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Alcoholic steatohepatitis (ASH) is asymptomatic in the early stages and is typically advanced at the time of diagnosis. With the
global rise in alcohol abuse, ASH is currently among the most detrimental diseases around the world. Hepatocellular
carcinoma (HCC) is one of the final outcomes of numerous liver diseases. However, at present, HCC screening is mostly
focused on liver cancer development. Moreover, there is no effective biomarker to predict the prognosis and recurrence of liver
cancer. Meanwhile, there are limited studies on the prognosis and recurrence of HCC patients complicated with ASH. In this
study, using bioinformatic analysis as well as cellular and animal models, we screened the differentially expressed (DE)
miRNA-432 and SLC38A1 gene in ASH. Based on our analysis, miRNA-432 targeted SLC38A1, and the levels of miRNA-432
and SLC38A1 could accurately predict the overall survival (OS) and relapse free survival (RFS) in patients with liver cancer.
Hence, these two genetic elements have the potential to synergistically predict the prognosis and recurrence of HCC
complicated with ASH.

1. Introduction

Alcoholic liver disease (ALD) is a hepatic disorder caused by
chronic or excessive alcohol ingestion. It is characterized by
the alcoholic fatty liver (AFL), which eventually progresses
to alcoholic steatohepatitis (ASH). Chronic ASH, manifested
by hepatic inflammation, can then lead to alcohol-induced
hepatic fibrosis (AHF), alcoholic cirrhosis (AC), and even
hepatocellular carcinoma (HCC) [1]. From1980 to 2016,
the Global Burden of Disease (GBD) project estimated
approximately 334,900 (27%) chronic ALD-induced deaths
from cirrhosis and chronic liver disease in the global. In
addition, 245,000 people died from alcohol-related HCC,
accounting for 30% of all HCC deaths [2]. ASH is usually

asymptomatic in the early stage and is already advanced at
the time of diagnosis. It is a large contributor to mortality
and morbidity and facilitates rapid progression to fibrosis
and HCC [3]. Traditional biochemical index tests only mon-
itor the presence of ASH or HCC. However, there is a lack of
indicators that assess the survival and recurrence rates of
HCC, caused by ASH at varying stages. Therefore, it is nec-
essary to investigate the ASH-related molecular biomarkers
to aid in the prevention and treatment of ASH-induced
HCC.

MicroRNAs (miRNAs) are noncoding RNAs, consisting
of 20-22 nucleotides in length, and they post transcription-
ally and translationally modulate gene expression. ALD reg-
ulation via miRNAs is a hot topic in the research field today.
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Table 1: The primer sequences of genes in RT-qPCR assay.

miRNA/gene name Species Forward primer (5′->3′) Reverse primer (5′->3′)
miR-432 Mouse CGGGCTCTTGGAGTAGATCAG CAGCCACAAAAGAGCACAAT

