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Abstract

Focal amplification of epidermal growth factor receptor (EGFR) and its ligand-independent, 

constitutively active EGFRvIII mutant form are prominent oncogenic drivers in Glioblastoma 

(GBM). The EGFRvIII gene rearrangement is considered to be an initiating event in the etiology 

of GBM, however, the mechanistic details of how EGFRvIII drives cellular transformation and 

tumor maintenance remain unclear. Here, we report that EGFRvIII demonstrates a reliance on 

PDGFRA co-stimulatory signaling during the tumorigenic process in a genetically engineered 

autochthonous GBM model. This dependency exposes liabilities that were leveraged using kinase 

inhibitors treatments in EGFRvIII-expressing GBM patient-derived xenografts (PDXs), where 

simultaneous pharmacological inhibition of EGFRvIII and PDGFRA kinase activities is necessary 

for anti-tumor efficacy. Our work establishes that EGFRvIII-positive tumors have unexplored 

vulnerabilities to targeted agents concomitant to the EGFR kinase inhibitor repertoire.

Introduction

Glioblastoma (GBM) is a malignant primary brain cancer with a median survival of 

14 months. The genomic landscape of GBM is well characterized (1–3) and aberrant 

overexpression of EGFR is the most commonly observed genomic event in GBM, occurring 

in ~65% of all GBM patients (1–3). Along with EGFR copy number variants, deletion and 

mutations of the INK4a/ARF (Cdkna) locus occurs in >90% of EGFR positive cases and 

deletion and/or mutations of PTEN (~41%) are also frequently observed. Focally amplified 
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EGFR has been recently shown to reside on extrachromosomal DNA (ecDNA) (4–7). In 

half of the EGFR-amplified tumors (representing ~30% of all GBM patients), an intragenic 

in-frame deletion of exons 2 to 7 of Egfr results in a transcript that codes for a constitutively 

activated, ligand-independent receptor known as EGFRvIII.

Opinions on the role of EGFRvIII in gliomagenesis are contradictory. Early reports 

suggested that EGFRvIII positivity conferred a worse survival on patients (8, 9), however 

this observation was not sustained in more recent analyses of larger cohorts (10–12). 

Studies on paired EGFRvIII positive primary and recurrent GBMs revealed that in most 

cases (~80%), EGFRvIII rearrangement is qualitatively retained in recurrent tumors (12, 

13). However, the levels of EGFRvIII transcripts are significantly reduced or undetectable 

in ~50% of recurrent GBMs (12–14), seemingly suggesting that EGFRvIII expression is 

influenced epigenetically, perhaps as a result of fractionated radiation and temozolomide 

treatments. Remarkably, there are few cases in which EGFRvIII expression is detected 

only in recurrent GBM tumors (12, 13). More recently, in-depth analyses at the single cell 

level revealed that GBM heterogeneity derives from significant clonal evolutions during 

gliomagenesis (15–18), and perhaps the emergence and attenuation of EGFRvIII-positive 

cells is a manifestation of the dynamic clonal changes of GBMs. EGFRvIII expression is 

heterogeneous, sometimes detected in only a small percentage of tumor cells (19, 20), which 

undermines the rationale for EGFRvIII-targeted therapies. Although the significance of 

EGFRvIII expression in clinical samples is debatable, ex-vivo studies on models of ectopic 

expression of EGFRvIII in GBM cell lines unequivocally demonstrate that EGFRvIII-

positive cells are more resistant to apoptosis, more invasive, display greater proliferation 

rates and angiogenesis and enhanced ability to form xenograft tumors when compared 

to their parental counterparts (reviewed in (21, 22)). On the surface, these observations 

would suggest that EGFRvIII positivity confers accrued malignancy to GBMs. However, the 

difficulty in reconciling clinical and laboratory observations demonstrate a need for further 

investigations into EGFRvIII bona fide role in gliomagenesis in clinically and genetically 

relevant model systems.

Members of the EGFR family are known to homo- and heterodimerize (23). Structural 

studies of EGFR have produced models of homodimerization and shaped our insights 

into the mechanisms of kinase activation. The structural details of intra-family 

heterodimerization however remain ill defined in comparison. The consensus of many 

analyses is that EGFRvIII is capable of forming both homo- and heterodimers with EGFR 

WT (24–31), while the ability of EGFRvIII to heterodimerize with other members of the 

EGFR family remains to be addressed. Abundant evidence support the notion that EGFR 

WT can physically interact with and/or modulate the activities of many other receptor 

tyrosine kinases (RTKs) including AXL, EphA2, FGFR1, FGFR3, IGF-1R, HGFR/MET, 

PDGFRA, PDGFRB, Ron, ROR1, STYK1, TrkA, and TrkB in various tissues and cancers 

(recently reviewed in (32)). Similarly, studies have shown that EGFRvIII can also dimerize 

with monomers of other receptor tyrosine kinases such as the hepatocyte growth factor 

receptor (HGFR) and platelet-derived growth factor receptor A (PDGFRA) (33–35) and 

directly influence their function.
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In addition to EGFR, amplification, over-expression, and mutations of PDGFRA is the 

second most common genetic aberrations of receptor tyrosine kinases in GBM occurring 

in 13.1% of patients (1). PDGF ligands induce homo- and heterotypic dimerization and 

activation of PDGFRA and PDGFRB to elicit various intracellular signaling pathways and 

physiological responses (36). De-regulation of PDGF–PDGFR signaling axis leads to a 

number of cancers, including GBMs (37). We recently reported on a comprehensive review 

of the signaling pathways downstream of activated PDGFRs (38) and observed a significant 

overlap between the signaling events downstream of activated PDGFRA and EGFR (38).

