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Abstract

Reference population databases are an essential tool in variant and gene interpretation.

Their use guides the identification of pathogenic variants amidst the sea of benign

variation present in every human genome, and supports the discovery of new

disease–gene relationships. The Genome Aggregation Database (gnomAD) is currently

the largest and most widely used publicly available collection of population variation

from harmonized sequencing data. The data is available through the online gnomAD

browser (https://gnomad.broadinstitute.org/) that enables rapid and intuitive variant

analysis. This review provides guidance on the content of the gnomAD browser, and its

usage for variant and gene interpretation. We introduce key features including allele

frequency, per‐base expression levels, constraint scores, and variant co‐occurrence,

alongside guidance on how to use these in analysis, with a focus on the interpretation

of candidate variants and novel genes in rare disease.
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1 | INTRODUCTION

Reference population databases are a powerful tool for under-

standing the biological function of genetic variation. Population fre-

quency data allow the rare variants that are more likely to be the

cause of Mendelian disorders to be distinguished from the millions of

common and largely benign variants present in every human genome.

In the era before the availability of large sequenced cohorts, the

frequency of candidate pathogenic variants was typically defined through

the painstaking genotyping of small in‐house cohorts of healthy
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individuals. However, over the last decade, a series of databases have

provided increasingly more accurate and comprehensive genome‐wide

estimates of variant frequency through the generation and aggregation of

large collections of human sequencing data. The 1000 Genomes Project

was a pioneer in creating a publicly available reference database of

variation from sequence data (1000 Genomes Project Consortium

et al., 2010), followed by the Exome Sequencing Project, where 6500

European and African American individuals were sequenced and ag-

gregate data was shared on the Exome Variant Server (Fu et al., 2013).

The need for a larger and more diverse reference population database

was well recognized (MacArthur et al., 2014), and the first large‐scale

aggregation of existing sequence data from 60,000 individuals, the Exome

Aggregation Consortium (ExAC) dataset, was released in 2014 (Lek

et al., 2016). With the addition of genome data to ExAC, it was renamed

as the Genome Aggregation Database (gnomAD), that today has variant

data from more than 195,000 individuals and is the most widely accessed

reference population dataset with over 150,000 weekly page views

(Figure 1) (Karczewski et al., 2020). Other large databases include NHLBI's

Trans‐Omics for PrecisionMedicine (TOPMed)‐BRAVO and the Geisinger

Healthcare System DiscovEHR dataset (Dewey et al., 2016; Taliun

et al., 2021).

Given known mutation rates, it is almost certain that every possible

single base change compatible with life exists in a living human. Synon-

ymous variation is under less selective pressure than missense or loss of

function (LoF) variation and can be used to estimate how close gnomAD

is to sampling the full spectrum of natural human variation. As of now,

gnomAD is approaching saturation for the highly mutable CpG dinu-

cleotides (Duncan & Miller, 1980; Lander et al., 2001), with 85% of all

possible synonymous CpG‐to TpG transitions observed (Karczewski

et al., 2020). However, across non‐CpG trinucleotide contexts, less than

12% of possible synonymous variants have been observed in gnomAD,

indicating that a much larger number of individuals will need to be se-

quenced before we begin to discover the full spectrum of tolerated

variation. The fraction of observed variants is even lower for variants

under purifying selection, with less than 4% of nonsense variants

currently observed in gnomAD.

With the existing sample size of gnomAD, an individual will on

average carry about 200 very rare coding variants (gnomAD allele

frequency <0.1%). This number varies by ancestry, partly depending on

the populations represented in the database, but is also influenced by

the heterozygosity rate. At the current size, each individual has tens of

variants that are absent from gnomAD. Within one individual's exome,

there is a mean of 27 ± 13 novel coding variants that are absent in all

other gnomAD individuals (variants unique to that individual), with

more novel variants in East Asians (35 ± 11), and South Asians (38 ± 14)

and fewer in African/African Americans (21 ± 7), Latino/Admixed

Americans (19 ± 11) and Europeans (23 ± 11) (Figure 2b and Table S1),

correlating with sample sizes and representation in the dataset for

each continental population. For population‐groups not well re-

presented in gnomAD, we would expect these numbers to be even

higher. Often there is limited evidence to rule out pathogenicity for the

variants not observed in a population database, resulting in an

increased number of variants of uncertain significance in clinical

genetic testing and highlighting the need for continued aggregation of

sequencing data to improve the accuracy of genetic test interpretation

(Naslavsky et al., 2021). The gain from increased sample size and

improved representation is demonstrated by the decrease in number

of unique variants per individual when utilizing the entire gnomAD

dataset versus v2 exomes only (Figure S1 and Table S2).

This review provides guidance for using the gnomAD browser

and key features like allele frequency, per‐base expression levels,

constraint scores, and variant co‐occurrence, for variant and gene

interpretation in clinical and research analysis.

2 | DATA COMPOSITION

2.1 | Individuals represented in gnomAD

The gnomAD browser displays summary statistics and aggregate

variant data from deidentified exome and genome data, with ap-

proaches consistent with the guidance in the NIH data sharing policy

F IGURE 1 The gnomAD database aids variant interpretation world‐wide. (a) Weekly page views of gnomAD (dark blue) and ExAC (light blue)
from release in October 2014 to mid‐2021. (b) Number of unique gnomAD page views in each country the past 12 months (since 2020‐06‐14)
colored by none (grey), 5–10,000 (pink), and more than 10,000 (purple). (c) Schematic of the distribution and overlap of more than 195,000
unique individuals in gnomAD v2 exomes (orange), v2 genomes (green) and v3 genomes (violet)
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(NOT‐OD‐03‐032) to reduce the risk of subject identification. The

gnomAD database aggregates data from over 195,000 individuals

through a world‐wide collaborative effort on data sharing. More than

140 principal investigators have contributed genome data from over

60 studies, including data from several other population datasets

(https://gnomad.broadinstitute.org/about). Most of the sequence

data in gnomAD is generated for case–control studies of common

adult‐onset disease, such as type 2 diabetes, psychiatric disorders,

and cardiovascular disease. No sequencing has been done for the

purpose of depositing data in gnomAD; some data has been

reprocessed for inclusion, particularly sequence data from popula-

tions that are underrepresented in gnomAD. Data contributions were

made with an assumption that no phenotype or individual‐level data

would be shared with users. However, access to many datasets in-

cluded in gnomAD are available through the Database of Genotypes

and Phenotypes (dbGaP) and the Analysis, Visualization, and

Informatics Lab‐Space (AnVIL) as well as other repositories

(Schatz et al., 2021; Tryka et al., 2014).