miR-21a-3P Mouse CGGGCCAACAGCAGTCGATG CAGCCACAAAAGAGCACAAT

miR-21a-5P Mouse CGGGCTAGCTTATCAGACTG CAGCCACAAAAGAGCACAAT

miR-214-5P Mouse CGGGCTGCCTGTCTACACTT CAGCCACAAAAGAGCACAAT

miR-182-3P Mouse CGGGCGTGGTTCTAGACTT CAGCCACAAAAGAGCACAAT

miR-132-5P Mouse CGGGCAACCGTGGCTTTCGA CAGCCACAAAAGAGCACAAT

U6 Mouse GCTTCGGCAGCACATATACTAAAAT CGCTTCACGAATTTGCGTGTCAT

SOX4 Mouse GACAGCGACAAGATTCCGTTC GTTGCCCGACTTCACCTTC

SLC38A1 Mouse GTCAGCAACGACTCTAATGACTT GGAATATACTCGTCGCATTTCCT

SORI1 Mouse CCCGGACTTCATCGCCAAG AGGACGAGAATAACCCCAGTG

COL4A1 Mouse TCCGGGAGAGATTGGTTTCC CTGGCCTATAAGCCCTGGT

CCL20 Mouse GCCTCTCGTACATACAGACGC CCAGTTCTGCTTTGGATCAGC

SH3BGRL Mouse CTGGCTCTACGGCGATTAAGA TCTCTCATCCACTTCCGATTCTC

SC5D Mouse GGGGTTACAGCAAACTCTACG GGTGCAGGCCCCTATGAAT

GFRA1 Mouse GCACCAAGTACCGCACACT GCGGCAGTTGTAGAGAGACTTC

FXYD1 Mouse TCCATTCACCTACGATTACCACA GAATTTGCATCGACATCTCTTGC

GAPDH Mouse GGACCTGACCTGCCGTCTAG GTAGCCCAGGATGCCCTTGA
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Figure 1: The screening of DE miRNAs. (a) The volcano plot of DE miRNAs between normal and ASH tissues in the GSE59492 profile
datasets. (b) The heatmap of DE miRNA between normal and ASH tissues in the GSE59492 profile datasets.
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Several studies demonstrated that miR-21, miR-233, miR-
214, miR-192, and miR-155 modulate inflammation and
oxidative stress in ASH [4–7]. Additionally, miR-34a and
miR-122 accelerate the development of AFL [8, 9]. miRNAs
have great potential as predictive biomarkers, as certain
miRNAs are DE in ASH and can be detected in liver tissue
via real-time quantitative PCR (RT-qPCR). However, it is
possible that one miRNA can regulate multiple proteins.
Therefore, it is crucial to determine the underlying mecha-
nism of miRNAs’ predictive function in ASH and establish
whether the corresponding protein targets offer similar pre-
dictive functions in ASH patients.

Bioinformatics data mining can easily identify novel
essential genes and noncoding RNAs related to different
disease pathogenesis. This information provides valuable
insights and targets for additional investigations. Therefore,
little research has been reported on the ASH. Here, we
extracted the mRNA and miRNA expression profiles
(GSE59492, GSE28619, and GSE155907) from ASH patients
from the Gene Expression Omnibus (GEO) database. In
addition, we also performed DE, Gene Ontology (GO) func-
tional annotation, and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis. Next, we
constructed putative miRNA–mRNA networks. To confirm
the profile of these miRNAs and mRNAs, we conducted
the RT-qPCR analysis in vivo and in vitro. Lastly, we
employed the Human Protein Atlas (THPA) database to
explore the significance of these DEs as prognostic bioindi-
cators of ASH-induced HCC. This study provides a novel
noninvasive approach for predicting the prognosis and
recurrence of HCC complicated with ASH.

2. Materials and Methods

2.1. Microarray Information. To compare the expression
profile of mRNA and miRNA in ASH versus healthy hepatic
tissue, we retrieved this information from the NCBI-GEO
(http://www.ncbi.nlm.nih.gov/geo) website, an open-access
microarray profile and next-generation sequencing database.
We only collected datasets involving human liver tissues.
The collected datasets were then screened for information
prior to evaluation. Finally, the following mRNA/miRNA
expression profiles were selected: GSE28619, according to
the GPL570 platform ([HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array), which included 7
control liver specimens and 15 ASH liver specimens;
GSE155907, according to the GPL21290 platform (Illumina
HiSeq 3000), which included 4 control liver specimens and
5 ASH liver specimens; and GSE59492, according to the
GPL16384 platform ([miRNA-3] Affymetrix Multispecies
miRNA-3 Array), which included 6 control liver specimens
and 13 ASH liver specimens.

2.2. DE gene (DEG) and miRNA (DE miRNA) Identification.
We downloaded the series matrix file from the GEO website;
then, we normalized the data with the normalize between
array function of the R package “LIMMA” from the Biocon-
ductor project [10]. The DEG identification was done with
the “LIMMA” package in R (version 4.0.3). The P value <

0.05 and jlog 2FCj > 1 were adjusted as the threshold crite-
rion. Lastly, the common DEGs are presented in a Venn
diagram.

2.3. Functional Annotation and Pathway Enrichment
Analysis (FAPEA). GO functional annotation and KEGG
pathway enrichment analysis were used for DEGs’
enrichment analysis. The enriched miRNA clusters, fam-
ilies, miRNA-related diseases, and DE miRNA functions
were assessed via TAM 2.0 (http://www.lirmed.com/
tam2/). P value <0.05 was adjusted as the significance
threshold [11–13].