The prevalence of EGFR-activating genomic events in gliomas, lung adenocarcinomas 

and other cancers has stimulated the development of targeted small molecule inhibitors 

that differ in their modes of action. Fueled by structural mechanistic insights, reversible 

and covalent/irreversible inhibitors of EGFR have been developed, which bind the kinase 

domain and inhibit its kinase activity while the receptor is in either an active (Type I 

inhibitors) or inactive (Type II inhibitors) conformation (recently reviewed in (39)). With 

these structural details in mind, the following first and second generation EGFR inhibitors 

were developed: Gefitinib (reversible Type I), Canertinib (irreversible Type I), Lapatinib 

(reversible Type II) and Neratinib (irreversible Type II). Efficacy of kinase inhibition and 

anticancer effects for these inhibitors have been studied extensively in the context of EGFR 

WT and EGFR kinase domain mutants in lung cancers but not against EGFRvIII-positive 

GBMs. Although clinically very successful in lung cancers, substantial therapeutic advances 

aimed at inhibiting EGFR in GBM remain unrealized (40). These clinical failures in GBM 

are partly due to the emergence of compensatory mechanisms or a non-dependency on 

EGFR for survival (40). We surmised that a better understanding of EGFRvIII biology 

during GBM initiation and maintenance is needed. Using a combination of GBM patient-

derived xenografts (PDXs) and genetically engineered mouse models, we demonstrate an 

obligatory requirement on additional signaling for EGFRvIII-driven gliomagenesis, which 

sets up a dependency on co-signaling that can be exploited pharmacologically.

Results

EGFRvIII positive GBM PDX cells are sensitive to Canertinib.

We determined the effects of type I and type II, reversible and irreversible EGFR inhibitors 

on EGFRvIII-positive GBM PDX cell cultures (41–43). Treatment of cells from four GBM 

PDXs with comparable EGFRvIII expression levels (Fig. S1A) and two low background 

level EGFR expressing and non-activated control GBM PDX cultures with 1 or 10 μM of 

Gefitinib (reversible Type I), Canertinib (irreversible Type I), Lapatinib (reversible Type II) 

and Neratinib (irreversible Type II) led to similar levels of EGFR kinase activity inhibition 

(up to >90%) as measured by the levels of EGFR autophosphorylation at Y1068 in cells 

from EGFRvIII-positive PDXs but not in the controls (Fig. 1A, Fig. S1B). Surprisingly, cell 

viability measured after 24 hr treatments revealed that only Canertinib (10 μM) treatment 

resulted in a consistent reduction in viability in the EGFRvIII positive PDX cells (Fig. 1B). 

EGFR negative PDX control cells were not affected (Fig. 1B). To better understand the 

effects of Canertinib on GBM cell growth, we selected GBM6, GBM39 and GBM59 for 

more detailed analysis. The viability of EGFRvIII-positive GBM6, GBM39 and GBM59 
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PDX cells was rapidly decreased to 50% viability within 10–15 hr (Fig. 1C). Consistent 

with these observations are the increases in AnnexinV positive cells (Fig. 1D) indicating the 

initiation of an apoptotic response upon treatment. These results demonstrated that inhibition 

of EGFR kinase activity alone is not sufficient to trigger apoptotic responses in human 

EGFRvIII positive PDXs and that Canertinib can induces a rapid (within 24 hr) apoptotic 

cell death response.

A longitudinal analysis of the activation of the canonical EGFR signaling pathways 

MEK1/2-ERK1/2 and PI3K-AKT in the context of Gefitinib and Canertinib treatments 

in GBM6 and GBM59 revealed that EGFR kinase activity, as measured by the levels of 

phospho-EGFR Y1068 is rapidly inhibited by both Gefitinib and Canertinib (Fig. 1E, Fig. 

S1C). Levels of phospho-ERK1/2, a surrogate of MEK1/2 kinase activity, initially declined 

upon treatments with both inhibitors but remarkably, rebounded in the Gefitinib treated 

cells back to baseline levels and above after 1.5 hours of treatment whereas in Canertinib 

treated cells, the levels of phospho-ERK1/2 remained low throughout the experimental 

time frame of 8 hr (Fig. 1E, Fig. S1C). In contrast, levels of phospho-AKT, a surrogate 

of PI3K activity, were diminished within an hour of Gefitinib and Canertinib treatments 

and remained low throughout in Canertinib treated cells and slightly increased in Gefitinib 

treated cells (Fig. 1E, Fig. S1C, D). At the 8 hr time point, the levels of phospho-ERK1/2 

and phospho-AKT in Gefitinib treated cells were significantly higher than in Canertinib 

treated cells. Analysis of cleaved PARP levels over time during treatment demonstrated an 

accumulation of apoptotic cells over time in the Canertinib treatment, consistent with the 

prior AnnexinV observation that Canertinib treatment induces apoptosis more significantly 

than Gefitinib treatment (Fig. 1E, Fig. S1C, D).

We also observed the anti-growth effects of Canertinib in vivo. Daily treatment of GBM6 

PDX tumor-bearing mice with Gefitinib (100 mg/kg p.o.) did not affect the growth of GBM6 

tumors when compared to vehicle (Fig. 2A) however, treatment with Canertinib (100 mg/kg 

p.o.) led to a significant reduction in tumor growth even though the levels of phospho-EGFR 

were similarly reduced in Gefitinib and Canertinib treated tumors (Fig. 2B–C). Moreover, 

levels of phospho-AKT and phospho-ERK1/2 were both reduced in Canertinib treated 

tumors compared to Gefitinib treated tumors (Fig. 2B). Together, these results indicate 

that treatment of EGFRvIII-positive GBM PDXs using Canertinib but not Gefitinib leads 

to reduction of cell viability, attenuation of MEK-ERK and PI3K signaling, increase in 

apoptosis and decrease in tumor growth in vivo.

