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Abstract

Purpose of review—In Alport syndrome, over 1,700 genetic variants in the COL4A3, 

COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 

scaffold – an essential component of the glomerular basement membrane (GBM). Therapies are 

limited to treatment with ACE inhibitors to slow progression of the disease. Here, we review 

recent progress in therapy development to replace the scaffold or restore its function.

Recent findings—Multiple approaches emerged recently for development of therapies that 

target different stages of production and assembly of the collagen IVα345 scaffold in the GBM. 

These approaches are based on 1) recent advances in technologies allowing to decipher pathogenic 

mechanisms that underlie scaffold assembly and dysfunction, 2) development of DNA editing 

tools for gene therapy, 3) RNA splicing interference, and 4) control of mRNA translation.

Summary—There is a growing confidence that these approaches will ultimately provide cure 

for Alport patients. Development of therapy will be accelerated by studies that provide a deeper 

understanding of mechanisms that underlie folding, assembly, and function of the collagen IVα345 

scaffold.
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INTRODUCTION

In Alport syndrome, nearly two-thousand variants in the COL4A3, COL4A4 and COL4A5 
genes cause a broad range of glomerulopathies affecting the function of the glomerular 

basement membrane (GBM) in millions of people worldwide (Fig. 1) [1••, 2••, 3, 4••]. The 

genes encode the assembly of the collagen IVα345 scaffold, the major GBM constituent, 

composed of α345 triple-helical protomers made of α3, α4 and α5 chains [4••, 5•] (Fig. 

1B). The variants lead to a broad array of clinical manifestations, ranging from microscopic 

hematuria to end stage renal disease. Current therapy is limited to treatment with ACE 

inhibitors to slow progression [6]. Collagen IVα345 therapies aiming to repair the glomerular 

filter [7, 8] are in urgent need.

Development of an Alport cure hinges on answering the question of “How the plethora 
of pathogenic variants, encoding defective α3, α4, and α5 chains, causes GBM 
dysfunction?” Whereas certain variants result in absence of the collagen IVα345 in the 

GBM, others produce and deposit a scaffold with a defective structure (Fig. 1B). The answer 

requires basic knowledge of the pathobiology of collagen IVα345 in relation to its structure, 

assembly, stability, function, and dysfunction [9]. Here, we present recent breakthroughs that 

serve as groundwork for therapy development and summarize prospective therapies.

BREAKTHROUGHS IN THE PATHOBIOLOGY OF THE COLLAGEN IVA345 

SCAFFOLD

A knock-in mouse model and the α345 hexamer as a focal point in GBM function

Several mouse models of Alport syndrome have been studied over the last 25 years. These 

include knockout mice for Col4a3, Col4a4 and Col4a5 [10–14], harboring variants that 

eliminate the α345 scaffold from the GBM function, as well as two models that incorporate 

defective scaffolds [15, 16]. However, the phenotypes in the latter mouse models were 

attributed to reduced amounts or proteolytic cleavage of α345. Collectively, these studies 

have verified the essentiality of the α345 scaffold for GBM function, but how the 1700 

variants cause GBM dysfunction remains an enigma.

Our recent studies have focused on how the 176 known variants in NC1 domains cause 

GBM dysfunction (Fig. 1B). These domains have been extensively studied and found 

to function as key recognition modules in the assembly of the α345 scaffold [17, 18]. 

Two variants are distinct and encode an 8-residue appendage, called Zurich (Z-) variant, 

attached to the C-terminus of the α3NC1 domain, and a 74-residue appendage, attached 

to the α5NC1 domain (Fig. 1B). We developed a knock-in mouse model harboring 

the Z-appendage [4••]. This variant incorporated into the α345 scaffold, cause GBM 

ultrastructural abnormalities and proteinuria (Fig. 2A, middle panel), phenocopying a wide 

spectrum of glomerular phenotypes in human AS. The Z-appendage pathogenicity, in both 

homozygous and heterozygous mice, pinpointed the α345 hexamer as a critical structure of 

the collagen IV scaffold that governs morphology and ultrastructure of the GBM, features 

that enabled permselective ultrafiltration.
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Z-mouse model provides a unique strategy to acquire seminal information about the 

pathobiology of the collagen IVα345 scaffold at the molecular, cellular, and tissue levels. 

In particular, the model provides a trackable strategy to discover functions of the α345 

hexamer at specific sites and pathogenic mechanisms that are relevant to other hypomorph 

variants in the NC1 domains. Moreover, this model provides a strategy for testing potential 

pharmacological chaperones and gene editing therapies.

