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Abstract

Deep learning models represent the state of the art in medical image segmentation. Most of these 

models are fully-convolutional networks (FCNs), namely each layer processes the output of the 

preceding layer with convolution operations. The convolution operation enjoys several important 

properties such as sparse interactions, parameter sharing, and translation equivariance. Because 

of these properties, FCNs possess a strong and useful inductive bias for image modeling and 

analysis. However, they also have certain important shortcomings, such as performing a fixed 

and pre-determined operation on a test image regardless of its content and difficulty in modeling 

long-range interactions. In this work we show that a different deep neural network architecture, 

based entirely on self-attention between neighboring image patches and without any convolution 

operations, can achieve more accurate segmentations than FCNs. Our proposed model is based 

directly on the transformer network architecture. Given a 3D image block, our network divides 

it into non-overlapping 3D patches and computes a 1D embedding for each patch. The network 

predicts the segmentation map for the block based on the self-attention between these patch 

embeddings. Furthermore, in order to address the common problem of scarcity of labeled medical 

images, we propose methods for pre-training this model on large corpora of unlabeled images. 

Our experiments show that the proposed model can achieve segmentation accuracies that are better 

than several state of the art FCN architectures on two datasets. Our proposed network can be 

trained using only tens of labeled images. Moreover, with the proposed pre-training strategies, our 

network outperforms FCNs when labeled training data is small.
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I. INTRODUCTION

Image segmentation is needed for quantifying the size and shape of the volume/organ 

of interest, population studies, disease quantification, and computer-aided treatment and 

surgical planning. Given the importance and the difficulty of this task in medical 

applications, manual segmentation by a medical expert is regarded as the ground truth. 

However, manual segmentation is costly, time-consuming, and subject to inter and intra-

observer disagreement. Automatic segmentation methods, on the other hand, have the 

potential to offer much faster, cheaper, and more reproducible results.

Classical techniques for medical image segmentation include region growing [1], 

deformable models [2], graph cuts [3], clustering methods [4], and Bayesian approaches [5]. 

Atlas-based methods are another very popular and powerful set of techniques [6]. With the 

introduction of deep learning methods for image segmentation [7], [8], these methods were 

quickly adopted for medical image segmentation. Deep learning methods have achieved 

unprecedented levels of performance on a range of medical image segmentation tasks [9]–

[14]. One can argue that deep learning methods have largely replaced the classical methods 

for medical image segmentation.

Recent reviews of the main lines of research and recent advancements on the application 

of deep learning for medical image segmentation can be found in [15], [16]. Most recent 

studies have aimed at improving the network architecture, loss function, and training 

procedures. Recent works have shown that standard deep learning models can be trained 

using small numbers of labeled training images [17], [18]. Despite the large variability in the 

proposed network architectures, the one common feature in all of these works is that they all 

use the convolution operation as the main building block. The proposed architectures differ 

with regard to the arrangement of the convolutional operations, but they all rely on the same 

basic convolution operation. A few studies have proposed alternative network architectures 

based on recurrent neural networks [19], [20] and attention mechanisms [21]. There have 

also been attempts to improve the accuracy and robustness of these methods by modeling 

the statistical variation in the shape of the organ of interest and incorporating this shape 

information in the deep learning method [12], [22], [23]. However, all of those models 

still build upon the convolution operation. Some recent studies have suggested that a basic 

encoder-decoder-type fully convolutional network (FCN) can handle various segmentation 

tasks and be as accurate as more elaborate network architectures [24].

The convolution operation is also the main building block of the network architectures that 

have successfully addressed other central computer vision tasks such as image classification 

and object detection [25], [26]. These results attest to the effectiveness of the convolution 

operation for modeling and analyzing images. This effectiveness has been attributed to a 

number of key properties, including: 1) local (sparse) connections, 2) parameter sharing, and 

3) translation equivariance [27], [28]. In fact, a convolutional layer can be regarded as a fully 

connected layer with an “infinitely strong prior” over its parameters [29].