Canertinib treatments elicit reductions in PDGFRA and EGFRvIII kinase activities

Kinase inhibitors notoriously display varied selectivity towards kinases (44) that often result 

in multi-targets inhibition when used at high concentrations. The noticeable differences 

in signaling, cellular growth and anti-tumor efficacies in vitro between low (1 μM) and 

high (10 μM) doses of Canertinib suggest that other kinases in addition to EGFRvIII are 

inhibited. To determine if high concentrations of Canertinib inhibit other RTKs in our 

GBM PDXs, we performed a 49 tyrosine kinase phospho-RTK array screen by comparing 

GBM6 PDX cells treated with vehicle control, 10 μM Gefitinib, 1 μM Canertinib or 10 

μM Canertinib (Fig. 3A). We observed that 10 μM Canertinib resulted in a 93% reduction 
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of PDGFRA phosphorylation whereas 10 μM Gefitinib and 1 μM Canertinib resulted in 

a lesser reduction of PDGFRA phosphorylation (65% and 72% respectively) (Fig. 3A). 

This observation was confirmed by western blots of GBM6 PDX cells treated with vehicle, 

Gefitinib (10 μM) or Canertinib (1 and 10 μM) that measured the levels of phospho-EGFR 

and phospho-PDGFRA (Fig. 3B, Fig. S2A). The levels of PDGFRA in GBM6, GBM39 and 

GBM59 are similar (Figure S2B) and significant reduction of phosphorylated PDGFRA is 

only observed in cells treated with 10 μM Canertinib and not in those treated with 1 μM and 

10 μM Gefinitib, Lapatinib or Neratinib in GBM6, GBM39 and GBM59 (Fig. 3C, Fig. S2C).

The anti-tumor effects of Canertinib in vivo are dose dependent (Fig. 3D). As observed 

earlier, Gefitinib treatment (100 mg/kg q.d.p.o) had no effect on tumor growth even 

though it significantly reduced (96.1 ±4.6%) the levels of EGFR autophosphorylation in 

tumors (Fig. 3E, Fig. S2C). In contrast, low dose (10 mg/kg q.d. p.o.) of Canertinib 

resulted in a tumor static effect and was associated with a 95.9% ±4.8% reduction in 

EGFR autophosphorylation (Fig. 3E, Fig. S2C). Higher doses of Canertinib (50, 100, 250 

mg/kg q.d. p.o.) led to reduction in tumor sizes, which correlated with maximal levels 

of EGFR kinase inhibition (>99%) (Fig. 3E, Fig. S2C). The levels of phospho-PDGFRA 

were marginally reduced by treatment of Gefitinib (13.4% ±2.7%) and were decreased 

in a dose-dependent manner with increasing Canertinib dosing reaching a 78.3% ±2.3% 

reduction in the 250 mg/kg q.d.p.o) treatment (Fig. 3E, Fig. S2C). Immunohistochemistry 

analysis of FFPE sections of the control and Gefitinib- and Canertinib-treated GBM6 tissues 

showed that the antitumor growth effects observed with Canertinib correlated with decreases 

in the proliferative marker Ki-67 (MIB-1) and increases in the apoptotic marker cleaved 

caspase 3 (CC3) (Fig. 3F).

Simultaneous attenuation of MEK and PI3K signaling triggers apoptosis in GBM PDX cells.

The sustained inhibition of both MEK and PI3K activity observed in Canertinib treated 

cells parallels their apoptotic response (Fig. 1E), whereas Gefitinib treatment did not elicit 

a sustained inhibition of MEK nor apoptosis. Therefore, in the context of PI3K inhibition, 

continuous MEK inhibition appears to be necessary for initiating an apoptotic response 

in GBM6 and GBM59 cells. Since both EGFR and PDGFRA signal through PI3K–AKT 

and MEK-ERK pathways, we substantiated our previous observation by treating GBM6 

PDX cells with the MEK1/2 inhibitor tool compound PD0325901 and the PI3K inhibitor 

GDC-0941 (Pictilisib) (45, 46) individually and in combination. We observed that combined 

inhibition of PI3K and MEK1/2 led to sustained apoptosis by cleavage of PARP in a time 

dependent manner and to levels similar to those seen during treatment with 10 μM of 

Canertinib, whereas treatment with Pictilisib or PD0325901 alone did not (Fig. 4A, Fig. 

S3A).

Previous observations demonstrated a physical interaction between EGFR and PDGFRA 

in GBM (33). Here, we established a functional interaction between EGFR and PDGFRA. 

Co-treatment with the PDGFRA inhibitor Ponatinib (AP24534 (47)) and Gefitinib for 24 

hr is sufficient to induce apoptosis, confirming the co-dependency of both EGFRvIII and 

PDGFRA signaling (Fig. 4B, Fig. S3B). Time course experiments revealed that either 10 

μM Gefitinib or 1 μM Canertinib in combination with the PDGFRA inhibitor Axitinib 
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(AG-013736 (47)), can simultaneously suppress PI3K-AKT and MEK-ERK pathways, in 

a manner similar to 10 μM Canertinib (Fig. 5A, Fig. S4A), suggesting that EGFRvIII and 

PDGFRA converge on these two major signaling pathways in GBM6. Together, these results 

indicate that simultaneous suppression of PI3K/AKT and MEK/ERK signaling pathways 

downstream of EGFR and PDGFRA in EGFRvIII positive GBM PDX cells elicits an 

apoptotic response.

