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Background:  Given the persistently high global burden of tuberculosis, effective and shorter treatment options are needed. We 
explored the relationship between relapse and treatment length as well as interregimen differences for 2 novel antituberculosis drug 
regimens using a mouse model of tuberculosis infection and mathematical modeling.

Methods:  Mycobacterium tuberculosis–infected mice were treated for up to 13 weeks with bedaquiline and pretomanid com-
bined with moxifloxacin and pyrazinamide (BPaMZ) or linezolid (BPaL). Cure rates were evaluated 12 weeks after treatment com-
pletion. The standard regimen of isoniazid, rifampicin, pyrazinamide, and ethambutol (HRZE) was evaluated as a comparator.

Results:  Six weeks of BPaMZ was sufficient to achieve cure in all mice. In contrast, 13 weeks of BPaL and 24 weeks of HRZE did 
not achieve 100% cure rates. Based on mathematical model predictions, 95% probability of cure was predicted to occur at 1.6, 4.3, 
and 7.9 months for BPaMZ, BPaL, and HRZE, respectively.

Conclusion:  This study provides additional evidence for the treatment-shortening capacity of BPaMZ over BPaL and HRZE. To 
optimally use preclinical data for predicting clinical outcomes, and to overcome the limitations that hamper such extrapolation, we 
advocate bundling of available published preclinical data into mathematical models.
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With 10 million new cases and 1.5 million deaths in 2018, tu-
berculosis remains a major global problem [1]. The rise of anti-
microbial resistance threatens attempts to reduce the burden 
of tuberculosis. Multidrug-resistant (MDR) tuberculosis re-
quires a burdensome treatment regimen of ≥9–12  months, 
compromising treatment adherence [2]. Furthermore, re-
ported treatment success rates are as low as 54% [1]. Until 
recently, treatment options were even more limited for exten-
sively drug-resistant (XDR) tuberculosis [1]. Increasing at-
tention toward the development of new therapeutic options 
resulted in the approval of 3 new tuberculosis compounds: 
bedaquiline, delamanid, and pretomanid. These compounds 
are being tested in combination with other new, repurposed, 
or established drugs to accelerate clinical implementation. 

Two such examples of new, all-oral regimens are bedaquiline 
and pretomanid combined with either moxifloxacin and 
pyrazinamide (BPaMZ) or linezolid (BPaL). 

The superior bactericidal and sterilizing capacity of both 
BPaMZ and BPaL, compared with the first-line regimen, con-
sisting of isoniazid, rifampicin, pyrazinamide, and ethambutol 
(HRZE), has been demonstrated in preclinical studies [3–5]. 
These studies indicate that BPaMZ cures Mycobacterium tuber-
culosis infection in mice in a shorter treatment duration than 
BPaL, which, in turn, achieves cure more quickly than HRZE. 
In an 8-week phase IIb clinical study, BPaMZ was shown to 
be safe and effective in patients with rifampicin-resistant tu-
berculosis [6]. The efficacy of BPaMZ in patients with drug-
susceptible tuberculosis or drug-resistant tuberculosis is 
currently being studied in the SimpliciTB trial (ClinicalTrials 
registration NCT03338621). BPaL, however, was recently ap-
proved by the Food and Drug Administration and the European 
Medicines Agency as a 6-month regimen for XDR tuberculosis 
and treatment-intolerant MDR tuberculosis. BPaL was shown 
to improve treatment options and outcomes for this patient 
population, with a 90% cure rate observed in the Nix-TB trial 
[7]. However, exact treatment durations for BPaMZ and BPaL 
required to achieve desirable cure rates remain to be established 
through further (pre)clinical studies.
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A better understanding of the relationship between treat-
ment duration and treatment outcome is essential to guide re-
commendations on tuberculosis treatment duration. Because 
this is costly and time-consuming to assess in clinical studies, 
preclinical animal studies are usually conducted, and taken to-
gether with early-stage clinical trials, the results can guide the 
design of late-stage clinical trials [8]. However, the translational 
value of animal studies was critically evaluated when phase III 
studies investigating the integration of moxifloxacin into first-
line regimens failed to reproduce encouraging preclinical re-
sults [8–13]. 