The properties of the convolution operation that we mentioned above are, in part, inspired 

by neuroscience of the mammalian primary visual cortex [30]. They give convolutional 
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neural networks (CNNs), including FCNs, a strong and useful inductive bias, which makes 

them highly effective and efficient in tackling different vision tasks. However, these same 

properties also put CNNs at some disadvantage. For example, the network weights are 

determined at training time and subsequently they are fixed. Therefore, these networks 

treat different images and different parts of an image equally. In other words, they lack a 

mechanism to change their weights depending on the image content. Furthermore, due to 

the local nature of convolution operations with small kernel sizes, CNNs cannot easily learn 

long-range interactions between distant parts of an image.

Attention-based neural network models have the potential to address some of the limitations 

of convolution-based models. In short, these models aim at learning the relationship 

between different parts of a sequence [31]. Most importantly, unlike CNNs, in attention-

based networks not all network weights are fixed upon training. Rather, only a portion 

of the network weights are learned from training data and the rest of the weights are 

determined at test time based on the content of the input. Attention-based networks have 

become the dominant neural network architectures in natural language processing (NLP) 

applications. Transformers are the most common attention-based models in NLP [31]. 

Compared with recurrent neural networks, transformers can learn more complex and longer-

range interactions much more effectively. Moreover, they overcome some of the central 

limitations of recurrent neural networks such as vanishing gradients. They also allow for 

parallel processing of inputs, which can lead to significantly shorter training time on modern 

hardware.

Despite the potential advantages of transformer networks, so far they have not been widely 

adopted in computer vision applications. A recent survey of the relevant works on this topic 

can be found in [32]. Application of attention-based neural networks for computer vision 

applications faces several important challenges. The number of pixels in a typical image is 

much larger than the length of a signal sequence (e.g., number of words) in typical NLP 

applications. This makes it impossible to directly apply standard attention models to images. 

The second main reason has been the training difficulty. The strong inductive bias of CNNs 

that we have mentioned above makes them highly data-efficient. Transformer networks, on 

the other hand, require much more training data because they incorporate minimal inductive 

bias. Recent studies have proposed practical solutions to these two challenges. To address 

the first challenge, vision transformer (ViT) proposed considering image patches, rather than 

pixels, as the units of information in an image [33]. ViT embeds image patches into a shared 

space and learns the relation between these embeddings using self-attention modules. It 

was shown that, given massive datasets of labeled images and vast computational resources, 

ViT could surpass CNNs in image classification accuracy. One possible solution to the 

second challenge was proposed in [34], where the authors used knowledge distillation from 

a CNN teacher to train a transformer network. It was shown that with this training strategy, 

transformer networks could achieve image classification accuracy levels on par with CNNs 

using the same amount of labeled training data [34].

In this work, we propose a self-attention-based deep neural network for 3D medical image 

segmentation. Our proposed network is based on self-attention between linear embeddings 

of 3D image patches, without any convolution operations. Given the fact that self-attention 
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models generally require large labeled training datasets, we also propose unsupervised 

pre-training methods that can exploit large unlabeled medical image datasets. We compare 

our proposed model with several state of the art FCNs on two medical image segmentation 

datasets.

The specific contributions of this work are as follows:

1. We propose the first convolution-free deep neural network architecture for 

segmentation of 3D medical images.

2. We show that our proposed network can achieve segmentation performance 

levels that are better than or at least on par with the state of the art FCNs. Even 

though prior works have suggested that massive labeled training datasets are 

needed to effectively train transformer networks for NLP and vision applications, 

we experimentally show that our network can be trained using datasets of only ~ 

20 – 200 labeled images.

3. We propose methods for pre-training our network on large corpora of unlabeled 

images. We show that when labeled training images are fewer in number, with 

these pre-training strategies, our network performs better than a state of the art 

FCN with pre-training.

II. MATERIALS AND METHODS

A. PROPOSED NETWORK

Our proposed transformer network for 3D medical image segmentation is shown in Figure 

1. The input to our network is a 3D image block B ∈ IRW × W × W × c, where W denotes 

the extent of the block (in voxels) in each dimension and c denotes the number of image 

channels. Working with image sub-blocks is a common approach in processing large 

volumetric images. It enables processing of large images of arbitrary size on limited GPU 

memory. Furthermore, it functions as an implicit data augmentation method because during 

training sub-blocks are sampled from random locations in the training images.

