellii 83.5 63.0 76.2 76.5 81.2 82.2 77.5 51.2
Heterocapsa triquetra 92.0 90.5 90.8 91.0 84.8 90.5 89.8 63.5
Microcystis aeruginosa 95.5 95.2 95.2 95.2 95.0 94.8 95.8 78.2
Oscillatoria sp. 88.8 90.8 89.2 88.5 89.0 89.5 88.8 77.2
Oscillatoria redeckii 96.5 97.0 97.2 97.0 96.8 96.5 96.2 69.5
Prymnesium parvum 95.2 93.8 94.0 94.0 93.8 84.8 93.5 49.8
Pseudopedinella sp. 64.0 63.0 63.0 44.2 65.8 48.0 47.0 23.0
Selenastrum capricornutum 77.2 77.8 76.5 65.0 77.0 79.8 51.8 34.5
Skeletonema costatum 86.5 85.5 84.8 78.8 82.5 75.8 78.2 21.8
Staurastrum sp. 96.2 95.5 95.5 96.0 96.2 96.5 95.8 81.0
Tetraselmis rubens 64.0 61.0 51.0 48.0 62.8 54.5 52.0 10.5

a Only parameters and species for which there were marked differences from
the network trained on all 11 parameters have been included. Parameter num-
bers are as presented in Table 2.
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patterns for the known species but increased the proportion of
successfully rejected patterns from the novel species to 71.6%
(Table 5). In each case four of the novel species were success-
fully rejected with 100% accuracy.

Clearly, the best way of achieving good rejection was through
use of a threshold value for the maximum HLN output (with
rejection of any pattern not close enough to any of the basis
function centres to cause any of the HLNs to produce a large
enough output value), as was also found in a similar study (19).
Since the width of individual basis functions is different (gov-
erned by the spread of the training data patterns grouped with
the basis function center during the training procedure), the
critical distance from each center beyond which patterns are
rejected will vary from one basis function to another. Use of

the sum of the HLN outputs, while effective for some species,
did not allow successful rejection of others. In some regions of
the data space surrounded by basis functions, the combined
sum may still be large enough to prevent rejection, even for
patterns comparatively far from any of the basis function cen-
tres.

The ability of the RBF ANN algorithm to detect novel
patterns unlike any of the known taxa is likely to be of prime
importance in an identifier capable of analyzing “field” sam-
ples, which may well contain either novel species or popula-
tions of a known species rendered atypical by the environmen-
tal conditions.

Future developments. The approach clearly has consider-
able potential, but extending it from using pure cultures in the
laboratory to mixed populations in natural aquatic environ-
ments poses a number of problems. First, it is essential to be
able to obtain “good” training data from the environment of
interest, since conditions under which cells grow affect their
flow cytometric signatures and networks trained on data from
cultures may not perform well in identifying field samples.
Second, scaling up to a large number of species is nontrivial,
and large numbers may make it impractical to train single large
networks. Third, though estimating proportions of different
species present in mixed samples is straightforward when there
is no uncertainty in identification of individual cells, when the
identity is equivocal (due to overlapping flow cytometric pa-
rameter distributions), recourse to statistical methods is need-
ed in order to place confidence limits on the accuracy of the
estimated proportions. These problems are all being addressed
currently.
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