Mathematical modeling is one way to extract more informa-
tion from animal studies, while considering the “3R” principles 
of replacement, reduction, and refinement [14]. Furthermore, 
pharmacometric modeling can significantly improve the trans-
lation of preclinical data to clinical settings [15]. We recently 
improved our in vivo experimental design, such that the data 
are better suited for mathematical modeling [16]. Additional 
treatment durations were implemented, testing fewer mice per 
time point. Subsequent in silico simulations enabled contin-
uous linkage of treatment duration and probability of cure. This 
is an advantage over studies that investigate treatment outcome 
only at specific time points. 

In the current work, we apply this mathematical model-based 
approach to evaluate treatment outcomes of BPaMZ, BPaL, and 
HRZE. We can thereby verify whether the strategy can be ap-
plied to other drug regimens too. Moreover, it provides insight 
into the relationship between treatment duration and cure rates 
for BPaMZ, BPaL, and HRZE, and allows for efficient compar-
ison between the regimens. As such, results of the present study 
might pave the way toward bundling of available preclinical 
data, thereby creating even more robust models that can guide 
recommendations on optimal clinical tuberculosis treatment 
duration.

METHODS

Animals, Mycobacterial Strain, and Infection

Specified pathogen-free female BALB/c mice, aged 12–13 
weeks, were obtained from Charles River. A total of 80 mice per 
treatment group (29 for pharmacokinetic analysis and 51 for 
treatment efficacy) were infected with M.  tuberculosis Beijing 
VN 2002-1585, as described elsewhere [17]. Briefly, under 
general anesthesia, animals were infected by intratracheal in-
stillation of 0.96 × 105 (range, 0.88–1.10 × 105) colony-forming 
units (CFUs), followed by inhalation to ensure formation of bi-
lateral infection. Mice were checked daily and were euthanized 
when humane end points were reached. The minimal inhibi-
tory concentrations of the compounds for this M. tuberculosis 
strain were determined according to Clinical and Laboratory 
Standards Institutes guidelines [18]. For bedaquiline, the min-
imal inhibitory concentration was 0.125 mg/L, for pretomanid, 
0.06  mg/L, for linezolid, 0.25  mg/L, and for moxifloxacin, 

0.125 mg/L, which were considered susceptible [19]. The strain 
was susceptible to pyrazinamide, as tested by the BACTEC 
MGIT-960 system (Becton Dickinson).

Ethical Approval

Experimental protocols adhered to the rules specified in the 
Dutch Animal Experimentation Act and were in concordance 
with the European Union animal directive 2010/63/EU (license 
nos. 117-14-04 and AVD1010020173687).

Tuberculosis Drugs

Bedaquiline (supplied by TB Alliance) was formulated every 
2 weeks in an acidified (pH 2)  20% (wt/vol) hydroxypropyl-
β-cyclodextrin (Kleptose, Roquette) solution. Pretomanid 
(supplied by TB Alliance) was suspended in a cyclodextrin 
micelle formulation containing 5% (wt/vol) hydroxypropyl-β-
cyclodextrin and 10% (wt/vol) lecithin (ICN Pharmaceuticals). 
A 100-mg/mL suspension was prepared monthly. Dilutions in 
distilled water were prepared weekly to achieve desired concen-
trations. Supplementary File 1 provides additional information 
on the preparation of pretomanid. Moxifloxacin (BOC Sciences) 
and pyrazinamide (Sigma-Aldrich) were dissolved together in 
distilled water by heating to 55ºC. Linezolid (Ambinter) was 
suspended in a 0.5% (wt/vol) methylcellulose (Sigma-Aldrich) 
solution in distilled water. All formulations were stored at 4ºC. 
Drugs were administered together in either the BPaMZ or 
BPaL combination in a volume of 0.2 mL, once daily by oral ga-
vage, 5 days per week. Drug doses were as follows: bedaquiline, 
25 mg/kg; pretomanid, linezolid, and moxifloxacin, 100 mg/kg 
each; and pyrazinamide, 150 mg/kg.