The image block B is divided into n3 non-overlapping 3D patches pi ∈ IRw × w × w × c
i = 1
N

, 

where w = W/n is the side length of each patch and N = n3 denotes the number of patches 

in the block. In the experiments presented in this paper we choose n ∈ {3, 4, 5}, resulting 

in N ∈ {27, 64, 125} patches in each block. The proposed transformer network embeds each 

patch into a lower-dimensional space and predicts the segmentation map corresponding to 

the image block B based on the self-attention between these embeddings. The steps of the 

proposed method are described below.

Each of the N patches pi i = 1
N  is first reshaped into a vector of size IRw3c and embedded 

into IRD using a trainable linear mapping E ∈ IRD × w3c. This step is similar to the first step 

in the ViT model for image classification. The ViT model appended an extra “class token” to 

the sequence of embedded patches. This class token is inherited from NLP applications. We 

did not use such a token in the experiments presented in this work because our preliminary 
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experiments showed that it did not improve the segmentation performance of our network 

in any way. Hence, the sequence of embedded patches X0 = Ep1; …; EpN + Epos constitutes 

the input to our transformer network. The matrix Epos ∈ IRD × N, which is added to the 

embedded patches is intended to learn a positional encoding. This is a common features 

of self-attention models because the attention mechanism is permutation-invariant. In other 

words, without such positional information, the transformer network ignores the ordering of 

the patches in the input sequence. In most NLP applications, the positional encoding has 

proved to be crucial for achieving optimal results. For 2D image classification with the ViT 

model, positional encoding resulted in relatively small improvements in performance and a 

simple 1D raster encoding was as good as more elaborate 2D positional encoding strategies 

[33]. Because we do not know a priori what type of positional encoding would be useful 

in the application considered in this work, we leave Epos as a free parameter to be learned 

along with the network parameters during training. In Section III, we present the results of 

experiments with different positional encoding strategies for our network.

As shown in Figure 1, our proposed network includes only the encoder section of the 

original transformer network proposed in [31]. The network has K identical stages, each 

consisting of a multi-head self-attention (MSA) and a subsequent two-layer fully-connected 

feed-forward network (FFN). All MSA and FFN modules include residual connections, 

ReLU activations, and layer normalization [35]. Starting with the input sequence of 

embedded and position-encoded patches, X0 described above, the kth stage of the network 

performs the following operations to map Xk to Xk+1:

1. Xk goes through nh independent heads in MSA. The ith head:

a. Computes the query, key, and value sequences from the input sequence 

using linear operations:

Qk, i = EQ
k, iLN(Xk), Kk, i = EK

k, iLN(Xk),

V k, i = EV
k, iLN(Xk)

where EQ, EK, Ev ∈ IRDℎ × D and LN denotes layer normalization.

b. Computes the self-attention matrix and then the transformed values:

Ak, i = Softmax(QTK)/ Dℎ

SAk, i = Ak, iV k, i

The above equation highlights one of the central differences between 

transformer networks and CNNs. It shows that the mapping (Ak,i) used 

to transform the features from one network layer to the next layer is 

computed based on the input itself. Hence, this mapping depends on the 

content of the input at test time, rather than being fixed and the same for 

all inputs as in CNNs.
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2. Outputs of the nh self-attention heads are stacked together and re-projected back 

onto IRD:

MSAk = Ereproj
k [SAk, 0; …; SAk, nℎ]T

where Ereproj ∈ IRD × Dℎnℎ

3. The output of the current multi-head self-attention module is computed using a 

residual operation:

XMSA
k = MSAk + Xk

4. XMSA
k  goes through a two-layer FFN to obtain the output of the kth stage of the 

network:

Xk + 1 = XMSA
k + E2

k ReLU E1
kLN(XMSA

k ) + b1
k + b2

k

The output of the last stage, XK, is passed through the final FFN layer that projects it onto 

IRW 3nclass. This is then reshaped into IRW × W × W × nclass. Here, nclass denotes the number 

of classes (for binary segmentation, nclass = 2).

Y = Softmax EoutXK + bout) .

Y  is the predicted segmentation map for the block (as shown in Figure 1). Since our 

network predicts segmentation maps for image sub-blocks, in order to process a test image 

of arbitrary size, we apply the network in a sliding window fashion on the image.