Single-chain NC1 trimer technology and crystal structure of α345 hexamer

We developed a groundbreaking technology for the synthesis of recombinant single-chain 

NC1 trimers to explore how the “Zurich” and other variants causes GBM dysfunction [20••, 

21••]. Importantly, this technology provided the pivotal advance to solve the crystal structure 

of the α345 hexamer [21••], a key assembly and connection module within the collagen 

IVα345 scaffold. The hexamer structure (Fig. 2B) revealed a ring of twelve chloride ions 

at the trimer-trimer interface, analogous to the collagen IVα121 scaffold [20••, 22••]. The 

surface of the α345 hexamer is marked by multiple pores and crevices that are potentially 

accessible to small molecules. Over 170 variants occur within the α3, α4 and α5 NC1 

domains, including the Zurich variant of α3NC1, a C-terminal 8-amino acid appendage 

(Fig. 1B). Most variants are truncating and missense, both of which can cause total loss 

of hexamer in the GBM and renal dysfunction. Whereas, the Z-appendage, inserted at the 

apex of the hexamer, allowed the incorporation of the variant into the GBM causing renal 

dysfunction. The pathogenicity of the Z-appendage (vide supra) revealed that the α345 

hexamer is a critical domain for GBM structure and function.

Furthermore, our single-chain trimer technology, coupled with the α345 hexamer structure, 

provides a platform to decipher how the multiple variants in the hexamer cause GBM 

dysfunction. The Z-appendage and various missense variants (hypomorphs) can alter the 

hexamer conformation. These sites, along with the pores and crevices at the hexamer surface 

are prospective targets for pharmacological chaperone therapy to restore native function.

Miniprotomer recombinant technology and assembly of the α345 hexamer

We explored the α345 hexamer as a step to decipher mechanisms that underlie the assembly 

of the collagen IVα345 scaffold. The α3, α4 and α5 NC1 monomers are encoded with 

structural determinants that govern both chain selection in protomer assembly and in 

protomer oligomerization into scaffold (Fig. 3A). Chloride ions signal protomer assembly 

and stabilize the α345 hexamer - an essential step in the oligomerization of protomers 

[23••]. Bromide ions function as cofactors in the formation of sulfilimine crosslinks, which 

reinforce the stability of the α345 hexamer [24••] (Figs. 2B, 3A). Furthermore, the loop-

crevice-loop (LCL) bioactive sites on the hexamer surface exhibit conformational plasticity, 

supporting hexamer functions that include cell signaling and organizing macromolecular 

complexes in the assembly of the GBM, as summarized in Fig. 2B. We validated these in 
vitro results by expressing a mini version of the full-length α345 protomer in cell culture 

[23••], which undergoes the same assembly mechanism triggered by chloride ions (Fig. 3B). 

The miniprotomers technology is also a step towards production of recombinant full-length 

protomers suitable for protein replacement therapy [9].
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PROSPECTIVE THERAPEUTIC APPROACHES

Premature termination codon readthrough therapy

Truncated α3, α4, and α5 chains lacking an intact NC1 domain due to a premature 

termination codon (PTC) cannot assemble into heterotrimers and lead to the absence of 

the α345 scaffold in the GBM. Achieving full-length protein expression via readthrough 

truncating nonsense mutations is a potential therapy for AS. Small molecule-based PTC 

readthrough (PTC-RT) therapy has been well studied in other genetic diseases.

Recently, 49 individual nonsense COL4A5 mutations found in AS patients were screened 

for PTC-RT in cell culture experiments [25••]. 11 mutations were found susceptible to 

PTC-RT induced by G418, which is known to have high readthrough activity in a class 

of aminoglycoside derivatives. These results suggest that PTC-RT therapy is a feasible 

approach for some patients with AS.

Exon skipping therapy

The COL4A5 gene consists of 51 exons with 44 of these exons belonging to the collagenous 

domain (exons 3–46). Among these 44 exons, 35 exons have nucleotide numbers that are 

a multiple of 3, which is a requirement not to have a frame shift upon exon skipping. 

When patients have truncating mutations in one of these exons, exon skipping can shift the 

truncation to a non-truncating mutation, that is, in-frame deletion mutations that can delay 

the development of ESRD in AS.

Recently, truncating variants in exon 21 of the COL4A5 gene were targeted by exon 

skipping, which enabled trimer formation, leading to clinical and pathological improvements 

including deposition of the α5 chain into the glomerular and tubular basement membrane 

[26••]. In addition, the survival period was clearly prolonged in the antisense oligonucleotide 

treated mice group. This data suggests that exon skipping may represent a promising 

therapeutic approach for treating severe AS cases.