Inhibition of PDGFRA sensitizes GBM PDX cells to EGFR inhibition.

We further substantiated the reliance of PDGFRA activity for EGFR inhibition sensitivity 

with an additional pharmacological inhibitor of PDGFR. Time course treatments with either 

10 μM Gefitinib or 1 μM Canertinib in combination with the PDGFRA inhibitor Axitinib 

(AG-013736 (47)), simultaneously suppressed PI3K-AKT and MEK-ERK pathways, in a 

manner similar to 10 μM Canertinib (Fig. 5A, Fig. S4A), further suggesting that EGFRvIII 

and PDGFRA converge on these two major signaling pathways in GBM6.

Similarly, the apoptotic response triggered by dual inhibition of EGFRvIII and PDGFRA 

was further confirmed using annexinV staining by flow cytometry in GBM6 and GBM39 

(Fig. 5B). To validate these results, we performed genetic disruption of PDGFRA with 

siRNAs in GBM6 and GBM39 (Figure 5C–E, Figure S4B). We determined that all three 

siRNAs produced significant knock down of PDGFRA as measured by PDGFRA western 

blotting (Figure 5C). The substantial reduction of PDGFRA protein expression observed did 

not disrupt the ability of Gefitinib and Canertinib to inhibit EGFR (Figure 5D) and conferred 

apoptotic responses to EGFR inhibition with 10 μM Gefitinib or 1 μM Canertinib (Fig. 5E). 

Together, these results indicate that single receptor inhibition is not sufficient to attenuate 

the levels of PI3K/AKT and MEK/ERK signaling but rather that an elimination of PDGFRA 

expression (or inhibition of activity) in EGFRvIII positive GBM6 and GBM39 PDX cells 

renders the cells sensitive to EGFR inhibition.

Ontogenesis of EGFRvIII dependence on co-stimulatory signaling

Experimental evidence demonstrates that EGFRvIII can dimerize with monomers of 

hepatocyte growth factor receptor (HGFR, cMET) or PDGFRA (33, 34). This suggests 

that a dependence on co-signaling events for EGFRvIII function is necessary for 

gliomagenesis. We surmised that EGFRvIII’s necessity for additional signal for tumor 

maintenance might result from early events during tumor initiation, which would 

set the stage for dependencies on co-signaling inputs for tumor maintenance. To 

experimentally ascertain this, we leveraged our conditional, genetically engineered lox-

stop-lox EGFRvIII;Cdkn2a−/−;PTENlox/lox -driven mouse model (48). In this model, 

intracranial ectopic expression of adenovirus Cre (AdCre) in adult animals removes a floxed 

transcriptional-translational stop cassette that is located upstream of a human EGFRvIII 

cDNA resulting in clinically relevant levels of EGFRvIII expression and concomitant loss 

of PTEN expression (48). In the context of Cdkn2a and PTEN loss, EGFRvIII drives the 

formation of fully penetrant GBMs with short latencies (48) (Fig. 6A). Surprisingly, ectopic 

expression of EGFRvIII together with loss of Cdkn2a does not lead to GBM formation 

(Fig. 6A), suggesting that additional signaling events brought about by the loss of PTEN are 

necessary for EGFRvIII to drive tumorigenesis in vivo.

Yeo et al. Page 6

Oncogene. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To better understand the signaling events behind this dependency, we expressed EGFRvIII 

in Cdkn2a−/−;PTENlox/lox primary mouse astrocytes and performed in vitro transformation 

assays and signaling analyses in the context of normal PTEN expression and loss of PTEN. 

Note that these cells are expressing normal levels of PTEN and can be rendered PTEN 

null by infection with AdCre, thus creating PTEN null syngeneic cells (Fig. S5). Using 

growth in soft agar as a measure of cellular transformation, parental Cdkn2a−/− astrocytes, 

Cdkn2a−/−;PTENlox/lox astrocytes and EGFRvIII;Cdkn2a−/−;PTENlox/lox astrocytes (wild 

type levels of PTEN expression) failed to grow in non-adherent semi-solid medium 

conditions (Fig. 6B). We observed that loss of PTEN (AdCre infected syngeneic cells) 

in these cells led to an increase in the number of cells growing in soft agar (Fig. 6B). 

Mechanistically, expression of EGFRvIII in Cdkn2a−/−;PTENlox/lox astrocytes (wild type 

levels of PTEN expression) result in modest increases in activation of canonical signaling 

events downstream of EGFR, that is MEK-ERK and to a lesser extend PI3K-AKT (Fig. 6C). 

Loss of PTEN however, resulted in a significant increase in the levels of phospho-EGFR, 

MEK-ERK and PI3K-AKT signaling (Fig. 6C). Together, these results support the notion 

that EGFRvIII expression alone is insufficient to transform mouse astrocytes and requires 

additional and simultaneous MEK-ERK and PI3K-AKT activation to reach a threshold of 

signaling strength to achieve cellular transformation.

PDGFRA activity is necessary for EGFRvIII-driven GBM formation in mice

To support our observations of EGFRvIII conditional oncogenecity and to further validate 

the functional interaction between EGFRvIII and PDGFRA, we leveraged our LSL-

EGFRvIII;Cdkn2a−/− genetically engineered mice to activate PDGFRA in the context of 

EGFRvIII signaling. Here we performed intracranial injection of a lentivirus co-expressing 

a tetracycline-inducible PDGFA cDNA and a constitutive Cre recombinase (Fig. 7A). 

Infected cells produce Cre, which triggers the expression of EGFRvIII and doxycycline 

(DOX) administration results in PDGF-A expression and consequently, PDGFRA activation. 

Control and DOX-treated mouse cohorts were established and monitored for survival. 