B. IMPLEMENTATION AND TRAINING

We implemented the network in TensorFlow 1.16 and trained it on an NVIDIA GeForce 

GTX 1080 GPU on a Linux machine with 120 GB of memory and 16 CPU cores. We 

compare our model with the following FCN architectures:

• 3D UNet++ [36]. This is a re-design of the UNet model [37]. The main 

difference between UNet++ and the basic UNet is a set of dense skip connections 

between the encoder and decoder sections of UNet++.

• Attention UNet [38]. This model is based on attention gates, which are meant to 

learn to automatically focus on the target organ. These attention gates enable the 

network to suppress irrelevant features and to learn useful soft region proposals, 

thereby improving segmentation performance.

• SE-FCN [39]. This network architecture is based on incorporating squeeze & 

excitation (SE) blocks [40] into FCNs for medical image segmentation. The 

purpose of SE blocks is to adaptively adjust the importance given to different 
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feature maps, i.e., to promote more useful features and to down-weight less 

informative features.

• 3D Deeply Supervised Residual Network (DSRNet) [41]. This is an encoder-

decoder FCN architecture that uses deep supervision [42] and skip connections 

between all corresponding encoder and decoder stages.

We trained the networks using a Dice similarity coefficient (DSC)-based loss function [43]:

ℒ(Y , Y ) = − iY iY i

i
Y i

2 + iY i2
,

where Y is the ground truth segmentation map corresponding to the image block B and the 

index i runs over all voxels in the block. For training of our own network and the competing 

models we used the Adam optimization algorithm [44] with a batch size of 8. Furthermore, 

for all models we used blocks of size 243 voxels. For our own network we used a learning 

rate of 10−4. For UNet++ a larger initial learning rate of 3 × 10−4 was used because that 

led to the best results with UNet++. For Attention UNet, SE-FCN, and DSRNet we used a 

learning rate of 10−4.

C. PRE-TRAINING

Manual segmentation of complex structures such as the brain cortical plate can take several 

hours of a medical expert’s time for a single 3D image. Therefore, methods that can 

achieve high performance with fewer labeled training images are highly advantageous. 

This is especially important for transformer networks. As we mentioned above, transformer 

networks lack much of the built-in inductive bias that many other networks such as CNNs 

enjoy merely by the virtue of their architectural design. Therefore, compared with those 

architectures, transformers typically need much larger labeled training datasets in order 

to learn the underlying patterns directly from data. In NLP applications, a very common 

approach is to pre-train the network using unsupervised training on massive unlabeled 

datasets [45]. In the same spirit, we propose pretext tasks that can be used to train our 

network on unlabeled 3D medical image datasets.

1) PRE-TRAINING WITH IMAGE DENOISING—In this approach, we add noise to the 

input image block B and feed the noisy block Bnoisy to the network. We train the network to 

reconstruct the clean image block using an ℓ2 loss:

ℒ(Bnoisy, B) = ‖Bnoisy − B‖2 .

The noise added to each voxel is independent and identically distributed Gaussian noise with 

SNR = 10 dB.

2) PRE-TRAINING WITH IMAGE COMPLETION/INPAINTING—In this pre-training 

approach, we mask 10% of the image voxels at random. This is done by creating a random 

mask, M ∈ 0, 1 W × W × W × c, where each element of M is a Bernoulli random variable 
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with p = 0.1 and multiplying M with B in an element-wise fashion. The loss function used in 

this pre-training approach is similarly:

ℒ(B, M) = ‖B − M ∘ B‖2 .

For model pre-training with each of the above two strategies, we use a different output 

layer (without the softmax operation). In order to fine-tune the pre-trained network for the 

segmentation task, we introduce a new output layer with the softmax activation and train 

the network on the labeled data as explained above. We fine-tune the entire network, rather 

than only the output layer, on the labeled images because we have found that fine-tuning the 

entire network for the segmentation task leads to much better results.

Pre-training methods are also commonly used for FCNs. Prior studies have shown that 

pre-training might lead to substantial improvements in segmentation performance of FCNs, 

especially when the segmentation task is difficult and the size of labeled training data is 

small [17], [46]. Therefore, we will use the same denoising and inpainting tasks described 

above to pre-train the FCNs. Moreover, we will also use the semi-supervised FCN training 

method proposed in [47]. The method of [47] is based on an alternating optimization 

strategy. It alternately updates the network parameters and the estimated labels for the 

unlabeled images in parallel.