Gene therapy

Alport syndrome caused by a pathogenic variant in one or more of three genes: COL4A3, 

COL4A4, or COL4A5. Progress in development of gene therapy for Alport syndrome is 

currently limited to early testing. Nevertheless, several key achievements are foundational 

and demonstrate potential for this approach.

An artificial chromosome transgenic line of mice carrying the human COL4A3-COL4A4 

locus was generated [27•]. In the kidney, when expressed onto a Col4a3(−/−) background, the 

human α3 chain restored the expression of and co-assembled with the mouse α4 and α5 

chains. The co-assembly of the human and mouse chains into a hybrid network in the GBM 

restored a functional GBM and rescued the Alport phenotype.

Lin et al. [28] demonstrated effective restoration of the missing α345 collagen IV network 

in a mouse model of Alport syndrome using an inducible transgene system. This proof-of-

principle study demonstrated the plasticity of the mature GBM and validated the pursuit of 

therapeutic approaches aimed at normalizing the GBM to prolong kidney function.
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Another proof-of-concept study used podocyte-lineage cells from two AS patients to 

test whether gene therapy can correct mutations in the COL4A3 and COL4A5 genes. 

Researchers used the CRISPR/Cas9 system to target the faulty genes in kidney cells isolated 

from urine [29••]. They achieved reversion of variants greater than 40% with undesired 

insertions/deletions lower than 15%.

Although still in its infancy, gene therapy may one day be part of clinical trials assessing its 

potential in Alport syndrome patients.

Pharmacological chaperones

The assembly of the α345 scaffold requires hexamer formation of the α3, α4, and α5 

NC1 domains, suggesting that mutations within NC1 in Alport syndrome may disrupt 

this assembly [18]. The atomic structure of the α345 hexamer revealed multiple pores, 

crevices, and inner cavities [21••] (Fig. 2B), which may not be functionally important but 

are potential targets for small molecules (SMOLs) that can affect folding, assembly and 

stability of the quaternary structure without detrimental effect on the function. Trimerization 

of α345 collagen IV protomer is a culprit for multiple variants causing AS. Omachi et 

al. [30•] developed a system to identify α345 collagen IV protomer trimerization in cells. 

They demonstrated that chemical chaperones rescue the trimer formation ability of clinically 

reported α5 variants.

Pharmacological chaperones (pharmacoperones) initially defined as molecules correcting 

misfolding caused by pathogenic variants have recently been extended with molecules 

stabilizing final structure of a protein as they are also able to facilitate folding of aberrant 

variants and in addition slow down degradation (turnover rate) of the folded proteins 

[31•, 32]. The best class, also referred to as “second-generation” pharmacoperones, targets 

binding pockets that do not affect the function of the protein [31•]. This new class of 

molecules can potentially correct and stabilize the α345 hexamer, without affecting its 

function, and can be developed into a new therapy for Alport patients. Our single-chain 

trimer technology provides a strategy for high-throughput screening to identify potential 

drugs for Alport syndrome.

Protein replacement therapy

Protein replacement therapy remains an attractive and unexplored opportunity for Alport 

patients. Delivery of full-length recombinant laminin molecules to the GBM [33•] set up 

a possibility that a full-length or mini-α345 protomer can be delivered therapeutically to 

the glomerulus, where it can oligomerize forming the α345 scaffold in the GBM. Recent 

advancements in producing the α345 NC1 single-chain trimer [21••] and a miniature version 

of α345 collagen IV protomer [23••], named miniprotomer (Fig. 3B), provide tools to begin 

development of protein replacement therapy. Both trimers and miniprotomers may harbor 

sufficient activities to have a therapeutic effect. Further steps will include development and 

testing of full-length α345 protomers.
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CONCLUSION

The discoveries of the α3, α4 and α5 chains of collagen IV set the foundation for unraveling 

the mystery of Alport syndrome and development of therapy [34•, 35•, 36•, 37•, 38•, 

39•, 40•]. Over the preceding 30 years, sequences of cognate genes COL4A3, COL4A4 

and COL4A5 were determined and shown to harbor nearly two thousand pathogenetic 

variants that cause GBM dysfunction [1••, 2••, 3, 4••]. In parallel, advances were made in 

understanding the structure and assembly of chains into a complex collagen IVα345 scaffold, 

as summarized in [5•, 39•, 41•]. Collectively, this knowledge has provided fundamental 

underpinnings for prospective therapeutic approaches that are summarized in Fig. 4.