2.4. Protein-Protein Interaction (PPI) Axis and Modular
Analyses. The DEG PPI axis was generated via the STRING
database (http://string-db.org, version 11.0), and a combined
score > 0:90 was deemed as the significance threshold [14].
Cytoscape (version 3.6.1) was employed to generate visual
axes of molecular associations [15]. The Cytoscape plug-in
Molecular Complex Detection (MCODE) (version 1.4.2)
was used to identify closely associated modules from the
PPI axis. Significant modular genes are graphically illus-
trated via the MCODE plug-in. The selection criteria were
adjusted as follows: MCODE score > 5, node score threshold
= 0:2, degree threshold = 2, k − score = 2, and max depth =
100. The DEGs of top molecules were enriched for KEGG
enrichment pathway analysis using the ClueGO plug-in.

2.5. Target Gene Prediction of DE miRNAs. To predict DE
miRNA targets, the miRTarBase (https://mircarta.cs.uni-
saarland.de/targets_search/), microT-CDs (https://mircarta
.cs.uni-saarland.de/targets_search/), TargetScan (http://www

Table 2: A summary of DE miRNAs.

miRNA name Regulation logFC adj.P.Val

hsa-mir-182 Up 2.432051282 0.0113447

hsa-mir-4521 Up 2.023333333 0.004476137

hsa-mir-21 Up 2.011666667 0.000986467

hsa-mir-503 Up 1.970641026 0.0029357

hsa-mir-127 Up 1.863846154 2.00E-05

hsa-mir-214 Up 1.816025641 2.04E-06

hsa-mir-146b Up 1.78974359 2.23E-05

hsa-mir-132 Up 1.681923077 3.37E-05

hsa-mir-224 Up 1.630641026 0.000863925

hsa-mir-3178 Up 1.61974359 0.001838654

hsa-mir-432 Up 1.585384615 0.002197221

hsa-mir-29c Down -1.557948718 0.000527905

hsa-mir-20b Down -1.605641026 0.003485341

hsa-mir-15a Down -1.727307692 0.000934698

hsa-mir-146a Down -1.736538462 0.004370319

hsa-mir-422a Down -1.790512821 0.0053786

hsa-mir-451a Down -1.930512821 0.010604916

hsa-mir-30e Down -2.644871795 2.18E-05

hsa-mir-148a Down -2.807948718 1.03E-05
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.targetscan.org/), miRDB (http://www.mirdb.org/), and miR-
Walk (http://mirwalk.uni-hd.de/) online databases were
employed. Moreover, genes recognized by ≥4 databases were
deemed as DE miRNA targets [16–20]. DEGs that intersected
with estimated target genes were selected for additional inves-
tigation. Lastly, the Cytoscape software (version 3.6.1) was
employed to construct regulatory axes between the DE miR-
NAs and selected DEGs.

2.6. Cell Culture. We acquired the AML12 cell line from the
Institute of Biochemistry and Cell Biology of the Chinese
Academy of Sciences (Shanghai, China) and maintained
them in DMEM/F12 (Gibco, Thermo Fisher Scientific, Inc.,
Waltham, MA, USA), with 10% fetal bovine serum (FBS)
(Gibco), 100mg/mL streptomycin, and 100U/mL penicillin
(Invitrogen, Shanghai, China) in a humid chamber at 5%

CO2 and 37°C. Once the cells reached 70-80% confluency,
they were treated with 200mM alcohol for 24 h.