D. DATASETS AND EVALUATION CRITERIA

Table 1 shows the datasets used for model training and evaluation in this work. The images 

were randomly split into training and test sets, with no patient data appearing in both 

training and test sets. The same training/test splits were used for all networks. For each 

dataset, we used approximately 20% of the training images for initial validation experiments 

to decide on training settings such as the learning rate for each network. After choosing 

the training settings, each network was trained on all training images. The only data 

augmentation was the implicit augmentation via sampling of image blocks from random 

locations in the training images. Voxel intensities of all images were normalized to have 

a zero mean and unit standard deviation. Moreover, all images were interpolated using 3D 

spline interpolation into isotropic voxel sizes shown in the table. The corresponding ground 

truth segmentations were interpolated using nearest neighbor interpolation. We compare our 

proposed method with the competing networks in terms of DSC, the 95 percentile of the 

Hausdorff Distance (HD95), and Average Symmetric Surface Distance (ASSD).

III. RESULTS AND DISCUSSION

Table 2 compares the segmentation performance of the proposed method with the competing 

FCNs on the brain cortical plate and hippocampus datasets. As described in Section II-A, 

the proposed network includes several hyper-parameters that can influence the segmentation 

results. The results presented in Table 2 were obtained with: K = 5, W = 24, n = 3, D = 

1024, Dh = 256, nh = 4. These are our default settings for network hyper-parameters that we 

have used in all experiments reported in the rest of the paper, unless otherwise specified. We 

arrived at these parameters using cross-validation experiments on the training images in the 
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brain cortical plate and hippocampus datasets as well as other datasets not presented in the 

paper. We present experimental results on the effects of different hyper-parameters on the 

segmentation performance below.

The results presented in Table 2 show that the proposed network has achieved segmentation 

performance levels that are superior to the competing FCNs. For each dataset and each 

of the three criteria, we performed paired t-tests to see if the differences were statistically 

significant. As shown in the table, segmentation performance of the proposed convolution-

free network was significantly better than the four FCNs in terms of DSC, HD95, and ASSD 

at p < 0.01. Specifically, for paired t-tests between the proposed model and UNet++ on the 

brain cortical plate dataset the p-values for DSC, HD95, and ASSD were, respectively, 

0.0044, 31 × 10−5, and 0.0082. For the hippocampus dataset, the p-values for these 

comparisons were, respectively, 20 × 10−6, 0.0032, and 74 × 10−6. The results obtained with 

the proposed method were especially superior in terms of the distance metrics, i.e., HD95 

and ASSD. Among the FCN architectures, UNet++ performed substantially better than the 

other architectures on both datasets, but its segmentation performance was significantly 

inferior to that of our proposed method.

Figure 2 shows example slices from test images in each dataset and the segmentations 

predicted by the proposed method and the four FCNs. Visual inspection of the results shows 

that the proposed network is capable of accurately segmenting fine and intricate structures 

such as the brain cortical plate. On both datasets, Attention UNet, DSRnet, and SEFCN 

often resulted in false positive predictions far away from the target organ, which is the 

reason behind their poor performance in terms of the distance metrics presented in Table 2.

We further assessed the segmentation performance of our proposed network with reduced 

number of labeled training images. The goal of this experiment was to investigate if the pre-

training tasks proposed in Section II-C could help the network achieve a good segmentation 

performance with a small number of labeled training images. In this experiment, we 

compared our model with UNet++, which was more accurate than the other three FCNs in 

the experiments presented in Table 2. For this experiment, we trained our method and UNet+

+ using ntrain = 5, 10, and 15 labeled training images from cortical plate and hippocampus 

datasets. We pre-trained our network using either the denoising or the in-painting tasks 

described in Section II-C. We pre-trained UNet++ using the same denoising and inpainting 

pre-training tasks and also using the method proposed in [47]. Furthermore, we performed 

this experiment in two different ways:

1. Pre-training on data with a similar distribution. For brain cortical plate 

segmentation, we used 500 T2 brain images from the developing Human 

Connectome Project (dHCP) dataset [14] for pre-training. The subjects in the 

dHCP dataset range in age between 29 and 44 gestational weeks, which is close 

enough to the age range of our in-house dataset: between 16 and 39 gestational 

weeks. For hippocampus segmentation, we used the remaining training images 

(i.e., 220–ntrain) for pre-training.