Pharmacokinetic Analyses

Drug concentrations, including the N-desmethyl bedaquiline 
metabolite (M2), in mouse serum were quantified after 4 weeks 
of BPaMZ or BPaL treatment (steady-state drug concentra-
tions). At 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 12, and 24 hours after 
drug administration 2 mice were sacrificed and blood samples 
were collected in 2-mL microcentrifuge tubes (Sarstedt ) by or-
bital sinus bleeding. Samples were allowed to clot for 30 min-
utes at 4°C, and serum was separated by centrifugation (10 000g 
for 5 minutes). Serum was decontaminated with acetonitrile 
(Biosolve) at a ratio of 1:3 respectively. After vortexing and cen-
trifugation (10 000g for 5 minutes), clear supernatant was trans-
ferred into cryotubes. Serum samples were stored at −80°C.

Serum analyte concentrations were assessed using liquid 
chromatography-tandem mass spectrometry (LC-MS/MS), as 
described in Supplementary File 2. Briefly, standard, quality 
control, control, and matrix blank samples in mouse serum were 
prepared using 1:3 extraction in acetonitrile. Supernatants of 
standards, controls, and study samples were mixed with aceto-
nitrile with tolbutamide or without internal standard for matrix 
blanks, and this extract was prepared and used for subsequent 
analysis. LC-MS/MS analysis of bedaquiline, M2, pretomanid, 
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moxifloxacin, and linezolid was performed on a Shimadzu 
Nexera X2 liquid chromatograph with a Thermo BetaBasic-4 
column (2.1 × 50  mm; 5  µm), coupled to an AB Sciex Triple 
Quad 5500 mass spectrometer. For pyrazinamide analysis, a 
Thermo Aquasil C18 column (2.1 × 50 mm; 5 µm) and AB Sciex 
Triple Quad 6500 mass spectrometer were used. The lower limit 
of quantification for all compounds was 5 ng/mL. Sample anal-
ysis was accepted if quality control sample concentrations were 
within 20% of the nominal concentration. Data were processed 
using Analyst 1.6.3 software (Sciex). The maximum drug con-
centrations and area under the concentration-time curve over 
24 hours were determined using noncompartmental analysis in 
GraphPad Prism 8 software (GraphPad Software).

Treatment Outcome Assessment

Two weeks after infection, just before the start of treatment, 3 
mice per treatment group were euthanized to determine my-
cobacterial load in lungs and spleen at baseline. The treatment 
duration ranged from 4 to 11 weeks for BPaMZ, and from 6 
to 13 weeks for BPaL, based on results from other preclinical 
studies [3–5]. Twice weekly, treatment was stopped for 3 mice 
per group. To assess whether the elapsed treatment duration led 
to cure, mice were euthanized 12 weeks after treatment com-
pletion. as described elsewhere [17]. Lungs and spleen were re-
moved aseptically, homogenized, and serially diluted. Dilutions 
were cultured on 7H10 Middlebrook agar plates (BD) with acti-
vated charcoal to prevent drug carryover, and on plates without 
charcoal. Because M.  tuberculosis grew better on charcoal-
lacking plates, the mycobacterial load was first assessed by 
CFU counting on these plates. When no CFUs were detected, 
charcoal-containing plates were checked to determine whether 
this was an effect of drug carryover. The lower limit of detec-
tion is 11.5 CFUs per lung, calculated from a single colony de-
tected in 200 μL plated from 2.3 mL of lung homogenate per 
mouse, and 10.5 CFUs per spleen, based on 200 μL from 2.1 mL 
of spleen homogenate.

Statistical Analysis

CFU counts were log10-transformed before analysis. An 
unpaired 2-tailed t test was used to compare exposure to 
bedaquiline, M2, and pretomanid between BPaMZ and BPaL, 
and mean CFU counts between the treatment groups at the 
start of treatment. The level of statistical significance was set 
at α =  .05. Statistical analysis was performed using GraphPad 
Prism software, version 8 (GraphPad Software).

The experimental BPaMZ and BPaL data, together with 
HRZE data from a previous study with the same experimental 
protocol [20], were used to build the mathematical model. All 
data were analyzed simultaneously to allow for evaluation of 
potential differences between regimens. The model building 
strategy was described elsewhere [16]. Observed CFU counts in 
the lungs at 12 weeks after treatment completion were converted 

to binary outcome values of cure (no CFUs detected) or failure 
(CFUs detected). Evaluation of different models was based on 
their objective function value, indicating the likelihood of a 
model to fit the data, scientific plausibility, parameter uncer-
tainty, and visual predictive checks. 