2.7. Animal Experiments and Sample Collection. Twelve 6-
week-old male wild-type (WT) C57BL/6 mice, with body-
weight around 18~20 g, were acquired from the Shanghai
Laboratory Animal Center (Shanghai, China) to establish
an experimental ASH mouse model and healthy controls.
All mice were arbitrarily and equally separated into two
populations. The control population (C, n = 6) received the
Lieber-DeCali diet (Trophic Animal Feed High-tech Co.,
Jiangsu, China) for 7 weeks, whereas the ASH model mice
(M, n = 6) first received the Lieber-DeCali diet for 2 weeks
then received a ratio of the Lieber-Decarli and ethanol diets
(5% ethanol) that went from 2 : 1 to 1 : 1 to 1 : 2 at days 2, 4,
and 6, respectively, over 1 week; lastly, the Lieber-DeCali
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Figure 2: The functional annotation of DE miRNAs. (a) The 10 leading functional terms for DE miRNAs. (b) The 10 leading disease terms
for DE miRNAs.
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ethanol diet was provided for 4 weeks. At the end of the 7th
week, ethanol (5 g/kg body weight, 40%) or isothermal dex-
trin (8.9 g/kg body weight) was administered to the model
and control groups. After 10 hours of gavage, all mice were
sacrificed and the blood and liver samples were collected.
Our mouse protocols received ethical approval from the
Wenzhou Medical University, and we strictly followed the
guidelines of the Care and Use of Laboratory Animals.

2.8. Assessment of the Serum ALT and AST Levels. For serum
collection, we centrifuged blood samples at 3500 rpm for
10min and then measured the serum ALT and AST contents
via an automated biochemical analyzer (Abbott Laborato-
ries, Chicago, IL, United States).

2.9. Hepatic Histopathological Examination. Hepatic tissues
underwent fixation in 4% paraformaldehyde, prior to paraf-
fin embedding after routine processing. Next, we sliced the
embedded tissues into 4μm sections and stained them with
hematoxylin and eosin (H&E). We also rapidly froze
unstained 4μm hepatic slices prior to staining with Oil

Red O. Staining analysis was done via images from three
arbitrary vision fields from each slide.

2.10. Real-Time Quantitative PCR (RT-qPCR). Total RNA
was isolated from the hepatic specimens and cultured cells,
following directions from the RNA isolation kit (Aidlab Bio-
technologies Co., Beijing, China). Next, we converted the
isolated RNA into cDNA, following kit guidelines (Prime
ScriptTM RT reagent kit, Takara, Otsu, Shiga, Japan), and
RT-qPCR was carried out to measure the expression of
SOX4, SLC38A1, SORI1, COL4A1, CCL20, SH3BGRL,
SC5D, GFRA1, FXYD1, miR-432, miR-21a-3P, miR-21a-
5P, miR-214-5P, miR-182-3P, and miR-132-5P using the
TB Green Premix Ex Taq TM II (Takara) and the ABI7500
Fast real-time PCR system (Applied Biosystems, Life Tech-
nologies, Waltham, MA, United States). Relative gene levels
were determined via the 2−ΔΔCt formula and normalized to
the internal control gene GAPDH or U6. The employed
primer sequences are listed in Table 1.

2.11. Hub Gene Selection and Analysis. The Human Protein
Atlas (THPA) (https://www.proteinatlas.org/), a database
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Figure 3: The liver biochemical analysis, morphology, HE, and Oil Red O staining. (a) An illustration of the serum ALT and AST levels in
normal and ASH models. (b) Morphology, HE, and Oil Red O staining of liver tissue. ∗P < 0:05, ∗∗P < 0:01.
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Figure 4: Comparing DE miRNA levels. (a) The heatmap of significant DE miRNA expressions between normal and ASH tissues in animal
models. (b) The heatmap of significant miRNA expressions between normal and alcohol-stimulated cell models. (c) The relative microRNA
levels, using RT-qPCR in animal models. (d) The relative microRNA levels, using RT-qPCR in cell models. ∗P < 0:05, ∗∗P < 0:01.
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Figure 5: Continued.
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containing images of immunohistochemical- (IHC-) based
tissue microarrays, was used for the verification of hub genes
[21]. We also generated OS and RFS Kaplan-Meier curves
using the Python package.

2.12. Statistics and Data Analysis. We employed the Graph-
Pad Prism software (version 8.0) to analyze all data, and pre-
sented them as mean ± SD. Intergroup comparisons were
assessed via the student’s t-test. P < 0:05 was set as the sig-
nificance threshold.