2. Pre-training on data with a different distribution. Sometimes even unlabeled 

images with the same distribution are not available. To simulate such a scenario, 
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we used a pool of publicly available computed tomography (CT) images. 

Specifically, we used 130 liver CT [48] and 300 kidney CT [49] images to 

pre-train our network and UNet++ for both brain cortical plate segmentation 

and hippocampus segmentation. As we had done for our target MRI images 

described above, we also normalized voxel intensities of these CT images to have 

a zero mean and unit standard deviation.

Figure 3 shows the results of this experiment. The results show that with the proposed pre-

training, our convolution-free network achieves significantly more accurate segmentations 

with fewer labeled training images. As expected, on both datasets there was a drop in the 

segmentation performance as the number of labeled training images was reduced. However, 

this drop was smaller for the proposed network than for UNet++. We have observed very 

similar results with other FCN architectures. For our network as well as for UNet++, the 

proposed inpainting pre-training leads to slightly better results than the other pre-training 

methods. Moreover, overall, pre-training on similar images leads to better segmentation 

performance than pre-training on a dataset of different images. As shown in Figure 3, 

for both the proposed network and UNet++ the segmentation performance is, slightly but 

consistently, higher when pre-training is performed on a similar dataset. This indicates that 

both the proposed network and UNet++ can learn the existing patterns in unlabeled images 

and leverage this information to achieve better segmentation results.

This is a very interesting and promising observation because it shows that the proposed 

network can be trained using a handful of labeled images for segmenting complex structures 

in 3D medical images. This result is even more noteworthy when we consider the results 

reported by recent image classification studies. As we explained in Section I, image 

classification studies that used a similar approach (i.e., applying a transformer network on 

patch embeddings) required massive labeled datasets [33] or relied on knowledge distillation 

from a CNN teacher model [34]. Our results, on the other hand, show that only a handful 

of labeled training images are sufficient to train a similar network for 3D medical image 

segmentation. This can be attributed to several factors: 1) In image classification there are 

significant variations in relevant image features (even among images that belong to the same 

class). In the segmentation tasks considered here, on the other hand, there is significant 

similarity across subjects and even among different patches in the same image. 2) There 

are far fewer class labels (only two) in the segmentation tasks considered here compared 

with image classification applications. 3) Working with image sub-blocks acts as a strong 

data augmentation strategy and enables optimal utilization of labeled training images. As a 

result, despite their minimal inductive bias, transformer networks appear to be well suited 

for medical image segmentation tasks.

The experimental results presented above show that the proposed method can achieve 

segmentation performance on par with or better than FCNs with as few as 10-20 labeled 

training images. This is an important and encouraging result because in the medical 

imaging domain manual labels are not easy to obtain. Nonetheless, in order to assess the 

performance of the proposed method on larger datasets, we conducted another experiment 

with the newborn brain scans in the developing Human Connectome Project (dHCP) dataset 

[14]. This dataset includes 558 T2 MRI brain scans with cortical plate segmentation. We 
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randomly selected 58 of these scans as test images. We then trained our model and UNet+

+ on all 500 remaining images as well as subsets of 100 and 10 images. In addition to 

the implicit data augmentation caused by sampling patches from random locations in the 

training images, we applied random flip and rotation and we added random Gaussian noise 

to the images. We also experimented with random down/up-scaling of the images and 

random elastic deformation, but these augmentations had a negative impact on segmentation 

performance because they reduced the accuracy of training labels for fine and complex 

cortical plate segmentation. Therefore, we did not use these latter augmentation methods. 

The results of this experiment are presented in Table 3. The results indicate that the proposed 

method achieves better segmentation results than UNet++ with either 10, 100, or 500 

labeled training images. Paired t-tests on the 58 test images showed that, with 500 labeled 

training images, the proposed method achieved significantly higher DSC (p = 0.0015) and 

significantly lower ASSD (p = 84 × 10−6).

In Figures 5 and 4, we have shown example attention maps of the proposed network for two 

different datasets. As mentioned above, in order to process a test image of arbitrary size, 

we apply our network in a sliding window fashion. To generate the attention maps for the 

whole image, at each location of the sliding window the attention matrices (which are of 

size IRN×N) are summed along their columns to determine the total attention paid to each 

of the N patches by the other patches in the block. Performing this computation in a sliding 

window fashion and computing the voxel-wise average gives us the attention maps shown 

in these figures. They indicate how much attention is paid to every part of the image in the 

process of generating the segmentation map.