Model development was performed in 2 steps. First, the re-
lation between probability of cure and treatment duration, re-
gardless of the drug regimen, was described. The starting point 
was a base model which assumed there is no relation between 
cure rates and treatment duration. Next, different relations with 
respect to treatment duration were evaluated, including a linear 
model, an Emax model, and a sigmoidal Emax model. Among 
these, the model that best fitted the experimental data was taken 
to the second step, which evaluated whether the relation was 
significantly different between the 3 regimens. In a stepwise 
approach, various models were fitted to determine whether a 
given model parameter differed significantly between 1 regimen 
and the other 2. Only models that significantly lowered the ob-
jective function value by >3.84 points (P < .05) were further 
evaluated in combinations.

In the experimental setup, 3 mice were tested by treatment du-
ration in each regimen, limiting cure rates to 0%, 33%, 67%, or 
100%. To predict cure rates in the entire range between 0% and 
100%, the data set was bootstrapped. Model parameters were then 
reestimated using 1000 resampled data sets from the observed 
data with replacement. From the resulting distribution of 1000 
parameter estimates, 95% probability of cure and 90% confidence 
intervals were predicted. The data were analyzed using NONMEM 
7.4.3 (ICON) [21]. Visual predictive checks, generated using 1000 
simulations, were produced using Xpose [22] and Perl-speaks-
NONMEM (PsN) 4.10.0 software [22]. Data management and 
graphic analysis were performed using R 3.6.3 software [23].

RESULTS

Pharmacokinetics in BALB/c Mice

Serum concentration-time profiles and pharmacokinetic 
parameters of each drug in BPaMZ and BPaL are shown in 
Figures 1 and 2, and Table 1. There was no significant dif-
ference in exposure to bedaquiline (P = .95), M2 (P = .67), 
and pretomanid (P = .74), expressed as the area under the 
concentration-time curve over 24 hours, between BPaMZ and 
BPaL. Pharmacokinetic parameters that drive treatment effi-
cacy of the tested compounds are in line with findings of pre-
vious preclinical studies [4, 24–30].

Pharmacodynamic Analysis—In Vivo Experiments

Mice tolerated both regimens well, although BPaL-treated 
mice were considerably more active during the first 3.5 weeks 
of treatment. One mouse that had received BPaL for 9 weeks 
required euthanasia on reaching humane end points in the 
10th week after treatment completion. The mycobacterial load 
at 12 weeks after completion of different treatment durations 
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is depicted in Figure 3. Starting inocula were similar in both 
treatment groups (P = .14). Cure was achieved in all mice 
receiving BPaMZ for ≥6 weeks, with all mice having culture-
negative lungs after 12 weeks after treatment completion. In the 
BPaL group, cure rates exceeding 0% (culture-negative lungs 
in ≥1 of the 3 mice) were observed after 10.5, 11.0, 12.0, and 
12.5 weeks of treatment. Nevertheless, the maximum treat-
ment duration of 13 weeks did not achieve cure in all mice. 
Mycobacterial loads in the spleen showed similar patterns. 
HRZE treatment did not reach 100% cure rates. At 12 weeks 
after the maximum treatment duration of 24 weeks, 1 of the 3 
mice had culture-positive lungs [20].

Pharmacodynamic Analysis—Mathematical Modeling

The final model was a sigmoidal Emax relation regarding prob-
ability of failure (Prfailure) and probability of cure (Prcure) in rela-
tion to treatment length and regimen, as follows: 

Prfailure = 1 − Prcure = Prbase ⋅ [1 − [(Emax ⋅ Lengthγ)/T50
γ + Lengthγ)]],

where Emax is the maximum probability of cure fixed to 1, T50 is the 
regimen-specific treatment duration at which 50% of Emax is achieved, 

Prbase is the probability of failure with no treatment, and γ is the Hill 
factor parameter that controls the shape and steepness of the Emax curve.