EGFRvIII;Cdkn2a−/− mice expressing PDGFA (+DOX) readily formed lethal tumors 

whereas EGFRvIII;Cdkn2a−/− or PDGFA (+DOX) Cdkn2a−/− controls did not (Fig. 7B). 

Histopathological analysis of the PDGFA-EGFRvIII;Cdkn2a−/− tumors was performed (Fig. 

7C, i). Tumors, which were centrally located surrounding the area of virus injection, 

displayed dense cellularity with areas of pseudopalisading necrosis and microvascular 

proliferation (Fig. 7C, ii). Neoplastic cells had moderate nuclear atypia and showed 

frequent mitoses (Fig. 7C, iii). Immunohistochemical staining for the astrocytic marker 

glial fibrillary acidic protein (GFAP) showed positive staining in a subset of tumor cells 

and also highlighted their glial processes, whereas staining for the neuronal marker NeuN 

was negative in tumor cells (Fig. 7C, iv & v, respectively), confirming the glial lineage of 

these tumors. Staining for human EGFR showed ubiquitous expression in tumor cells and 

allowed detection of highly invasive tumor cells, infiltrating normal brain parenchyma (Fig. 

7C, vi). Overall, these histological features that are characteristic of patient GBMs revealed 

that PDGFRA activity contributed to EGFRvIII-driven GBM tumorigenesis.

To solidify our previous observations and to gain further mechanistic insights into the 

functional interaction between EGFRvIII and PDGFRA, we isolated primary cultures from 
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the PDGFA-EGFRvIII;Cdkn2a−/− GBMs above. Consistent with our previous observations 

in EGFRvIII positive GBM PDXs, ex vivo cultures of these PDGFA-EGFRvIII;Cdkn2a−/− 

GBM tumor cell lines displayed similar sensitivity to high dose (10 μM) of Canertinib, 

whereas all other EGFR TKIs tested failed to stimulate apoptosis (Fig. 7D). In addition, 

the observed apoptosis that is induced with 10 μM Canertinib parallels with suppression 

of MEK-ERK and PI3K-AKT signaling pathways (Fig. 7E). Finally, pharmacological 

suppression of MEK and PI3K pathways with inhibitors also triggered an apoptotic response 

in these cells (Fig. 7E). Together, these results further support our observations that 

EGFRvIII necessitates additional signaling, here in the form of PDGFRA signaling, for 

gliomagenesis.

Discussion

EGFR and EGFRvIII are important oncogenic drivers of GBM. The structural details 

of EGFRvIII activation remain unknown, hindering our knowledge of the molecular 

mechanisms of kinase inhibitor actions for this mutant receptor. Here we used a combination 

of GBM PDXs that are positive for EGFRvIII expression and genetically engineered mouse 

models of EGFRvIII-driven glioma to explore the mechanisms of how EGFRvIII transforms 

cells and how the ensuing signaling pathways wire cells to be sensitive or resistant to 

different classes of EGFR inhibitors.

Our models reveal important aspects of EGFRvIII-driven gliomagenesis that were 

previously unknown. First, potent (>90%) inhibition of EGFRvIII kinase activity, achieved 

with all classes of EGFR inhibitors, had no effect on cell growth of GBM PDXs except 

for when treated with high concentrations of Canertinib. Our results reinforce previous 

observations that GBMs are not oncogenically addicted to EGFR (49), which may explain 

the numerous failures of EGFR TKIs in clinical settings (40). High concentrations of 

Canertinib did not result in additional kinase inhibition but instead led to a simultaneous 

attenuation of MEK-ERK and PI3K pathway signaling and apoptosis in EGFRvIII-positive 

GBMs. These observations were further refined using concomitant MEK and PI3K inhibitor 

treatments. The dynamics of inactivation of MEK-ERK and PI3K-AKT signaling under 

EGFR inhibitor treatments are revealing. Gefitinib and Canertinib treatments lead to 

immediate MEK-ERK and PI3K-AKT inactivation, however only Gefitinib treated cultures 

showed levels of pERK and pAKT rebound over time whereas Canertinib treated cultures 

showed a significantly reduced MEK-ERK and PI3K-AKT signaling. This raises the 

possibility that the dominant driver in these cells is EGFRvIII and upon its inhibition with 

Gefitinib, a lag period exist before signaling from PDGFRA ensues, thus embodying the 

transient nature of MEK-ERK and PI3K-AKT inhibition.

Simultaneous inhibition of MEK-ERK and PI3K has proven to be efficacious in a mouse 

model of KRasG12D-driven GBM (50). Unfortunately, clinical evidence in non-GBM 

patients demonstrated that this combination may be limited due to synergistic toxicity (51–

55). Our results support an alternative approach, which is to inhibit these pathways using 

inhibitors of upstream drivers, such as simultaneous inhibition of PDGFRA and EGFRvIII 

to concomitantly shut down both MEK-ERK and PI3K. This might provide a more efficient 

and safer window than combination of MEK and PI3K inhibitors.
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Second, EGFRvIII oncogenicity is context dependent. When expressed at physiological 

levels (48) in the context of deleted Cdkn2a, EGFRvIII is incapable of driving astrocyte 

transformation in vitro and in vivo. This is in contrast to previous work on the 

transformation capacity of EGFRvIII in Cdkn2a null mouse astrocytes (56), perhaps 

reflecting a difference in the levels of EGFRvIII expression in the two systems. We showed 

that EGFRvIII-driven transformation and tumorigenesis rely on additional signaling events, 

either in the form of loss of PTEN or activation of PDGFRA. In the context of loss of 

PTEN, enhanced PI3K signaling is observed and interestingly, MEK-ERK signaling as 

well. Similarly, PTEN loss-mediated cross activations of the MAPK pathway have been 

reported in human and mouse cancer models (57–62), but never in GBM. In our system, 

we discovered that loss of PTEN resulted in a significant increase in the levels of phospho-

EGFRvIII and simultaneous activation of MEK-ERK and PI3K. These observations require 

further mechanistic investigations.

