Skip to main content
. Author manuscript; available in PMC: 2022 Jun 1.
Published in final edited form as: IEEE Access. 2022 Mar 4;10:29322–29332. doi: 10.1109/access.2022.3156894

TABLE 2.

Comparison of the segmentation performance of the proposed method and several competing FCNs on the brain cortical plate and hippocampus datasets.

Dataset Method DSC HD95 (mm) ASSD (mm)
Brain cortical plate Proposed 0.878 ± 0.037 * 0.871 ± 0.141 * 0.271 ± 0.068 *
UNet++ 0.862 ± 0.054 0.938 ± 0.430 0.258 ± 0.082
Attention UNet 0.831 ± 0.060 1.125 ± 0.337 0.536 ± 0.128
DSRnet 0.846 ± 0.050 0.978 ± 0.229 0.492 ± 0.135
SEFCN 0.786 ± 0.076 2.095 ± 0.801 0.641 ± 0.115

Hippocampus Proposed 0.895 ± 0.020 * 1.035 ± 0.203 * 0.416 ± 0.064 *
UNet++ 0.874 ± 0.027 1.479 ± 1.427 0.533 ± 0.208
Attention UNet 0.820 ± 0.036 5.850 ± 5.150 1.192 ± 0.597
DSRnet 0.821 ± 0.038 3.438 ± 3.065 1.395 ± 0.316
SEFCN 0.716 ± 0.052 8.614 ± 5.230 1.795 ± 0.761

Better results for each dataset/criterion have been marked using bold type. We used paired t-tests to find statistically significant differences;

asterisks denote significantly better results at p < 0.01.)