In the first step of model building, an Emax model was identi-
fied to best describe the relation between probability of cure and 
treatment duration. A sigmoidal Emax model provided a signif-
icantly lower objective function value but yielded scientifically 
implausible estimates of Emax and γ. Subsequently, the impact of 
the regimens on the probability of cure was explored in all model 
parameters. The T50 parameter was significantly different for the 
3 regimens. When the difference in T50 between the regimens 
was included in the model, a sigmoidal Emax relation between 
treatment duration and probability of cure was reevaluated and 
determined to best fit the data. Including a regimen-specific γ 
parameter gave no statistically significant difference for any of 
the regimens. Therefore, 1 γ parameter was deemed sufficient. 
Final model parameter estimates are presented in Table 2. Visual 
predictive checks of the final model are depicted in Figure 4. 
Predicted treatment durations required to achieve certain prob-
abilities of cure are plotted in Figure 5. The model predicted that 
95% probability of cure was reached after 1.6 months for BPaMZ, 
while this was 4.3 months for BPaL and 7.9 months for HRZE.
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Figure 1.  Mycobacterium tuberculosis–infected BALB/c mice (n = 2 per time point) were treated 5 times per week for 4 weeks with bedaquiline (25 mg/kg), pretomanid 
(100 mg/kg), moxifloxacin (100 mg/kg), and pyrazinamide (150 mg/kg). Bedaquiline and its N-desmethyl bedaquiline metabolite (M2) (A), pretomanid (B), moxifloxacin (C), and 
pyrazinamide (D) serum concentration-time profiles are plotted as means with ranges (error bars) at various time points after the last drug administration. 
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DISCUSSION

In the current study, treatment with BPaMZ led to a rapid de-
cline in mycobacterial load, and achieved cure in all mice after 
6 weeks of treatment. Its treatment-shortening capacity is su-
perior to that of BPaL and HRZE, as the mathematical model 
predicts that 95% probability of cure is reached after 1.6 months 
for BPaMZ, 4.3 months for BPaL, and 7.9 months for HRZE. 

The order of efficacy is consistent with other mouse tubercu-
losis studies, in which 1.5–2 months of BPaMZ-treatment was 
sufficient for cure [3, 5], while 3 months were needed for BPaL 
[4, 5], and ≥6 months for HRZE [17].

Compared with other mouse tuberculosis models, BPaL per-
formance was unexpectedly low. It could be speculated that the 
discrepancy in BPaL efficacy is a consequence of the different 
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Figure 2.  Mycobacterium tuberculosis–infected BALB/c mice (n = 2 per time point) were treated 5 times per week for 4 weeks with bedaquiline (25 mg/kg), pretomanid 
(100 mg/kg), and linezolid (100 mg/kg). Bedaquiline and its N-desmethyl bedaquiline metabolite (M2) (A), pretomanid (B), and linezolid (C) serum concentration-time profiles 
are plotted as means with ranges (error bars) at various time points after the last drug administration.

Table 1.  Pharmacokinetic Analysis Serum Values by Treatment Regimen (n = 2 per Time Point)

Regimen Compound (mg/kg) Cmax, Range, mg/L AUC0–24h, Mean (SEM), mg ⋅ h/L

BPaMZ Bedaquiline (25) 0.81–1.20 15.52 (1.22)

N-desmethyl bedaquiline 4.55–4.87 95.78 (2.34)

Pretomanid (100) 6.89–7.03 104.20 (2.44)

Moxifloxacin (100) 4.78–4.96 15.70 (1.67)

Pyrazinamide (150) 89.90-81.60 186.80 (9.41)

BPaL Bedaquiline (25) 1.20–1.26 15.32 (2.75)

 N-desmethyl bedaquiline 4.07–5.11 91.61 (9.54)

 Pretomanid (100) 7.70–9.50 99.13 (15.14)

 Linezolid (100) 28.70–68.90 240.00 (28.84)