3. Results

3.1. Screening for DE miRNAs. 19 DE miRNAs were
acquired from the miRNA profile dataset GSE59492, includ-
ing 11 miRNAs with enhanced expression and 8 miRNAs
with diminished expression (Figure 1). The detailed data of
DE miRNAs are provided in Table 2.

3.2. FAPEA. TAM 2.0 online was employed for DE miRNAs
enrichment analysis. The DE miRNA was mainly enriched in
cell proliferation, aging, and oxidative stress. Disease-related
DE miRNA enrichment was mainly in carcinoma cancer,
type 2 diabetes melilites, and osteosarcoma (Figure 2).

3.3. Comparison with the DE miRNA Expression Profile. The
DE miRNAs expression was validated both in vivo and
in vitro. In the ASH animal models, serum ALT and AST
levels were markedly elevated, compared to the control
group. We also observed a dramatic decrease in liver sizes
in ASH mice, as opposed to control mice. In addition, we
evaluated liver histology to assess liver damage in mice.
The liver tissues from ASH mice models also demonstrated
significant damage and lipid deposition, relative to the con-
trol mice (Figure 3). The RT-qPCR results are presented in
Figure 4. According to the RT-qPCR results, microRNA
182-3P, microRNA 214-5P, microRNA 432, and microRNA
21a-3P were highly expressed in the ASH model group, rel-
ative to controls. However, in cellular models, the expression
profiles of these miRNAs were diminished (Figure 4).

3.4. Screening of DEGs. In total, there were 1064 and 2071
DEGs obtained from the GSE28619 and GSE155907 data-
sets. There were 222 identical elevated genes and 291 identi-

cal diminished genes in both datasets (Figure 5). List of
consistent DEGs was provided in Table 3.

3.5. FAPEA. The GO terms consisted of several compo-
nents, namely, cellular (CC), biological process (BP), and
molecular function (MF). The 10 leading GO terms of ele-
vated DEGs are depicted in Figure 6(a). The Elevated DEG
enrichments result in BP were “extracellular matrix orga-
nization” and “extracellular structure organization.” DEG
enrichment result in CC was “collagen-containing.” DEG
enrichment in MF was “extracellular matrix structural.”
Moreover, based on our KEGG analysis, elevated DEG
enrichments were in the “focal adhesion” and the “PI3K-
AKT network” (Figure 6(b)).

The 10 leading GO terms for diminished DEGs are
depicted in Figure 6(c), and they included “small molecule
catabolic process” in CC, “mitochondrial matrix” in BP,
and “iron ion binding” in MF. Based on the KEGG analysis,
diminished DEGs were mostly enriched in “glycine, serine,
and threonine metabolism,” “carbon metabolism,” “bio-
synthesis of cofactors,” and “fatty acid degradation”
(Figure 6(d)).

3.6. Identification of Hub Genes using DEGs PPI and
Modular Analyses. We employed the STRING database
and Cystoscope software to establish hub genes. Following
filtering of the DEGs PPI network complex, we identified
204 DEGs with 280 edges (Figure 7(a)). Next, the 10 leading
hub genes were recognized by screening for high levels of
connectivity using the cytoHubba plug-in. The collagen
(COL) family, including COL type I alpha 1 (COL1A1),
COL type I alpha 2 (COL1A2), COL type III alpha 1
(COL3A1), COL type V alpha 1 (COL5A1), and COL type
V alpha 2 (COL5A2), was primarily included (Figure 7(b)).
Overall, 14 DEGs with 40 edges were obtained by screening
for significant module degrees using the MCODE plug-in
(Figure 7(c)). Lastly, using the KEGG analysis, we revealed
that the top module DEG enrichments were in “ECM-
receptor interaction” as well as “protein digestion and
absorption,” using the ClueGO plug-in (Figure 7(d)).