The attention maps shown in Figure 4 were generated on pancreas CT images from the 

Medical Segmentation Decathlon challenge (https://decathlon-10.grand-challenge.org/). The 

attention maps show that, overall, the early stages of the network have a wider attention 

scope. They attend to other structures and anatomical features that surround the organ of 

interest (here, the pancreas). The deeper stages of the network are more focused on the 

pancreas itself. A rather similar pattern can be observed in the segmentation maps for brain 

cortical plate segmentation that are shown in Figure 5. In the earlier stages, the network 

attends to the entire brain, while in the deeper layers the network’s attention tends to be 

more focused to the regions around the cortical plate.

Another observation from these figures, especially Figure 4, is the variability among the 

attention patterns of different heads in a multi-head self-attention (MSA) module. In each 

stage, the four separate heads of the MSA module adopt quite different attention strategies. 

This may suggest that the multi-head design of the MSA module gives the network more 

flexibility, enabling it to learn more complex attention patterns that help improve the 

segmentation performance. The importance of multi-head design is well documented in 

natural language processing applications [31], and our results show that it is important for 

3D medical image segmentation as well. We further show this below by quantifying the 

effect of the number of attention heads on segmentation performance.

Table 4 shows the results of a set of experiments on the brain cortical plate dataset 

to investigate the effects of some of the network hyper-parameters on segmentation 
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performance. In this table, the baseline network (first row) corresponds to the settings that 

we have used in the experiments reported above, i.e., K = 5, W = 24, n = 3, D = 1024, Dh 

= 256, and nh = 4. We chose these settings based on preliminary experiments and we have 

found them to work well for different datasets.

The results presented in this table show that, overall, the performance of the network is 

not very sensitive to the hyper-parameter settings. For example, changing the number or 

the size of the patches typically leads to slight changes in performance. We have also 

observed that a network depth of K ∈ [5, 7] leads to best results, whereas much deeper 

or shallower networks were not better. Furthermore, using a fixed positional encoding or 

no positional encoding slightly reduces the segmentation performance compared with free-

parameter/learnable positional encoding. Finally, using a single-head attention significantly 

reduces the segmentation performance, which indicates the importance of the multi-head 

design to enable the network to learn a more complex relation between neighboring patches.

Many of the above observations are consistent with the experimental results that have been 

reported in other applications. For example, our results show that increasing the number 

of MSA heads (nh) or the network depth (K) beyond a certain limit has a negative impact 

on segmentation performance. This observation is similar to some of the experimental 

results reported in [33], [50], where networks with a larger number of MSA heads and/or 

larger number of layers resulted in lower image classification accuracy on several datasets. 

Similar results have been reported in natural language processing applications [51]. For 

example, one study showed that it was possible to prune 50-72% of the attention heads 

without a significant reduction in model accuracy in a machine translation application [52]. 

This is because, depending on the application, a certain number of heads are sufficient to 

learn the attention patterns between the signals in a sequence (i.e., patch embeddings in 

our application). Further increasing the number of heads will only increase the number of 

network parameters without providing any useful capacity to the network.

There may be other factors that can influence the relative advantages of the proposed 

transformer network compared with FCNs. Some of these factors are image resolution, 

size of the organ/volume of interest, and patch size. Our experiments show that these 

factors do not affect the superiority of the proposed method over FCNs. For example, 

we resampled the brain cortical plate and hippocampus datasets to isotropic voxel sizes 

of 0.5 mm and repeated our experiments. The results showed that the proposed network 

achieved significantly higher DSC and significantly lower HD95 and ASSD than UNet++ 

on both datasets. We also applied UNet++ on larger patch sizes of 483 and 643 voxels. This 

change did not improve the performance of UNet++ on the brain cortical plate dataset. It 

slightly improved the segmentation performance of UNet++ on the hippocampus dataset 

(DSC: 0.877±0.029, HD95: 1.448±1.430 mm, and ASSD: 0.502±0.201 mm). However, 

these were still statistically inferior to those obtained with our proposed network (Table 2). 