Abbreviations: AUC0–24h, area under the concentration-time curve over 24 hours; BPaL, bedaquiline and pretomanid combined with linezolid; BPaMZ, bedaquiline and pretomanid combined 
with moxifloxacin and pyrazinamide; Cmax, maximum serum concentration; SEM, standard error of the mean.
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M. tuberculosis strains used, as was previously shown for HRZE 
[17, 31]. We used a Beijing strain, known for its virulence and 
clinical relevance [32–35], while other studies used the H37Rv 
strain [4, 5]. The different treatment outcomes highlight the im-
portance of using various M. tuberculosis strains to assess treat-
ment efficacy. It is noteworthy that in the context of containing 
regimens containing bedaquiline and pretomanid, linezolid 
shows differential efficacy against H37Rv versus Beijing strains, 
whereas moxifloxacin- and pyrazinamide-containing regimens 
achieve similar efficacy against both strains [3, 5]. It could 
be that drug interactions within BPaL are more favorable in 
treating H37Rv than in treating Beijing strains. 

This interpretation is strengthened in a finding by Bigelow 
et al [36] that drug interactions within BPaL varied according 
to M.  tuberculosis strain. In mice infected with HN878 (be-
longing to the W-Beijing family), both bedaquiline-pretomanid 
and bedaquiline-linezolid performed better than BPaL, while 

against H37Rv, BPaL was the best-performing drug combi-
nation in that study. What mechanisms underlie such strain-
dependent drug interactions is unclear. The reasons for the 
apparent superiority of BPaMZ over BPaL observed in this and 
other preclinical studies are not yet elucidated. In vitro inter-
action between bedaquiline and pyrazinamide is known to be 
synergetic [37, 38], whereas interaction between bedaquiline 
and linezolid was shown to be additive [39], indifferent [36], 
or even antagonistic [40]. However, we find that exposure to 
bedaquiline, its M2 metabolite, and pretomanid are similar for 
BPaMZ and BPaL, which argues against drug-drug interactions 
as drivers of the rank order in treatment efficacy.

The present study confirms that the improved experimental 
setup and mathematical modeling, as we introduced elsewhere 
[16], can shed light on the relationship between treatment du-
ration and treatment outcome, and facilitates efficient compar-
ison between regimens. This setup differs from conventional 
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Figure 3.  Mycobacterial load in lung (A, B) and spleen (C, D) expressed as medians with ranges (error bars) of colony-forming units (CFUs) at 12 weeks after different 
treatment durations. Mice were treated with bedaquiline and pretomanid combined with either moxifloxacin and pyrazinamide (BPaMZ) (A, C) or linezolid (BPaL) (B, D). 
Numbers above bars indicate the number of mice with cure relative to the total number examined. Dashed horizontal lines indicate the upper limits of detection (in CFUs). 
*CFU counting of 1 plate could not be performed owing to contamination. †One mouse reached humane end points and was euthanized before the planned date. Heart and 
lungs from this mouse were cultured, and no CFUs were recovered on the plates.
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mouse tuberculosis studies, because treatment efficacy is as-
sessed 12 weeks after treatment completion (sterilizing ac-
tivity) but not directly after treatment completion (bactericidal 
activity). Moreover, sample sizes are smaller, with only 3 mice 
euthanized per treatment duration [3–5, 16]. Yet this design 
with additional treatment durations and small sample sizes still 
had power to evaluate treatment differences using mathemat-
ical modeling, as it was found to be sufficient to detect a 50% 
difference in potency between regimens and reached high pre-
cision in model parameters [16].

In our modeling approach, we assumed that all regimens can 
eventually result in 100% cure (Emax fixed at 100%). As such, 
not all regimens in the mouse experiments need to reach 100% 

cure, as was the case for HRZE and BPaL. Especially for new 
regimens it can be difficult to select optimum treatment dur-
ations in the experimental design. Mathematical modeling adds 
value, as the probability of cure can be predicted for all regi-
mens as long as one regimen provides information about the 
relationship between treatment length and almost-complete 
cure, together with the assumption that only T50 differs between 
the regimens. The modeling approach could also estimate Emax 
for regimens that never reach 100% cure. However, in this 
case, the experimental design would need to include data on 
maximal cure.