3.7. DE miRNA-DEG Modulatory Axis Construction. We
estimated DE miRNA target genes from online databases,

GSE28619 down GSE155907 up

GSE
28

61
9 u

p GSE155907 dwon

272

0

0

0

291

797

0

0

0

00

758

276

222

2

(e)

Figure 5: Screening of DEGs. (a) The volcano plot of DEGs between normal and ASH tissues in the GSE28619 profile datasets. (b) The
heatmap of DEGs between normal and ASH tissues in the GSE28619 profile datasets. (c) The volcano plot of DEGs between normal and
ASH tissues in the GSE155907 profile datasets. (d) The heatmap of DEGs between normal and ASH tissues in the GSE155907 profile
datasets. (e) DEGs shared in the GSE28619 and GSE155907 profile datasets, as per the Venn diagram. DEGs: differentially expressed genes.
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using estimated target genes and DEGs. Overall, we identi-
fied 57 target DEGs and developed a new DE miRNA-
DEG modulatory axis in ASH, including microRNA 432-
SLC38A1 (Figure 8).

3.8. Comparing the Expression Profiles of Target Genes. Based
on our RT-qPCR results, SLC38A1 was highly expressed in
the ASH model group, whereas it was scarcely expressed in
cellular models (Figure 9).

3.9. Analysis of the SLC38A1 Protein Expression in HCC. The
IHC-based THPA database was employed for the assess-
ment of SLC38A1 protein expression in HCC tissues. The
SLC38A1 protein displayed an elevated expression in HCC
tissues with steatosis (Figure 10(a) and 10(b)). OS and RFS
were drastically reduced in the enhanced SLC38A1 expres-
sion group, as opposed to the reduced SLC38A1 expression
group. Given these evidences, the elevated SLC38A1 expres-
sion may be a predictor of a worse prognosis in ASH
patients (Figure 10(c) and 10(d)).

4. Discussion

ASH is usually asymptomatic in the early stage and is
already advanced at the time of diagnosis. With a rise in
global alcohol abuse, ASH is among the most significant dis-
eases threatening the world now. HCC is one of the final
outcomes of multiple liver diseases, but at present, the
HCC screening mostly focuses on liver cancer development.
Till now, there is no effective biomarker that predicts the
prognosis and recurrence of liver cancer. Meanwhile, there
are limited studies examining the prognosis and recurrence
of HCC patients complicated with ASH.

In this study, the GSE59492, GSE28619, and GSE155907
datasets were obtained from the GEO database. Using DE
analysis of GSE59492, we obtained 11 upregulated and 8
downregulated DE miRNAs. Then, utilizing enrichment
analysis, we revealed that these DE miRNAs may be related

to biological functions like cell proliferation, aging, and oxi-
dative stress, as well as diseases, such as carcinoma, cervical,
type 2 diabetes melilites, and osteosarcoma. Among these
associations, oxidative stress was closely related to ASH.
These DE miRNAs may also play a role in ASH regulation.
Therefore, we designed an experiment to test our hypothesis.

The microRNA 182-3P, microRNA 214-5p, microRNA
432, and microRNA 21a-3P expressions were increased in
the ASH animal model, compared to the normal group,
and the differences were statistically significant. However,
in the cell experiment, the expressions of these miRNA were
diminished, and the differences were also statistically signif-
icant. The animal model was treated with alcohol for 4
weeks. Compared to the cell experiment, the time and inten-
sity of alcohol on liver cells were different. It is possible that
the difference in the miRNA expression profile may be the
result of self-regulation within animal hepatocytes. In any
case, using both cellular and animal models, we demon-
strated that alcohol influences the expressions of micro-
RNAs 182-3p, 214-5p, and 432 and 21a-3P in hepatocytes.

We also selected DE genes from the mRNA datasets. A
total of 1064 and 2071 DE genes were screened from the
GSE28619 and GSE155907 datasets. Next, we obtained the
intersection via generation of the Venn diagram. Finally,
we obtained 222 co highly expressed genes and 291 co
scarcely expressed genes.