Aggregation of data from disparate sources and platforms has

been made possible by uniform joint variant calling using a standar-

dized BWA‐Picard‐GATK pipeline (Van der Auwera et al., 2013) and

Hail for data processing, analysis, and the addition of a gVCF

combiner used in the v3 dataset. The aggregated dataset has been

subjected to thorough sample and variant quality control (QC), with

samples removed if they have low coverage, too many or too few

variants for the population, or sex aneuploidy. To avoid inflation of

allele frequencies for rare variants, first and second degree relatives

have also been removed. In addition, to create a dataset as close as

possible to a general population reference, individuals known to be

affected with severe pediatric disease, as well as their first degree

relatives, are also excluded. An allele‐specific random forest approach

(Karczewski et al., 2020) or the allele‐specific version of GATK Var-

iant Quality Score Recalibration (VQSR) have been applied to dis-

tinguish true genetic variants from artifacts. Additionally, variants

were removed if no sample harboring the variant had a high quality

genotype (depth ≥ 10, genotype quality ≥ 20, minor allele fraction ≥

0.2 for nonreference heterozygous variants). With this design, gno-

mAD is particularly suitable for aiding in the interpretation of variants

in rare disease genetic analysis.

2.2 | gnomAD version 2 and version 3

As new cohorts are added, new versions of gnomAD are released.

To date, the database consists of two versions, v2.1.1 and v3.1.2

(referred to as v2 and v3) released after the original ExAC database

that is largely represented within gnomAD v2 as well as a separate

dataset on the browser (Figure 3:1). With 125,748 exomes and

15,708 genomes aligned to GRCh37, gnomAD v2 is preferable over

v3 for interpreting coding variants. The current v3 release has

76,156 genomes aligned to GRCh38, providing more data for

noncoding regions or coding regions not covered well in exomes,

such as regions with high GC content or regions not targeted with

exome capture.

F IGURE 2 (a) Mean count of coding very rare variants (allele frequency < 0.1%), and (b) mean count of unique coding variants (across v2 and
v3) grouped by population; black bar represents the 95% confidence interval. (c) Comparison of genome‐wide distribution of loss of function
(LoF) constraint scores in 19,197 genes, colored by LOEUF decile; a continuous distribution for LOEUF score and a dichotomous‐like distribution
for pLI scores. Dotted line marks suggested thresholds for LoF constrained genes at pLI ≥ 0.9 and LOEUF < 0.35 in gene interpretation. LOEUF,
LoF observed/expected upper bound fraction; PLI, probability of being LoF intolerant
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F IGURE 3 The gnomAD gene page, displaying NSD1 as an example. Includes gene‐level information of metrics and variant distribution,
and allows customized filtering. Some highlighted features are: (1–2) navigating datasets; (3) exome and (4) genome gene coverage; (5)
direction of the gene (NSD1 on forward strand); (6–8) transcript and expression information; (9–10) constraint table; (11) proportion
expressed across transcripts (pext) score and (12) example of a region with low pext; (13) filtering options for ClinVar variants and (14)
expansion of ClinVar variant view; (15–16) gnomAD variant tracks and (17) filter gnomAD variants by consequence; (18) variant search bar;
(19) variant table; (20) filter by sequencing method, variant type, and option to include low‐quality filtered variants; (21) customize variant
table; (22) download variant table
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While gnomAD does not contain duplicated individuals, or first

or second degree relatives within a version release, there is

significant overlap between v2 and v3, which is important to note if

using both versions for variant interpretation. The majority of v2

genomes (81%) are also in v3, additionally 6% of v2 exomes are also

represented as genomes in v3. In total, approximately 14% of the

individuals with exome or genome data in v2 have genome data in v3;

26% of individuals in v3 are also present in v2 (Figure 1c). The overlap

of individuals can be resolved on the browser by looking at the v3

non‐v2‐dataset (further explored in Section 3.2.1), important for rare

disease analysis that benefits from investigating the entire gnomAD

dataset (Figure S1 and Table S2). The planned v4 release will include

the exomes and genomes from v2 and v3, along with additional data

for an expected database of over 500,000 samples aligned on

GRCh38, which will be the recommended reference dataset for all

analyses.

2.3 | Structural and mitochondrial variants

This review focuses on the interpretation of single nucleotide var-

iants (SNVs) and indels from the nuclear genome. The gnomAD

browser also provides allele frequencies for structural variants (SVs)

and mitochondrial variants. As part of gnomAD v2, there are anno-

tations for ~445,000 SVs from 10,738 genomes (Collins et al., 2020)

that can be explored using the search bar menu on the landing page

or the gene page (Figure 3:1 and 3:2). Mitochondrial variants are

available from 56,434 gnomAD v3 genomes that can be found by

searching “MT‐” followed by gene name or “M‐” followed by a mi-

tochondrial chromosome position. The release includes mitochondrial

specific data such as homoplasmic and heteroplasmic calls as well as

both population and haplogroup‐specific allele frequencies (Laricchia

et al., 2021).

3 | NAVIGATING THE gnomAD BROWSER

3.1 | The gene page

Entering a gene in the search bar (Figure 3:1), or selecting the gene

name on the variant page, navigates to the gene page (Figure 3).