Our combined experimental-mathematical model approach 
provides guidance on treatment durations needed to reach 

Table 2.  Parameter Estimates of the Final Mathematical Model

Parameter Final Estimate RSE, %a
Mean Estimate  
(90% CI)b

Prbase Fixed to 1 – Fixed to 1

Emax Fixed to 1 – Fixed to 1

T50, mo    

  BPaMZ 1.15 7.58 1.15 (1.01–1.30)

  HRZE 5.65 6.51 5.67 (4.98–6.36)

  BPaL 3.16 6.14 3.17 (2.84–3.51)

γ 9.15 18.66 10.1 (6.41–13.84)

Abbreviations: γ, Hill factor parameter; BPaL, bedaquiline and pretomanid combined with linezolid; BPaMZ, bedaquiline and pretomanid combined with moxifloxacin and pyrazinamide; CI, 
confidence interval; Emax, maximum probability of cure fixed to 1; HRZE, isoniazid, rifampicin, pyrazinamide, and ethambutol; Prbase, probability of failure with no treatment; RSE, relative 
standard error; T50, treatment duration at which 50% of Emax is achieved.
aRelative standard error on the approximate standard deviation scale as obtained from the covariance step in NONMEM. 
bMean estimate and 90% CIs were obtained by bootstrapping the data set, followed by reestimation with the final model (n = 1000).
cT50 differed significantly between the regimens.
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certain cure rates. The Nix-TB trial, a phase III study that in-
vestigated the efficacy of BPaL in patients with MDR or XDR 
tuberculosis, demonstrated a 90% treatment success rate after 
6  months of treatment [7]. It is tempting to speculate that 
shorter treatment durations might be sufficient, considering 
the predicted 95% probability of cure in mice at 4.3 months. 
However, several limitations in our model should be con-
sidered when extrapolating results to the clinical situation.

First, BALB/c mice develop cellular granulomas with min-
imal necrosis on tuberculosis infection [41], whereas necro-
tizing, caseous lesions are a hallmark of human tuberculosis. 
The distinct environmental conditions in caseous lesions (eg, 
hypoxia, more neutral pH) influence local drug effects [42]. 
Bedaquiline, pretomanid, and moxifloxacin are reported to 
accumulate in cellular regions rather than in necrotic areas of 
granulomas [25, 42, 43], while pyrazinamide and linezolid seem 
to diffuse equally well through these compartments [42, 44]. 

This characteristic of pyrazinamide and linezolid is perhaps 
less clearly expressed in our mouse model, since the granulomas 
are mostly cellular instead of necrotizing. Hence, these diffu-
sion patterns might imply that BPaMZ could generate more 
favorable results than BPaL in our model versus models with 
necrotic granulomas. It should be noted that although the afore-
mentioned studies use elegant methods to approximate drug 
concentrations at the infection site, exposure-response relation-
ships based on such data should be interpreted with caution [45]. 

This limitation is (partly) addressed by using C3HeB/FeJ mice, 
in which lung disease on tuberculosis infection more closely 
resembles human tuberculosis [25]. As BPaMZ also seems to 
outperform BPaL and HRZE in C3HeB/FeJ mouse tuberculosis 
models [5, 36, 46], the impact of different lung pathology on the 
translational value of our results is probably modest.

Second, whether a mouse tuberculosis model represents 
acute, subacute, or chronic infection depends on the activity of 
the adaptive immune system. This depends on the time window 
between infection and treatment initiation [8]. In acute in-
fection models, bacilli replicate logarithmically, which is suit-
able for assessing a regimen’s bactericidal capacity. Slowly or 
nonreplicating bacilli are present in chronic infection models, 
which are effective for determining sterilizing activity. The 
present model resembles subacute infection [17], characterized 
by a more heterogeneous mycobacterial population [8]. Since 
a complex spectrum of lung lesions is present in patients with 
tuberculosis [47], including data from both acute and chronic 
preclinical infection models could enrich the input of the 
mathematical model.

In conclusion, with the current study we provide addi-
tional evidence in favor of the treatment-shortening capacity 
of BPaMZ over BPaL, and BPaL over HRZE. To enable the op-
timal use of preclinical data and to overcome the limitations 
that hamper extrapolation of animal data to humans, we ad-
vocate bundling of available preclinical data into mathematical 
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models. As such, the predictive value of mathematical models 
could be enhanced in their ability to guide decision making on 
treatment durations, which is needed to achieve desirable cure 
rates in patients with tuberculosis.
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