One aspect of the miRNAs’ biological function was the
regulation of target gene mRNA expression in cells. We esti-
mated the target genes of various DE miRNAs and com-
pared this data against the list of DEGs we obtained from
the gene expression dataset. Based on the GO analysis of
DEGs, we selected some target DEGs for verification
in vivo and in vitro. We discovered that the SLC38A1
expression was markedly enhanced in the animal model
and drastically reduced in the cell model, and the differences
were statistically significant. SLC38A1 is an amino acid
transporter, which is ubiquitous in tumor tissues, where it
stimulates tumor cell proliferation, invasion, and migration
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Figure 6: DEGs’ GO and KEGG network enrichment analyses. (a) The 10 leading GO terms of highly expressed DEGs. (b) The KEGG
analysis of highly expressed DEGs. (c) The 10 leading GO terms of scarcely expressed DEGs. (d) The KEGG analysis of scarcely
expressed DEGs. GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: differentially expressed genes.
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Figure 7: Continued.
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DEGs: differentially expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes.

COL4A1

COL5A2

COL15A1
SERPINH1

COL1A2

COL4A2

COL1A1

CYP1B1

LBH

AGL
LRRC1

CA12

LPL

RALGPS2

FXYD1

SLC38A1

SORT1
SALL1

GAS2

PSAT1

RAB8B

RAB11FIPI

EPB41L4B

ENPP5

LASP1

UBE2Q2

AKR1D1

PRRG4

PHYHD1

CCL20

SCRN1

CTPS1
GJA1

DSG1

SC5D

SQSTM1

SOX4KLHL15

MAP1B

PER2

DCPS

hsa-miR-148a

hsa-miR-451

hsa-miR-422a

hsa-mir-214

hsa-mir-182

hsa-miR-146a

hsa-mir-132

GFRA1PAIP2B

OGDHL

PODXL

PLCXD3SH3BGRL2

KIAA1522

COL3A1
LAMC1

hsa-miR-29c

hsa-mir-432

hsa-miR-15a

hsa-miR-30e

hsa-mir-21

hsa-miR-20b

CPEB3

SPARC

ROBO1

ITGA6

LAMA2

HLF

FBN1

Figure 8: DE miRNA-DEG modulatory axis. The pink nodes represented the highly expressed DEGs and DE miRNAs, and the blue nodes
represented the scarcely expressed DEGs and DE miRNAs. The lines indicated the modulatory association between DE miRNAs and DEGs.
DE: differentially expressed; miRNAs: microRNAs; DEGs: differentially expressed genes.

13Oxidative Medicine and Cellular Longevity



SC5D
Group 2

1

–1

–2

0

SH3BGRL
FXYD1

GFRA1
SOX4

COL4A1

SORI1
SLC38A1

CCL20

Control 1

Control 3

Control 2

Control 4
Control 5

Control 6

A
lcoholic 2

A
lcoholic 1

A
lcoholic 4

A
lcoholic 5

A
lcoholic 6

A
lcoholic 3

Alcoholic_Treated
Normal_Control

Group

(a)

2

1.5

0.5

–0.5

0

1

–1

Group

SH3BGRL

SH3BGRL.1

SLC38A1

FXYD1

SOX4

COL4A1

SORI1

CCL20
GFRA1

Control 1

Control 5

Control 4

Control 2

Control 3

A
lcoholic 1

A
lcoholic 4

A
lcoholic 2

A
lcoholic 3

A
lcoholic 5

Alcoholic_Treated
Normal_Control

Group

(b)

Ctrl AH
0.0

0.5

1.0

1.5

2.0

Relative Expression of SH3BGRL

Groups

Fo
ld

 ch
an

ge

ns

Ctrl AH
0.6

0.8

1.0

1.2

1.4

Relative Expression of SC5D

Groups

Fo
ld

 ch
an

ge

ns

Ctrl AH

0.0

0.5

1.0

1.5

2.0
Relative Expression of GFRA1

Groups

Fo
ld

 ch
an

ge
ns

Ctrl AH

0.0

0.5

1.0

1.5

2.0

Relative Expression of FXYD1

Groups

Fo
ld

 ch
an

ge

ns

Ctrl AH

0

1

2

3 ⁎⁎

Relative Expression of SLC38A1

Groups

Fo
ld

 ch
an

ge

Ctrl AH
0

1

2

3

4

5

Relative Expression of SOX4

Groups

Fo
ld

 ch
an

ge

ns

Ctrl AH
0.0

0.5

1.0

1.5

2.0

2.5

Relative Expression of SORI1

Groups

Fo
ld

 ch
an

ge

ns

Ctrl AH
0

2

4

6

Relative Expression of CCL20

Groups

Fo
ld

 ch
an

ge

ns

Ctrl AH
0.0

0.5

1.0

1.5

2.0

2.5

Relative Expression of COL4A1

Groups

Fo
ld

 ch
an

ge

ns

Ctrl
AH

(c)