The mean depth of coverage of a gene guides the first assessment of

the gene's representation in the database and reveals differences

between exome (Figure 3:3, blue) and genome (Figure 3:4, green)

sequencing coverage. The gene displayed is a union of all exons from

all transcripts. Figure 3 shows the NSD1 gene page; haploinsuffi-

ciency of NSD1 (loss of one copy) results in Sotos syndrome, char-

acterized by overgrowth and intellectual disability, OMIM #117550

(Hamosh et al., 2005). The direction of the arrow corresponds to the

strand direction of the DNA, in this case indicating that NSD1 is

present on the forward strand (Figure 3:5). Selecting “Show tran-

scripts” (Figure 3:6), expands the view of transcript models and any

transcript can be selected for view on a separate transcript page. The

asterix (*) marks the canonical transcript which is the Ensembl ca-

nonical transcript for v2 on GRCh37 and Matched Annotation from

NCBI and EMBL‐EBI (MANE) Select transcript (Navarro Gonzalez

et al., 2021) if available for v3 and later releases on GRCh38. We

display the transcripts and tissue expression profiles using data

provided by the Genotype‐Tissue Expression (GTEx) project, a re-

source for gene expression and regulation with RNA‐sequencing of

samples from 54 nondiseased tissue sites across nearly 1000 in-

dividuals (GTEx Consortium, 2015). The transcript with the highest

mean expression can be inferred from the size of the dot placed next

to each transcript (Figure 3:7). In this example, the second listed

NSD1 ENST00000354179.4 transcript has the highest mean

expression across all tissues, with the highest tissue specific ex-

pression in “Brain‐Cerebellar Hemisphere.” More detail is provided in

the heatmap of transcript tissue expression (Figure S2), found by

selecting “Show transcript tissue expression” (Figure 3:8).

3.1.1 | Gene constraint metrics

Constraint metrics are key features of the gnomAD database and

have been widely used to aid gene and variant interpretation in rare

disease (Bamshad et al., 2019; Oved et al., 2020). The constraint

metrics are based on a gene's observed versus expected number of

very rare SNVs (allele frequency < 0.1%), corrected for sequence

context and coverage. Constrained genes have fewer variants than

expected and are under a higher degree of selection than less con-

strained genes. The metrics are divided by variant type: synonymous,

missense, and predicted loss of function (pLoF). The constraint scores

for the canonical transcript are shown in the constraint table on the

gene page; additionally, an updated transcript‐specific constraint

table is available for each transcript on the transcript page.

The degree of synonymous and missense constraint is mea-

sured by an observed to expected ratio (o/e) and the Z‐score

(Figure 3:9). A positive Z‐score indicates fewer variants observed

than expected, hence increased constraint (intolerance to varia-

tion), and a negative Z‐score indicates that a gene has more var-

iants observed than expected. Synonymous variants are classically

not under evolutionary selective pressure indicated by a Z‐score

close to zero or an o/e ratio close to one. However, genes with

highly similar paralogs, pseudogenes, or segmental duplications

may have mapping challenges with short read data that can inflate

observed variant counts. Hence a Z‐score for synonymous variation

deviating significantly from zero may indicate that the constraint

measurement is unreliable for that gene and interpretation of all

constraint data for the gene should be done with care. As an

example the HIST1H4E gene has a synonymous Z‐score of −9.89. In

addition to missense constraint, some genes will have regions of

missense constraint, often overlapping with functionally important

domains (Samocha et al., 2017). The regional missense constraint

track can be viewed by selecting the ExAC subset on the gene page.

Of note, the track is only shown for genes where regional missense

constraint is observed (Figures 3:2 and S2).
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LoF constraint is measured by two different scores: probability of

being LoF intolerant (pLI) and LoF observed/expected upper bound

fraction (LOEUF) (Figure 3:10). The pLI score was developed for the

ExAC release (Lek et al., 2016) on the premise that genes can be

divided into genes where biallelic LoF is tolerated by natural selection

(LoF tolerant genes, pLI close to 0) and genes where LoF is not tol-

erated (haploinsufficient genes, pLI close to 1) (Figure 2C, right).

However, the increased sample size of gnomAD enhanced the power

to detect LoF constraint with a continuous metric; LOEUF is a con-

servative estimate (upper bound) of the observed/expected ratio of

the LoF effect predictor (loss of function transcript effect estimator

[LOFTEE]) high confidence SNV‐LoF variants (Figure 2C, left). The

use of constraint score in analysis is further explored under

Section 4.2.

3.1.2 | Per‐base expression score

Using per‐base expression annotations aids in determining if a variant

occurs in a biologically relevant exon and helps deprioritize variants

unlikely to impact gene function (Abou Tayoun et al., 2018). The

gnomAD browser displays the mean proportion expressed across

transcripts (pext) score, based on GTEx v7 data from 800 individuals

(GTEx Consortium, 2015). The pext score is unique in providing a

normalized expression value for each position in a gene. By doing so,

pext allows quick visualization of the mean expression of exons

across a gene either as an aggregate score including all tissues

(Figure 3:11, blue track), or separated across 38 different tissues by

selecting “show tissues” (Cummings et al., 2020). The NSD1 gene

page demonstrates the applicability of pext by occurrence of pLoF

variants in gnomAD individuals in low pext regions and, to a larger

extent, a lack of pathogenic ClinVar variants in the same regions

(Figure 3:12). Of note, pext is based on adult postmortem tissue and

may not accurately represent genes with differential expression

during development (GTEx Consortium, 2015). The use of pext in

variant interpretation is explored under Section 4.3.