Third, activation of PDGFRA is another mechanism that EGFRvIII can use for 

gliomagenesis. We surmised that this dependency consequently wires cells with redundancy 

in signaling once tumors are formed, such that single target inhibition is now ineffective. 

The functional interaction between EGFRvIII and PDGFRA is supported by evidence of co-

expression in GBMs (33, 35, 63) and physical dimerization between EGFR and PDGFRA 

(33). In fact, EGFR has been reported to dimerize with numerous RTKs (reviewed in (32)). 

However, the structural details of EGFR heterodimerization to other RTKs are completely 

unknown and future insights remain hindered by many technical challenges.

Taken together, our results suggest a co-dependency of PDGFRA signaling in EGFRvIII 

positive GBM PDXs that converge on both downstream PI3K-AKT and MEK-ERK 

signaling. Moreover, high concentrations of Canertinib, which concurrently target these 

pathways, can be leveraged as a method of inducing apoptosis in these GBM cells. It is 

currently unclear how EGFRvIII and PDGFRA contribute to the action of PI3K-AKT and 

MEK-ERK signaling, as our results from single agent control treatments show only modest 

inhibition of both pAKT and pERK, not preference for only pAKT or pERK. These results 

reflect the complexity and plasticity of RTK interactions and warrant future investigations 

to better understand the complexity of RTK networks. Finally, by understanding signaling 

requirements in the process of cellular transformation and signaling wiring, one may be able 

to take advantage of unrecognized dependencies with clinical implications

Materials and Methods

PDGF-A-EGFRvIII Conditional Mice.

All mouse procedures were performed in accordance with Beth Israel Deaconess Medical 

Center recommendations for the care and use of animals, and were maintained and 

handled under protocols approved by the Institutional Animal Care and Use Committee. 

The conditional EGFRvIII genetically engineered mouse strain has been described in 

detail elsewhere (48). Briefly, a CAG-floxed stop cassette EGFRvIII cDNA minigene 

was targeted into the mouse collagen1α1 gene locus and crossed to constitutive Cdkn2a 

null mice (64) and conditional PTEN mice (65). Initiation of EGFRvIII expression in the 

CNS was accomplished by stereotactic intracranial injections of a PDGF-A-Cre lentivirus. 
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Stereotactic injections, generation of primary cultures are described in greater detail in the 

Supplementary Materials and Methods section.

Virus Construct Design, Production and Titer Determination.

The pSLIK (single lentivector for inducible knock-down) vector system (66) was modified 

to express the human PDGF-A cDNA and Cre recombinase as described elsewhere (37). 

Briefly, the modification of the original lentiviral vector platform supports constitutive 

expression of a Tet-transactivating component (rtTa3) under a Ubc promoter and the cDNA 

for Cre recombinase through an Internal Ribosomal Entry Site (IRES) and inducible 

PDGF-A expression under doxycycline (DOX) treatments. Viruses were produced by co-

transfection of 293T cells with packaging vectors and purified by ultracentrifugation of 

conditioned media, resuspended in PBS, aliquoted in single use amounts and stored at 

−80oC. To standardize intracranial injections with identical viral titers, viral preparations 

were functionally titered for Cre activity by serial dilution infection of immortalized 

fibroblasts derived from Cdkn2a-null conditional LSL-tdTomato Ai9 reporter mouse strain 

(67).

siRNA transfection

GBM6 cells were reverse transfected with single siRNAs targeting human PDGFRA 

obtained from Dharmacon (Horizon). Briefly, pre-trypsinized single cell suspensions were 

incubated with transfection mix containing Dharmacon transfection reagent 1 with single 

siPDGFRA in Opti-MEM reduced serum medium (Gibco) and plated at 105 cells per well 

in DMEM containing 10% FBS without antitiotic-antimycotics. The medium was replaced 

~ 18 hours later with DMEM low serum media (0.1% FBS) for 24 h prior to inhibitor 

treatment. The target sequences of siPDGFRA are as follows:

siScrambled: UGGUUUACAUGUCGACUAA

siPDGFRA #1: GAAUAGGGAUAGCUUCCUG

siPDGFRA #2: GAGCUUCACCUAUCAAGUU

siPDGFRA #3: GACAGUGGCCAUUAUACUA

Statistical analysis.

Statistical analyses were carried out using GraphPad Prism 7. Two-tailed Student’s t-tests 

were used for single comparison. P-values of < 0.05 were considered statistically significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Canertinib treatments induce apoptosis in EGFRvIII GBM PDXs.
A panel of EGFRvIII positive GBM PDX lines, GBM6, GBM59, GBM39, GBM8, and 

EGFR negative GBM28 and GBM22 were treated with either 1 μM or 10 μM Gefitinib, 

Canertinib, Neratinib and Lapatinib for 6 hours. A) Graphical representation of EGFR 

kinase inhibition assessed by quantitative western blot analysis of the autophosphorylation 

tyrosine1068 in biological replicates (n=3) post inhibitor treatments compared to vehicle 

(DMSO) treatment. Plotted are averages, analyzed for statistical significance using Student’s 

t test, two tailed. Error bars S.D., * p<0.01, ¶<0.05, ** p<0.005. B) Graphical representation 

of cell viability assessed using XTT assays post inhibitor treatments and normalized to 

DMSO-treated controls. Plotted are averages, analyzed for statistical significance using 

Student’s t test, two tailed. Error bars S.D., * p<0.0001, ** p<0.001. ¶<0.05. C) Dynamics 

of cell death in GBM6, GBM59 and GBM39 upon treatments with Gefitinib and Canertinib. 