Attractive approaches include protein replacement and pharmacological chaperones because 

the GBM is directly accessible to protein delivery via the bloodstream. Recent advances in 

protein design set up a possibility that a full-length or mini-α345 protomer can be delivered 

therapeutically to the glomerulus, where it can oligomerize forming the collagen IVα345 

scaffold in the GBM. Moreover, because a significant number of hypomorph variants occurs 

within the α345 hexamer, the multiple pores, crevices, and cavities of the hexamer surface 

can be potential targets for pharmacological chaperones that correct misfolding or stabilize 

the protein from proteolytic degradation.

Yet only a paucity of information is known about how the chains assemble into a 

collagen IVα345 scaffold in the context of the complex supramolecular structure of the 

GBM. Moreover, how the scaffold functions at the molecular and cellular levels, and how 

pathogenetic variants cause GBM dysfunction remain obscure. This lack of knowledge 

impedes the development of precision therapies aimed at restoring/repairing function of the 

scaffold.
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KEY POINTS

• Cure for Alport patients is to restore production and function of the collagen 

IVα345 scaffold in the GBM (collagen IV therapy)

• Collagen IV therapies are possible at various stages of production and 

assembly of scaffold

• A new mouse model of Alport syndrome with an aberrant scaffold 

incorporated into the GBM is valuable for studying pathobiology and 

developing therapies

• Development of protein-based therapies hinge on a deep understanding of the 

pathobiology of the scaffold in GBM
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Figure 1. Alport pathology in kidney.
A. Alport syndrome is a glomerulopathy characterized by irregular thickening and splitting 

of glomerular basement membrane (GBM). Electron microscopy images of human GBM 

are from [7] for Alport and from [8] for normal. Collagen IVα345 therapies aim to restore 

the morphology and function of GBM. B. Schematic representation of the collagen IVα345 

scaffold assembled from the protomers where NC1 domain hexamerization plays a crucial 

role. C. Alport variants (previously published in [4••]). The number and location of over 

1700 genetic Alport-associated variants (indicated by yellow dots) in the α3, α4, and α5 

chains of collagen IV. Pathogenic variants cause either loss of the α345 protomers in the 

GBM or assembly of defective α345 protomers that can incorporate into the GBM, causing 

a broad spectrum of GBM phenotypes. Significant number of Alport-associated variants 

occur in the NC1 domain of α3, α4, and α5 chains (right insert).
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Figure 2. Pathobiology of the collagen IVα345 scaffold.
A. Mouse models for Alport syndrome. Two types of Alport animal models based on 

presence or absence of the collagen IVα345 scaffold in the GBM represented. Top panel 

demonstrates immunofluorescent staining for alpha 3 chain of collagen IV (previously 

published in [4••]). In the glomeruli of Col4a3 KO mouse the collagen IVα345 scaffold is 

absent while in Zurich variant mouse defective collagen IVα345 scaffold is incorporated in 

the GBM and staining intensity is similar to that of the wild type control. Lower panel 

shows defects in the GBM of both models observed by electron microscopy. EM image of 

Col4a3 KO GBM (lower right) is previously published in [19]. B. The α345 hexamer is a 

focal point of GBM function and is altered in Alport syndrome (modified from [4••]). The 

collagen IVα345 scaffold is populated with several classes of macromolecules - laminins, 
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nidogens and proteoglycans, forming the glomerular basement membrane suprastructure. 

The α345 hexamer harbors a number of features involved in pathogenesis of Alport 

syndrome. Multiple Alport-associated variants occur within α3, α4, and α5 NC1 domains 

(black dots) including the Zurich variant of α3 NC1. The overall concept is presented in 

three companion papers in J Biol Chem. [4••, 21••, 23••].
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Figure 3. Collagen IVα345 synthesis, folding, and assembly.
A. Schematic representation of collagen IV synthesis followed by intracellular and 

extracellular assembly steps. The NC1 domain guides individual chains to assemble into 

the trimeric protomer inside the cell and further initiate the assembly of the scaffold via 

hexamerization outside the cell. Chloride ions trigger and stabilize scaffold assembly and 

bromide ions act as co-factors in formation of sulfilimine bonds which reinforce hexamer 

stability. B. Schematic representation of miniprotomer and atomic force microscopy (AFM) 

images of miniprotomers (previously published in [23••]), which display the role of Cl− ions 

in hexamer formation (protomer-to-protomer interactions forming a scaffold).
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Figure 4. 
Prospective collagen IVα345 therapies for Alport syndrome.
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