3.1.3 | Variant tracks and the variant table

The gene‐based overview of ClinVar variant distribution can be

viewed on the gene page (pathogenic/likely pathogenic in red, var-

iants of uncertain significance and conflicting interpretation in or-

ange, and benign/likely benign in blue). This track shows all coding

ClinVar variants (and 75 base pairs surrounding the exons) irrespec-

tive of whether they are found in gnomAD, with an option to view

only ClinVar variants present in gnomAD (Figure 3:13). By expanding

the ClinVar track (Figure 3:14), the variant type is indicated by shape

and the clinical significance by color. This allows for visualization of

patterns that can inform variant classification such as identifying

genes where there is a predominant type of pathogenic variation

(LoF or missense variation) or regional clustering of missense

variation (hot spot). NSD1 (Figure 3) displays clear enrichment of

pathogenic (red) pLoF (X) variants, consistent with haploinsufficiency

of NSD1 resulting in Sotos syndrome. There are also pathogenic

missense variants (red triangles) that cluster within a portion of NSD1

with evidence of regional missense constraint, harboring the SET and

PWWP domains (Figure S3).

The gnomAD variant track shows the distribution of variants

along the gene, with the height of the oval scaled by allele frequency

(Figure 3:15 and 3:16). Underneath this track there are filtering op-

tions for visualizing one or more types of variants (Figure 3:17). The

upper track displays the variants matching the selections across the

exons ±+75 surrounding base pairs, in this example, filtered to only

include pLoF variants in NSD1 (Figure 3:15); the lower track displays

the variants visible in the variant table to help with orientation within

the gene (Figure 3:16). Further, a variant of interest can be high-

lighted using the search box (Figure 3:18), which assists inspection of

pext score and ClinVar variants overlapping the gnomAD variant of

interest.

The variant table lists all variants in coding exons including 75

base pair surrounding each exon in a gene, sorted by genomic posi-

tion (Figure 3:19, Variant ID). The most severe consequence across

transcripts is noted in the HGVS Consequence column. When the

most severe consequence occurs in a transcript that is noncanonical,

the HGVS nomenclature is denoted with a † symbol. The variants in

the table can be filtered by variant effect, exomes or genomes, and

SNV or indels, and there is also an option to include variants that did

not pass gnomAD quality control; however, these variants should be

interpreted with caution (Figure 3:20). Configuring and reordering the

variant table (Figure 3:21), and sorting by column values of interest is

also possible, for example, including pext score for each variant site.

Some pLoF variants will have a LoF curation verdict and warning flags

noted in the table (Figure S4). More information about LOFTEE and

the flags it generates as well as the manual LoF curation results that

are present for a subset of variants and genes, can be found by

hovering over these flags, or on the variant page. Furthermore, the

customized variant table can be downloaded as a comma separated

values (CSV) file for local analysis (Figure 3:22).

3.2 | The variant page

Searching for a variant in the search bar (Figure 3:1) or selecting a

variant in the variant table, navigates to the variant page. The variant

page displays annotations and summary statistics for a specific var-

iant as well as links to external resources reporting information on

that variant including dbSNP (Sherry et al., 2001), UCSC (Kent

et al., 2002), and ClinVar (Landrum et al., 2018) (Figure 4:1). Any

concerns or questions regarding the validity of a specific variant or its

annotations can be submitted via the feedback link (Figure 4:2), such

as a variant that passes QC but appears to be a sequencing artifact or

variants though to be associated with severe, penetrant, early‐onset

dominant disease.
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3.2.1 | Allele frequency and allele count

Display of robust allele frequencies across the database (global) and

within continental populations is a main feature of gnomAD. An

overview of the allele frequencies, including the filtering allele

frequency (FAF), of a variant is found at the top of every variant

page together with information on variant quality control filters

(Figure 4:3). The population frequency table (Figure 4:4) contains

allele frequency information from five continental populations

(African/African American, East Asian, European, Latino, and South

Asian), two demographically distinct populations (Ashkenazi Jewish

and Finnish), Middle Eastern (v3 only), and any remaining un-

categorized (Other) samples. Some subcontinental populations are

available (Figure 4:5) and differ between gnomAD releases. The po-

pulation frequency table provides an opportunity to identify enrich-

ment of variants within populations, in this example 29 of 34

heterozygous carriers are from the South Asian population. Allele

frequency is calculated by dividing allele count by allele number,

hence, allele frequency represents the frequency of confidently se-

quenced haplotypes that carry the allele in question (because coverage

and sequencing quality varies across the genome, the allele number

can differ substantially between positions). Allele frequency is not

equivalent to the percentage of individuals that carry the allele, but is

a suitable value for expressing the frequency of a variant in the

general population. The number of individuals carrying a variant will

depend on the number of heterozygous and homozygous individuals

but can be calculated from the data provided in the variant table. Of

note, the allele number (number of chromosomes genotyped) is cal-

culated on the dataset where the variant is identified, so it will be

lowest for a variant that is identified in v2 genomes only and highest

if present in both v2 exomes and genomes. Presence in v2 genomes

only is the most common reason for low allele number and it is not a

cause for concern. The regional coverage should be investigated by

looking at allele numbers of proximal variants in the variant table

(Figure 3:19) and review of the coverage data (Figure 3:3 and 3:4).

The dataset menu (Figure 4:6) provides the opportunity to ex-

plore allele frequency in specific subsets of gnomAD (non‐cancer,

non‐neuro, non‐TOPMed, control, and non‐v2). The control subset

consists of individuals reported as controls in common disease stu-

dies or included from a biobank, but these individuals may still have

medical conditions. For example, someone who participates as a

control in a type 2 diabetes study could have a past history of, or in

the future develop cancer or neuropsychiatric disease and still be

F IGURE 4 The gnomAD variant page, displaying the NSD1
missense variant 5‐176562246‐A‐G, p.Met48Val
(NM_022455.5:c.142A>G) as an example. Includes variant level
information and site specific metrics. Some highlighted features are:

(1) external resources and (2) variant feedback forms; (3) allele
frequency summary table with filtering allele frequency; (4)
population frequency table and (5) visualization of subcontinental
populations; (6) navigating datasets; (7) liftover link for gnomAD v3
and (8) visualization of v3 non‐v2 dataset; (9) age data; (10)
genotype/depth/allele balance for heterozygotes and (11) site quality
metrics; (12) read data and (13) the option to load read data for
additional individuals
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included in the control subset. This is one reason that these subsets

should not be used as a control set in common disease studies (fur-

ther discussed in Section 4.1). While we expect individuals with se-

vere early‐onset disease to be heavily depleted from gnomAD,

individuals with conditions that would not prohibit participation in

common disease research are likely included at mildly depleted or

similar levels to the general population, particularly for phenotypes

like infertility, vision and hearing impairment, and conditions with late

onset or reduced penetrance (Gudmundsson et al., 2021). It can be

useful to investigate the allele count across the database for rare

variant analysis (Figure S1 and Table S2) by using the liftover link

(Figure 4:7) and the non‐v2 subset in v3 to resolve any overlaps

between versions (Figures 1c and 4:8). In this example, in addition to

the 34 carriers in v2, 12 carriers of the NSD1 p.Met48Val

(NM_022455.5:c.142A>G) variant are found in v3 of which seven

individuals are unique to v3, adding up to a total of 41 heterozygous

carriers across the entire gnomAD dataset. The use of allele fre-

quency in variant interpretation is explored under Section 4.1.

3.2.2 | Age data

Age data is available for a subset of individuals. While it is defined as

the last known age, for some cohorts it is the age at enrollment

(Figure 4:9). The data is displayed as a distribution including the age

of carriers and the age of all individuals in the dataset (striped), co-

lored by sequencing method (blue for exome, green for genome). For

variants in genes associated with later onset conditions, age data can

reveal if a carrier is of an age younger than onset of disease, which

might explain the presence of a disease‐variant in gnomAD. In gen-

eral, age data is of limited use in variant interpretation given the lack

of available phenotype data on these individuals.

3.2.3 | Quality control

Variants reported in gnomAD have passed robust quality control

including hard filters and a random forest model for assessing both

the quality of the variant and the site. However, presence of artifacts

is inevitable in any reference database and careful review of in-

dividual variants is important, especially in rare disease analysis.

While sequence artifacts occur relatively evenly across the genome,

biologically important sequences are depleted for natural variation,

which results in a relative enrichment of artifacts compared to natural

variation in disease‐associated regions (Gudmundsson et al., 2021).

Genotype quality metrics (Figure 4:10) provide the genotype

quality, read depth, and allele balance for all individuals genotyped at

the site of the variant. Of note, the number of samples represented in

the histograms may be discordant with the variant table as the graph

includes individuals filtered by hard filters (depth < 10, genotype

quality < 20, minor allele balance < 0.2 for alternate alleles of het-

erozygous genotypes). When examining a variant possibly associated

with a severe pediatric disorder, low genotype quality may suggest

the variant is an artifact or skewed allele balance might suggest the

variant is an artifact or mosaic in the gnomAD individual. Quality

concerns can serve as an explanation for why the variant is observed

in gnomAD, and can strengthen a disease‐association hypothesis,

particularly if the presence of a variant is Sanger confirmed in a pa-

tient. Site quality metrics used in the random forest model, such as

Fisher strand bias, are also available (Figure 4:11).

Read data is available for most variants on the browser, and

examining the variant site using the Integrative Genomics Viewer

(IGV) is an important part of variant evaluation (Figure 4:12 and

4:13). Read data should be reviewed for evidence of strand bias,

skewed allele balance, indications of mapping issues (multiple

variants in the region), drop in coverage, and nearby variants that

may affect the interpretation. For detailed information on how to

use IGV we refer to the IGV User Guide and previous articles

(Robinson et al., 2017). Not all CRAMS were available during

gnomAD production to generate read data. For variants where read

data is missing from the variant page of one version of gnomAD (v2,

v3, and ExAC), we suggest investigating if they are represented in

another version.

4 | VARIANT INTERPRETATION USING
GNOMAD

The gnomAD dataset is used in the majority of rare disease analysis

pipelines in both diagnostic and research settings around the world

(Figure 1b). The American College of Medical Genetics and Genomics

(ACMG) and Association for Molecular Pathology (AMP) have defined

standards for variant classification (Richards et al., 2015), providing

rigorous guidance for the evaluation and aggregation of variant evi-

dence, including the use of reference databases such as gnomAD.

They defined the terminology for variant classification including five

categories: benign, likely benign, uncertain significance, likely patho-

genic, and pathogenic. Further, they defined four major areas in which

variants can be awarded with evidence that determines their final

classification including: population, computational, functional, and

segregation data.

4.1 | Allele frequency in variant interpretation

The vast majority of pathogenic variants are rare, hence identifying

rare variants is an essential step in Mendelian analysis. It is important

to remember that most rare variants are not pathogenic and rarity is

consistent with, but not sufficient for, determining pathogenicity

(Figure 2a,b). Variants that are absent from gnomAD, or present at a

lower frequency than expected (particularly for recessive disease

variants where unaffected carriers are expected), were initially con-

sidered a moderate level of evidence for pathogenicity (PM2)

(Richards et al., 2015). However, rarity or absence in population da-

tabases has been recommended to be downgraded to supporting

evidence by the ClinGen Sequencing Variant Interpretation (SVI)
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Working Group, given that most unrepresented variation is benign

and reference population databases are far from saturation for most

variation types (Karczewski et al., 2020).

Population evidence for pathogenicity can also be applied for

variants that are more prevalent in affected individuals compared to

controls (PS4). There have been some attempts to use gnomAD as a

control population in formal association studies, but in general this is

not recommended. Challenges to this approach include the lack of

information about case numbers for any specific disease in gnomAD,

the inability to correct for confounders such as population stratifi-

cation (which would require individual‐level data access), as well as

differences in the technical processing and QC of data between cases

and controls which can lead to erroneous associations (Karczewski

et al., 2019).

To most effectively filter out common variants, we recommend

using the popmax allele frequency, defined as the population max-

imum allele frequency in the continental populations (African/African

American, East Asian, European, Latino/Admixed American, and

South Asian). Generally, if a variant is common in one population, it

can be assumed to be benign across all populations. Consideration

should be taken if studying a condition that is much more common in

a specific population.