XTT assays were performed to determine number of viable cells over a 24 hrs time course in 

presence of vehicle DMSO as control or 1 and 10 μM Gefitinib and Canertinib in biological 

replicates (n=3). Data is normalized to DMSO control and plotted as averages, error bars +/− 

S.D. D) Increase in apoptosis in cells treated with 10 μM Canertinib. GBM6, GBM39 and 

GBM59 cells were treated with 1 and 10 μM of the indicated EGFR inhibitors for 24 hrs 

in biological replicates (n=3) and cells were harvested and processed for propidium iodine 

and annexin V staining and flow cytometry. The percentage of annexin V positive cells 

are plotted relative to DMSO treated controls. Plotted are averages, analyzed for statistical 
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significance using Student’s t test, two tailed. Error bars S.D., * p<0.03, ** p<0.008 and 

*** p<0.0001. E) Dynamics of EGFR kinase inhibition as measured by quantitative western 

blots of phospho-EGFR Y1068 and canonical EGFR signaling pathway members phospho-

ERK1/2 T202/Y204 and phospho-AKT S473 in GBM6 and GBM39 treated with 10 μM of 

Gefitinib and Canertinib for the indicated times. Plotted are averages of percent inhibitions 

when compared to vehicle (DMSO) treatments in biological replicates (n=3). Error bars S.D. 

8 hrs time points of Canertinib treated versus Gefitinib treated, * p<0.02, ** p<0.006 and 

*** p<0.001.

Yeo et al. Page 18

Oncogene. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Anti-growth efficacy of Canertinib in vivo.
A) Tumor volumes of the GBM6 PDX line grown in subcutaneous flanks of 

immunocompromised NcrNu/Nu mice. Upon reaching ~100 mm3, mice were randomized 

to vehicle, Gefitinib (100 mg/kg) or Canertinib (100 mg/kg) by oral gavage daily. Tumor 

responses are expressed as the percentage change from the baseline tumor volumes at the 

time of treatment initiation (~100 mm3, Day 1). Vehicle n = 5, Gefitinib n=4, Canertinib 

n=3, *p<0.03 by Student t-test. B) Representative photomicrograph (top) and graphical 

representation of quantification (bottom) of western blotting of extracts from endpoint 

tumors (A) probed against the indicated proteins. Quantification of the western blot is 

achieved by calculating levels of pEGFR/EGFR/β-tubulin, pERK1/2/ERK1/2/β-tubulin and 

pAKT/AKT/β-tubulin. A.U.: arbitrary units. pEGFR *p=0.0011, **p=0.0032; pERK1/2 

*p=0.0094, **p=0.0048 by student t-test. C) Representative photomicrographs of anti-

phospho-EGFR Tyr1173 immunohistochemistry from tumors in (A). Scale bar=100 μm.
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Figure 3. Canertinib treatment decreases the activity of PDGFRA and demonstrates dose-
dependent anti-tumor activity.
A) Representative image of a phospho-RTK array of GBM6 cells (left). Cells were treated 

with vehicle (DMSO), 1 μM Canertinib, 10 μM Gefitinib or Canertinib for 4 hrs and 

lysates were used on the reverse phase protein arrays. Quantification of triplicate RTK 

arrays (right). Dots were quantified using the ImageJ software and percent reduction in 

RTK phosphorylation compared to vehicle treated was calculated. Statistical analysis, mean 

± S.D. n=3, student t-test, #p<0.01, *p<0.0001, **p<0.0005, ***p<0.001. B) Validation of 
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levels of phosphorylated EGFR and PDGFRA by western blotting. Graphical representation 

of the quantification of western blots showing the percent reduction in phospho-EGFR 

and phospho-PDGFRA when compared to vehicle treated. Statistical analysis, mean ± 

S.D., n=3 biological triplicates, student t-test, *p=0.0007, **p=0.0003, ***p=0017. C) High 

concentrations of Canertinib selectively inhibit PDGFRA in GBM6, GBM39 and GBM59. 

Bar graph of quantification of western blots of phospho-PDGFRA in GBM6, GBM39 

and GBM59 treated with the indicated inhibitors plotted as percent reduction of treated 

compared to vehicle control. Statistical analysis, mean ± S.D., n=3 biological triplicates, 

student t-test, *p<0.0001. D) Canertinib dose-dependent reduction in tumor growth. Tumor 

volumes of the GBM6 PDX line grown in subcutaneous flanks of immunocompromised 

NcrNu/Nu mice. Upon reaching ~100 mm3, mice were randomized to vehicle, Gefitinib 

(100 mg/kg) or different doses of Canertinib (as indicated) by oral gavage daily. Tumor 

responses are expressed as the percentage change from the baseline tumor volumes at the 

time of treatment initiation (~100 mm3, Day 1). Vehicle n = 4, Gefitinib n=4, Canertinib 

n=4 for 10 and 50 mg/kg and n=3 for 100 and 250 mg/kg, *p<0.02, **p<0.007 by Student 

t-test. E) Graphical representation of the quantification of western blots for all tumors 

probed for phospho-EGFR, total EGFR, phospho-PDGFRA, total PDGFRA and β-tubulin. 