Figure 9: Continued.
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[22, 23]. However, the relationship between SLC38A1 and
prognosis and/or recurrence of liver cancer is yet unre-
ported. In addition, there are no reported investigations on
the association between SLC38A1 and the prognosis of liver
cancer patients with ASH. Our analysis of the THPA data-
base revealed that the SLC38A levels enhanced markedly in
patients with fatty liver disease. Moreover, we revealed that
the OS and RFS were drastically diminished in the elevated
SLC38A1 expression group versus the reduced SLC38A1
expression group, and differences were statistically signifi-
cant. In summary, based on our DE profile datasets of
ASH, and in vivo and in vitro data, we drew the following
conclusions: (1) ASH results in the high expression of
SLC38A1 and miRNA-432 in the liver. (2) High levels of
hepatic SLC38A1 in patients with liver cancer cause lower
OS and RFS. (3) Liver cancer patients with ASH may also
exhibit reduced OS and RFS. (4) miRNA-432 and SLC38A1
exhibited the same expression pattern in our experiment. As
such, they may serve as a pair of predictive biomarkers that
predict the prognosis and recurrence of HCC complicated
with ASH.

In our research, analysis of our cellular and animal
models yielded opposite conclusions, and both were statisti-
cally significant. This does not necessarily mean that the

results were contradictory to one another but provided
direction for additional investigations.

As mentioned previously, the time of alcohol stimula-
tion of hepatocytes was different in our cellular and ani-
mal models. In fact, in our cellular model, the stimulation
was over a short period, whereas in our animal model, it
was over a long period of time. Based on this evidence,
when cells were stimulated with alcohol, the initial reac-
tion is the downregulation of SLC38A1 and miRNA-432
levels. However, with prolonged alcohol stimulation, the
SLC38A1 and miRNA-432 levels in the animal models
increased. The underlying mechanism behind this process
requires further investigation. In addition, we identified
SLC38A1 as the target gene of miRNA-432 and demon-
strated that both SLC38A1 and miRNA-432 displayed a
similar expression pattern in vivo and in vitro. Therefore,
whether this exists a relationship of mutual regulation or
a more complex regulatory mechanism remains to be
determined. Overall, a dynamical study, which was aimed
at exploring the role of miRNA-432 and SLC38A1 in
evaluating OS and RFS in patients with HCC, needs to
be performed, followed by potential predictive biomarkers
that predict the prognosis and recurrence of HCC com-
plicated with ASH.

(d)

Figure 9: Comparing the levels of different target genes. (a) The heatmap of target gene expression between normal and ASH tissues in
animal models. (b) The heatmap of target gene expression between normal and alcohol-stimulated cellular models. (c) Relative target
gene levels, using RT-qPCR in animal models. (d) Relative target gene levels, using RT-qPCR in cellular models. ∗P < 0:05, ∗∗P < 0:01.
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Figure 10: Analysis of the SLC38A1 protein expression in HCC via IHC-based TMA. (a) The SLC38A1 protein expression in HCC
specimens without steatosis. (b) The SLC38A1 protein expression in HCC specimens with steatosis. (c) The association between the
SLC38A1 protein expression (high or low) and OS rate in HCC patients. (d) The association between the SLC38A1 protein expression
(high or low) and RFS rate in HCC patients. OS: overall survival; RFS: relapse free survival.
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5. Conclusions

We found that miRNA-432 and SLC38A1 had the potential
to be a new pair of noninvasive indicators for evaluating OS
and RFS in patients with HCC. High levels of hepatic
SLC38A1 in patients with liver cancer cause lower OS and
RFS. Through the bioinformatic analysis and experimental
verification, we speculate these genetic elements might be
strong candidates for use as potential predictive biomarkers
that predict the prognosis and recurrence of HCC compli-
cated with ASH.
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