Increasing the input image block size to 483 or 643 voxels did not significantly improve the 

performance of our proposed network either.

Table 5 shows the number of learnable parameters, number of floating point operations 

(FLOPS), and frames per second (FPS). FLOPS and FPS are reported for processing patches 
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of size 243 voxels. We computed the FPS for all models on an NVIDIA RTX 2080TI 

GPU. Overall, the models have relatively similar number of parameters and computational 

costs. Our proposed network has a slightly smaller number of parameters than the compared 

FCNs. On the other hand, the number of FLOPS for the proposed network is higher, which 

is due to the large matrix multiplications involved in the attention modules. In terms of 

training time, our network converged in approximately 24 hours of GPU time, whereas the 

FCNs converged in approximately 4 hours of training. This might be due to the fact that 

transformer networks need additional training time in order to internalize the spatial patterns 

in the image, whereas FCNs’ architecture makes this learning easier.

IV. CONCLUSION

The convolution operation has a strong basis in the structure of the mammalian primary 

visual cortex and it is well suited for developing powerful techniques for image modeling 

and image understanding. In recent years, CNNs have been shown to be highly effective 

in tackling various computer vision problems. However, there is no reason to expect that 

no other model can outperform CNNs on a specific vision task. Medical image analysis 

applications, in particular, pose specific challenges such as 3D nature of the images and 

small number of labeled images. In such applications, other models could be more effective 

than CNNs. In this work we presented a new model for 3D medical image segmentation. 

Unlike all recent models that use convolutions as their main building blocks, our model is 

based on self-attention between neighboring 3D patches. Our results show that the proposed 

network can outperform state of the art FCNs on three medical image segmentation datasets. 

With pre-training for denoising and in-painting tasks on unlabeled images, our network also 

performed better than an FCN when only 5-15 labeled training images were available. We 

expect that the network proposed in this paper should be effective for other tasks in medical 

image analysis such as anomaly detection and classification.
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FIGURE 1. 
The proposed convolution-free network for 3D medical image segmentation. Left: An 

overall schematic of the proposed method: (a) an image block is divided into n3 non-

overlapping 3D patches, (b) each patch is reshaped into a vector and embedded into a lower 

dimension, (c) positional encoding is added to the embedding, (d) position-encoded signals 

go through the transformer network, (e) the output of the network is re-projected back into 

the shape of the original patches, (f) the network output is the segmentation of the organ of 

interest for the location corresponding to the location of the extracted block. Right: One of 

the K stages of the transformer network.
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FIGURE 2. 
Example segmentations predicted by the proposed method and the four FCNs. The 

segmentation legend is shown at the top of the figure. Three example slices from the brain 

cortical plate dataset and two example slices from the hippocampus dataset are shown. In 

each example, the first row shows the image slice and the ground-truth segmentation map. 

The second row shows the predictions of the four FCNs and the proposed transformer 

network.
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FIGURE 3. 
Segmentation performance (in terms of DSC) for the proposed network and UNet++ with 

reduced number of labeled training images on the brain cortical plate dataset (left) and the 

hippocampus dataset (right). The top two plots are for the experiment where the images used 

for pre-training have a distribution that is similar to the target test images. The bottom two 

plots are for the experiment where the images used for pre-training (liver and kidney CT 

images) are very different from the target test images.
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FIGURE 4. 
Example attention maps for two pancreas images. In this experiment, a network with a depth 

K = 7 was used. Attention maps for depths 1, 4, and 7 are shown. Each row shows the 

attention map for one of the four heads.
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FIGURE 5. 
Example attention maps for a cortical plate image. In this experiment, a network with a 

depth K = 7 was used. Attention maps for depths 1, 4, and 7 are shown. Each row shows the 

attention map for one of the four heads.
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TABLE 5.

The number of free parameters (nparam), number of floating point operations (FLOPS), and frames per second 

(FPS) for each of the FCNs and the proposed network. FLOPS and FPS are computed for processing patches 

of size 243 voxels.

Model nparam × 106 FLOPS ×109 FPS

SEFCN 2.60 4.16 190.3

DSRNet 3.70 3.52 173.2

Attention UNet 2.77 1.83 157.0

UNet++ 3.72 4.02 160.2

Proposed 2.49 4.88 144.5
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