Following ACMG variant classification guidelines, stand‐alone

benign (BA1) evidence should be applied to variants with an allele

frequency ≥5%, unless the variant was previously noted to be pa-

thogenic, as high allele frequency can be a result of low penetrance in

monogenic disease genes (Ghosh et al., 2018). Hypomorphic variants

in particular may have a higher allele frequency. An allele frequency

of >1% is considered strong evidence that the variant is benign (BS1);

however, certain recessive disorders can have common pathogenic

variants that rise above this threshold (e.g., Phe508del in CFTR as-

sociated with Cystic Fibrosis, OMIM #219700); these well‐

established variants can often be identified using ClinVar. There are

occasions when 1% is a too conservative threshold, particularly for

severe, dominant disorders. Whiffin et al. (2017) has developed a

more refined frequency filtering approach (http://cardiodb.org/

allelefrequencyapp/). A maximum credible allele frequency for the

specific condition is defined using information about the prevalence,

inheritance mode, penetrance, and genetic architecture (accounting

for maximum genetic or allelic contribution). As gnomAD is a sam-

pling of the general population, a FAF is generated from the popmax

allele frequency to adjust for sampling variance (Figure 4:3). If the

FAF is higher than the maximum credible population allele frequency,

then benign evidence (BS1) can be applied.

Estimating allele frequency in genes affected by clonal hema-

topoiesis has been a particular challenge (Carlston et al., 2017;

Karczewski et al., 2020) as somatic variants that increase pro-

liferation of the hematopoietic lineage can rise to high allele frac-

tions (Jaiswal et al., 2014). A warning has been added to the gene

page for genes where this phenomenon has been shown to occur

(i.e., ASXL1, DNMT3A, TET2). Variants in these genes should be

interpreted with caution in any reference population database

(Jaiswal et al., 2014).

4.2 | Constraint scores in variant interpretation

Constraint scores are useful to indicate when specific types of var-

iation are depleted in a gene. For example, haploinsufficient genes

often have a high pLI score and a low LOEUF score; therefore pLoF

variants occurring within LoF‐constrained genes are of high interest

(Bamshad et al., 2019). Choice of score may be influenced by

whether the analysis is more suited to a continuous (LOEUF) or

dichotomous‐like (pLI) metric (Figure 2c). When a cut off is being

applied, we recommend using pLI ≥ 0.9 (3060 genes in v2) or

LOEUF < 0.35 (2968 genes in v2). While many LoF constrained genes

are associated with Mendelian disease to date, 68% (2071 of 3060)

of LoF constrained genes (pLI ≥ 0.9) are not yet linked to a phenotype

in humans.

Genes with a missense Z‐score ≥ 3.1 are significantly depleted

for missense variation. Unlike LoF variation, there may be only a

region of a gene that is intolerant for missense variation rather than

the entire gene, often overlapping with a protein domain. Reviewing

the ClinVar track for pathogenic variants along with the regional

missense constraint track (Figure S3) can help identify hotspots or

domains without benign variation, providing moderate evidence to-

wards variant pathogenicity (PM1) (Harrison et al., 2019). For mis-

sense constrained genes with many pathogenic missense variants,

this can be considered supporting evidence of pathogenicity (PP2)

(Harrison et al., 2019). At the other end of the missense variation

spectrum lie genes without evidence of missense constraint (Z‐scores

around zero or less) and where only truncating variants have been

reported as pathogenic, which is considered as supporting benign

evidence for classification (BP1) for missense variants.

In rare disease analysis, careful attention should be paid to rare

variation in constrained genes, both in prioritizing variants and also in

identifying novel disease–gene relationships. There are some caveats

that are worth noting. Constraint is more commonly seen for domi-

nant disease genes, particularly for phenotypes that are absent or

depleted in gnomAD. It is not as informative in the interpretation of

recessive disease, as carriers of recessive disease variants will be

present in gnomAD. As constraint is due to negative selection, var-

iation that results in a phenotype later in life, particularly in post-

reproductive years, may not be depleted in gnomAD. For example,

LoF variants in the BRCA1 gene are strongly correlated with risk for

breast and ovarian cancer, yet BRCA1 does not show evidence of

constraint for LoF variation, as the phenotype presents post‐

reproduction and also is of lower penetrance in males.

A full list of all constraint metrics is available on the gnomAD

Downloads page (https://gnomad.broadinstitute.org/downloads#v2-

constraint) including genome‐wide pLI and LOEUF ranking of

all genes.

4.3 | Per‐base expression in variant interpretation

Proportion expressed across transcripts (pext) scores can be used to

examine the per‐base expression pattern across transcripts and
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exons as well as in a tissue of interest (Cummings et al., 2020). Re-

gions with low pext scores are likely of less biological importance.

While the pext score is helpful in the interpretation of any coding

variant, it can be particularly useful when deciding whether to apply

the very strong evidence for a pLoF variant in a gene where LoF is a

known mechanism of disease (PVS1). A pext score < 0.2 indicates that

a pLoF at that site may not be of biological relevance and PVS1 may

not apply. It is important to consider the relative value compared to

the mean and maximum pext value of the gene. For example, if a

variant falls in an exon with a pext of 0.1, but the gene average is 0.2

(such as in the setting of expression of a noncoding transcript), the

data does not provide any information for interpretation, and PVS1

may still apply. For conditions impacting specific tissues, the pext

score for that tissue can be reviewed, as transcript expression be-

tween tissues can differ. Of note, pext score is based on adult tissue

and the developmental expression profile may be different.

Additionally, particularly long genes can be affected by the 3′ bias of

polyA tail transcriptome sequencing to a degree which is not always

adequately corrected for in pext scores, and genes with this pattern

should be interpreted with caution (e.g. DMD).