Data is represented as percentage of levels of phospho-EGFR tyr1068/EGFR/β-tubulin and 

phospho-PDGFRA/PDGFRA/β-tubulin. Vehicle n=4, Gefitinib n=4, Canertinib n=4 for 10 

and 50 mg/kg and n=3 for 100 and 250 mg/kg, *p<0.003, **p<0.009, ***p<0.02 by Student 

t-test. F) Decreases in cell proliferation and increases in apoptotic cell numbers upon 

Canertinib treatment in a dose-dependent manner. Representative photomicrographs (left) of 

IHC staining with the proliferative marker Ki-67 and the apoptotic marker cleaved caspase-3 

(CC3) from control untreated GBM6 tumors or treated with the indicated inhibitors. Scale 

bar=50 μm. Graphical representation (right) of the quantification of the CC3 and Ki-67 IHC. 

CC3 IHC * p=0.0007, ** p<0.0001, Ki-67 IHC * p=0.001, ** p=0.0001
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Figure 4. Simultaneous inhibition of MEK1/2 and PI3K signaling is necessary to trigger 
apoptosis in GBM6 PDX cells.
A) Graphical representation of quantification of western blot analyses of GBM6 cells 

treated with the indicated inhibitors over time and probed for the phosphoprotein targets 

EGFR Y1068, ERK1/2 T202/Y204 and AKT S473, the ladder two serving as surrogate 

of MEK1/2 and PI3K activity respectively, and the apoptosis marker cleaved PARP. The 

data is represented as mean ± S.D., n=3. B) Graphical representation of quantification of 

western blot analyses of GBM6 cells treated for 24 hr with dual inhibition of EGFR (10 μM 
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Gefitinib) and PDGFRA (Ponatinib). Statistical analysis, mean ± S.D., n=3, student t-test, 

*p<0.0001, **p<0.005, ***p<0.04.
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Figure 5. Inhibition of PDGFRA sensitizes GBM PDX cells to EGFR inhibition.
A) Graphical representation of quantification of western blot analyses of GBM6 cells treated 

with the indicated inhibitors over time and probed for the phosphoprotein targets EGFR 

Y1068, PDGFRA Y849, ERK1/2 T202/Y204 and AKT S473, and for the apoptosis marker 

cleaved PARP. The data is represented as mean ± S.D., n=3. B) Graphical representation 

of the increase in annexin V positive cells by flow cytometry from GBM6 and GBM39 

cells treated with the indicated inhibitors for 24 hrs. The data is represented as mean ± 

S.D., n=3, student t-test, *p<0.005, **p<0.05. C,D) RNAi knock down of PDGFRA in 
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GBM6 and GBM39. Graphical representations of the quantitation of the western blot of 

GBM6 and GBM39 cells transiently transfected with siRNAs designed against PDGFRA 

and treated with the indicated inhibitors and assayed for PDGFRA protein levels (C), and 

phospho-EGFR (D). The data is represented as mean ± S.D., n>= 3, student t-test, PDGFRA 

levels (C) *p<0.0001, **p<0.0005, pEGFR Y1068 levels (D), *p<0.0001, **p=0.02 and 

***p<0.0005. E) Graphical representation of flow cytometry analysis of GBM6 and GBM39 

cells transiently transfected with siRNAs designed against PDGFRA and treated with the 

indicated inhibitors analyzed for annexin v. Data is represented as percent increase in 

positive cells over controls. *p<0.0001, **p<0.005 and ***p<0.05.
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Figure 6. EGFRvIII expression requires co-signaling for cellular transformation in vitro and 
GBM tumor formation in vivo.
A) Kaplan-Meier survival of cohorts of mice with the indicated genotypes after intracranial 

stereotactic injections of Adenovirus Cre. B) Representative micrographs and quantification 

of growth in soft agar of astrocytes of the indicated genotypes. Scale bar= 400 μm. C) 
Representative quantitative western blot with lysates from the indicated cells and blotted 

for the indicated phospho-proteins. D) Graphical representation of the quantitation of the 
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western blots in (C). Statistical analysis for (B) and (D), mean ± S.D., n=3, student t-test, 

*p<0.0002, **p<0.003, ***p=0.007.
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Figure 7. PDGFRA activation cooperates with EGFRvIII to initiate GBM tumorigenesis in vivo.
A) Schematic representation of the lentivirus designed for dual expression of Cre 

and PDGF-A ligand cDNA in a doxycycline (DOX) inducible manner. B) Survival 

(Kaplan-Meier) analysis of conditional PDGFA-EGFRvIII;Cdkn2a−/− mice. Cohorts of 

mice with the indicated genotype were injected with pSLIK-PDGFA-Cre virus and fed 

with or without a DOX-based diet and monitored for survival over time. C) PDGFA-

EGFRvIII;Cdkn2a−/− tumors have features of GBM. Representative photomicrographs of 

FFPE tumor sections stained with H&E (scale bars i=1mm, ii=100 μm, iii=10 μm, MV, 

microvascular proliferation; PPN, pseudopalisading necrosis) and IHC for GFAP (iv, scale 

bar= 10 μm) and NeuN (v, scale bar=10 μm, inset: contralateral normal brain, scale 

bar=10 μm) and EGFR (vi, scale bar=50 μm, T, tumor; N, normal brain). D) Primary cell 
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cultures derived from individual PDGFA-EGFRvIII;Cdkn2a−/− GBMs were treated with the 

indicated EGFR TKIs for 24 h and assessed for apoptosis by PI/Annexin V staining and 

flow cytometry. Data is represented as percent increase in Annexin V staining from vehicle 

treated. Statistical analysis, mean ± S.D., n=3, student t-test, *p=0.0012, **p=0.0007. E) 
Graphical representation of quantification of western blot analysis of lysate from PDGFA-

EGFRvIII;Cdkn2a−/− GBM cultures treated with the indicated inhibitors over time.
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