4.4 | Variant co‐occurrence

The gnomAD variant co‐occurrence feature allows investigation of the

statistical likelihood of two variants occurring on the same or different

haplotypes in individuals in gnomAD. This can be helpful in rare disease

analysis to deprioritize compound heterozygous genotypes that are

seen in the general population or to predict phasing where only a

proband is available for sequencing and two rare variants are observed

within a gene. The co‐occurrence can be assessed if both variants are in

gnomAD exomes, appear in the same gene, have an allele frequency

≤5%, and are coding, in the splice region, or in the 5′ or 3′ untranslated

regions (UTRs). When two variants co‐occur in individuals in gnomAD

more often than expected based on population frequencies, then the

variants are predicted to be on the same haplotype (Figure S5A). If two

variants co‐occur in some individuals in gnomAD but only at the ex-

pected rate, then these variants are predicted to be on different hap-

lotypes, and it is unlikely that this variant combination is deleterious for

phenotypes that are not expected to be seen in gnomAD (Figure S5B).

If two variants are found in gnomAD but do not co‐occur in any in-

dividuals in gnomAD, then they are likely on different haplotypes but

no information would be available about the potential impact of a

compound heterozygous genotype. These estimates will be more ac-

curate when considered within a specific population. A detailed de-

scription of the varant co‐occurrence feature is found in the News

section (https://gnomad.broadinstitute.org/news).

4.5 | gnomAD flags and warnings

The gnomAD browser provides flags and warnings displayed in the

variant table and on the variant page to highlight variant details

important for interpretation. Variants with flags or warnings should

not be automatically discounted but we advise careful consideration

of whether these may impact the analytical validity or the effect of

the variant.

4.5.1 | Multinucleotide variants (MNV)

When two variants in the same codon are present on the same

strand, the variant consequence may be misrepresented as if each

variant type is present independently, rather than interpreting the

variant combination. The assumption of independence is present in

almost all current variant annotation pipelines. MNVs that occur

within a codon are annotated in gnomAD v2 data to aid interpreta-

tion of their combined effect (Wang et al., 2020). For example, two

variants independently annotated missense variants could result in a

different missense variant when interpreted in combination

(Figure S6). Specific information about the MNVs identified in gno-

mAD can be found on the MNV page, including the number of in-

dividuals who have the MNV versus either of the SNVs.

Frame restoring indels (e.g., a 4 base pair deletion and nearby

5 base pair deletion on the same haplotype) are not annotated

in the gnomAD browser. However, these are an important

source of rescues and can be identified by inspecting the read data

(Figure S7).

4.5.2 | LOFTEE and manual LoF curation

The LOFTEE package was developed to complement pLoF annota-

tions by variant effect predictor (VEP) and filter variants that are

unlikely to result in LoF. Variants are determined as low‐confidence if

predicted to not result in LoF due to criteria such as terminating at

the 3′ end of a gene or affecting splicing of the UTR. The remaining

variants are categorized as high‐confidence (Karczewski et al., 2020).

Around 14% of high‐confidence pLoF variants in gnomAD have ad-

ditional flags (i.e., single exon genes, poor conservation by Phyloge-

netic Codon Substitution Frequencies (PhyloCSF) (Lin et al., 2011),

NAGNAG splice acceptor sites, and noncanonical splice sites) that

can be found on the variant page together with the VEP information.

The additional flags differ from those variants that are filtered as low‐

confidence pLoF as they generally relate to the properties of in-

dividual transcripts or exons and can be overruled by gene‐specific

knowledge.

For a subset of pLoF variants, manual curation of the effect of

pLoF variants has been performed. The results are displayed below

the VEP annotations on the variant page and in the variant table on

the gene page (Figure S4). The flags and manual curation verdicts will

often impact whether PVS1 can be applied; however, careful review

is essential in determining if these flags change the interpretation of

the variant in a specific context. Of note, pLoF variants suggested to

not result in LoF or pLoF variants with flags could still be pathogenic,

as LoF might not be the only mechanism of disease.
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4.5.3 | Low complexity regions (LCR)

Low complexity sequences are enriched for artifacts. The LCR flag

highlights variants identified in these regions to allow a more careful

review (Morgulis et al., 2006). The allele frequency of variants in LCRs

might be skewed because of enrichment for artifacts, and population

frequency evidence (PM2/BA1/BS1/BS2) should be applied cau-

tiously. An additional type of LCR that is often not flagged in gno-

mAD are homopolymer runs, which also show an enrichment of

sequence artifacts. Skewed allele balance can provide evidence that

the variant is an artifact in the population data. However, pathogenic

variants also commonly occur here. If the variant is Sanger confirmed

in the patient, it should not be discounted as causal despite being

present at an apparent appreciable frequency in population data.

4.5.4 | Variant page warnings

There are two main warnings that may be seen on the variant page

underneath the header. First, variants that are covered in less than

50% of individuals are highlighted since variant allele frequencies

may be inaccurate (Figure S8). These variants often fall in regions that

are difficult to sequence with current exome and genome methods.

Coverage can also vary because of differences in exon capture be-

tween different sequencing platforms. If a variant is better covered in

the genome data, using v3 allele frequencies might be more

appropriate.

Second, heterozygous variants with a high proportion of alter-

nate reads (allele balance for the variant is ≥ 90%) are highlighted

(Figure S9). Heterozygous variants with inflated alt‐reads are likely

homozygous variants called as heterozygotes due to contamination

that affects the variant calling likelihood models. This depletion of

homozygous calls can incorrectly deflate the allele frequencies

(Karczewski et al., 2019).

5 | LIMITATIONS OF REFERENCE
POPULATION DATABASES

The gnomAD database is a useful, publicly available collection of

human sequence data, but there are a number of caveats that are

important to note when drawing inferences about variant patho-

genicity from this resource (or, indeed, most other existing variant

databases).

It is important to note that some individuals with Mendelian

disease may still be included in the datasets. We suggest caution

about excluding variants as disease candidates when seen in one or a

few individuals. Also, as demonstrated in Figure 2a,b, and prior work

(Karczewski et al., 2020), we are still far from representing all possible

variation, and a variant's absence from gnomAD is consistent but far

from sufficient evidence for its involvement in disease.

Phenotype and other individual‐level data is not available for

individuals included in the aggregate gnomAD data. This is better

accessed through a biobank or other studies, such as the UK Biobank,

BioMe, FinnGen, or All of Us. Because individuals known to have

Mendelian phenotypes have been removed, gnomAD would not be

useful to try to match for patient phenotype. Other resources for this

type of matching are available, including Genotype 2 Mendelian

Phenotype (Geno2MP) and VariantMatcher, which are aggregated

databases of rare disease sequence data with associated HPO terms

and the ability to contact the researcher.

The over‐representation of European participants in genetics

studies is reflected in the database. There is poor representation of

many communities, including African, Middle Eastern, and Ocea-

nian populations, leading to patients from these communities

having more rare variants of uncertain significance. Improving di-

verse representation of populations is of high priority, with re-

sources dedicated to reprocessing available datasets for inclusion

in gnomAD.

Despite extensive quality control, gnomAD (like any large

genomics resource) contains sequencing and annotation artifacts, and

we have suggested approaches to evaluate variant quality.

6 | RESOURCES

Additional features are frequently released on the gnomAD browser.

Extensive feature releases are described in the News section (https://

gnomad.broadinstitute.org/news) and updates to the browser are

detailed in the Changelog (https://gnomad.broadinstitute.org/news/

changelog). Additionally, updates are announced by @gnomAD_pro-

ject on Twitter.

On the browser, additional information is available via the “?”

buttons located throughout the gnomAD pages and on the Help page

(https://gnomad.broadinstitute.org/help), or the team can be con-

tacted directly at gnomAD@broadinstitute.org. Further, the UCSC

genome browser has a gnomAD track that allows interactive view of

gnomAD metrics, including features such as allele frequency, con-

straint scores, and pext.

For deeper understanding about the gnomAD dataset beyond

what is covered in this review, primary gnomAD publications are

open access and listed on the Publications page on the browser.

A complement to this review is a video tutorial on using the gnomAD

browser presented at the H3Africa ClinGen Rare Disease Workshop

(https://youtu.be/XdjjHdiVlrE, February 2021) or the Broad Institute

Primers on Medical and Population Genetics (available on the Broad

Institute's YouTube channel).

7 | CONCLUDING REMARKS

The gnomAD resource illustrates both the power and the challenges

of interpreting human biology using large‐scale genomic datasets.

The sheer size of gnomAD makes it possible to obtain accurate

estimates of allele frequency extending down to incredibly rare

variation, and to explore the patterns of variation across genes and
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regions of genes. This power has proven invaluable for variant in-

terpretation in patients with rare genetic disorders, and has also

empowered a wide range of scientific applications including com-

parison of the mutational intolerance of mouse and human genes

(Dickinson et al., 2016), estimation of selection coefficients (Cassa

et al., 2017), assessment of the relative evidence for reported dis-

ease genes (Walsh et al., 2017), and determination of the pene-

trance of dominant disease variants (Minikel et al., 2016). The

gnomAD database has also aided in the discovery of genes asso-

ciated with many diseases, including neurodevelopmental and

congenital heart disorders (The Deciphering Developmental Dis-

orders Study 2015; Jin et al., 2017; Kaplanis et al., 2020; Kosmicki

et al., 2017).

Future releases of gnomAD will further increase the size and

scope of the resource, leading to improved power for all downstream

applications. New releases of structural variation calls will increase

the resolution of analysis for large deletions, duplications, inversions,

and complex rearrangements, while the next exome release

(expected to exceed 500,000 individuals, mapped to GRCh38) will

dramatically enhance power for assessing coding allele frequency as

well as constraint against gene disruption and regional missense

variation. Over time we expect that improvements in variant‐calling

methods for currently underrepresented variant types, such as repeat

expansions and complex structural rearrangements, will provide in-

creasingly accurate frequency estimates for these variants and sup-

port the discovery of additional pathogenic alleles.

Finally, a major ongoing focus on increasing the representation of

diverse ancestries, both from the gnomAD aggregation effort, and

from the broader human genomics community, will be needed to

improve the applicability of this database to currently under-

represented populations. This effort will require greater efforts to

ensure these communities are included in global genomics projects,

as well as ensuring that the resulting data are shared with aggregation

efforts in a manner that balances accessibility with respect for the

wishes of communities and individuals, especially for Indigenous

peoples (Hudson et al., 2020). Increased representation of all com-

munities will decrease the number of variants of uncertain sig-

nificance in patients from currently underrepresented ancestries,

while also improving the power of this resource for all communities.

WEB RESOURCES

ClinGen SVI https://clinicalgenome.org/working-groups/sequence-

variant-interpretation/

UCSC genome browser gnomAD tracks GRCh37 http://genome.

ucsc.edu/cgi-bin/hgTrackUi?hgsid=1198963947_L5aQu0WaVilB3n

3k3QPWX9OuYAOV%26db=hg19%26c=chr6%26g=gnomadSuper

UCSC genome browser gnomAD tracks GRCh38 http://genome.ucsc.

edu/cgi-bin/hgTrackUi?hgsid=1198963947_L5aQu0WaVilB3n3k3QP

WX9OuYAOV%26db=hg38%26c=chr6%26g=gnomadVariants

gnomAD links in the manuscript

https://gnomad.broadinstitute.org/about

https://gnomad.broadinstitute.org/

https://gnomad.broadinstitute.org/downloads#v2-constraint

https://gnomad.broadinstitute.org/news

https://gnomad.broadinstitute.org/news/changelog

https://gnomad.broadinstitute.org/help

https://gnomad.broadinstitute.org/publications

https://gnomad.broadinstitute.org/downloads

NIH Statement on Sharing Research Data https://grants.nih.gov/

grants/guide/notice-files/not-od-03-032.html

Hail https://hail.is/

ClinVar https://ncbi.nlm.nih.gov/clinvar/

IGV user guide https://software.broadinstitute.org/software/igv/

UserGuide

gnomAD educational video https://youtu.be/XdjjHdiVlrE
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