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Abstract

We consider the problem of learning to simplify medical texts. This is important because 

most reliable, up-to-date information in biomedicine is dense with jargon and thus practically 

inaccessible to the lay audience. Furthermore, manual simplification does not scale to the 

rapidly growing body of biomedical literature, motivating the need for automated approaches. 

Unfortunately, there are no large-scale resources available for this task. In this work we introduce 

a new corpus of parallel texts in English comprising technical and lay summaries of all published 

evidence pertaining to different clinical topics. We then propose a new metric based on likelihood 

scores from a masked language model pretrained on scientific texts. We show that this automated 

measure better differentiates between technical and lay summaries than existing heuristics. We 

introduce and evaluate baseline encoder-decoder Transformer models for simplification and 

propose a novel augmentation to these in which we explicitly penalize the decoder for producing 

‘jargon’ terms; we find that this yields improvements over baselines in terms of readability.

1. Introduction

The need for accessible medical information has never been greater. A Pew Research survey 

of American’s online health habits in 2013 revealed that “one in three American adults have 

gone online to figure out a medical condition” (Fox and Duggan, 2013). Given the rise of 

medical misinformation on the internet (Ioannidis et al., 2017), accessibility has become an 

increasingly urgent issue (World Health Organization, 2013; Armstrong and Naylor, 2019). 

However, sources that provide accurate and up-to-date information, including scientific 

papers and systematic reviews (Chalmers et al., 1995), are often effectively inaccessible to 

most readers because they are highly technical and laden with terminology (Damay et al., 

2006).
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One potential solution to this problem is text simplification, i.e., editing documents such 

that they are accessible to a wider audience, while preserving the key information that 

they contain. Although manual simplification is too expensive to feasibly apply at scale, 

automatic text simplification (Siddharthan, 2014; Alva-Manchego et al., 2020) provides a 

potential means of rendering a large volume of specialist knowledge more accessible.

Large-scale data-driven simplification systems have mostly been trained on Wikipedia (Zhu 

et al., 2010; Woodsend and Lapata, 2011; Coster and Kauchak, 2011) and news (Xu et al., 

2015), and focus on sentence simplification (Wubben et al., 2012; Wang et al., 2016; Xu et 

al., 2016; Zhang and Lapata, 2017; Kriz et al., 2019; Dong et al., 2019; Alva-Manchego et 

al., 2020); on the other hand, medical text simplification is resource poor. Recent work has 

involved constructing sentence-aligned data automatically using monolingual text alignment 

methods (Adduru et al., 2018; Van den Bercken et al., 2019), but this process is noisy and 

constrains the task to sentence-level simplification.

In this work we explore new data and modern conditional text generation models (Lewis 

et al., 2020) to simplify medical documents. We introduce a dataset of paired (technical, 

simplified) texts derived from the Cochrane Database of Systematic Reviews, which is 

comprised of evidence syntheses on a wide range of clinical topics. Critically, each review 

includes a plain-language summary (PLS) written by the authors. PLS are written directly 

from the full reviews with their own structure and guidelines; they are not simplified 

versions of the corresponding technical abstracts of the reviews, nor are they summaries of 

the abstracts.

However, we observe that portions of the PLS can be considered simplifications of 

analogous sections in the abstracts, that is, they contain roughly the same content but involve 

simplification operations such as paraphrasing, word/sentence deletion, and summarization. 

We heuristically derive 4459 such pairs of sections (or paragraphs) of technical–plain 

English bitexts. We provide an excerpt of the dataset we have constructed in Table 1.

This data allows us to explore characteristics of simplified versions of technical medical 

texts. We show that the differences in traditional readability metrics, such as Flesch-Kincaid 

(Kincaid et al., 1975) and Automated Readability Index (Senter and Smith, 1967), are small. 

Instead, the differences are better captured using large-scale pretrained masked language 

models, and this reveals that there is more to the language difference than the shallow cues 

such as sentence and word lengths that traditional readability metrics focus on.

We present baseline methods for automatic text simplification over this data and perform 

analyses that highlight the challenges of this important simplification task. We find that 

when naively fine-tuned for the task, existing encoder-decoder models such as BART (Lewis 

et al., 2020) tend to prefer deletion over paraphrasing or explaining, and are prone to 

generating technical words. We propose a new approach to try and mitigate the latter issue 

by imposing a variant of unlikelihood loss (Welleck et al., 2019) that explicitly penalizes 

the decoder for production of ‘technical’ tokens. We show that this yields improvements in 

terms of readability with only a minor tradeoff with content quality.
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In sum, this work takes a step towards paragraph-level simplification of medical texts 

by: (1) introducing a sizable new dataset, (2) proposing and validating a new masked 

language model (MLM)-based metric for scoring the technicality of texts, (3) analyzing 

and understanding the style of plain language in this important domain, and (4) presenting 

baselines that exploit a variant of unlikelihood training to explicitly penalize models for 

producing jargon. We release our code and data at https://github.com/AshOlogn/Paragraph-

level-Simplification-of-Medical-Texts.

2 Related work

Recent efforts on data-driven text simplification methods have tended to rely on two 

resources: the Wikipedia-Simple Wikipedia aligned corpus (Zhu et al., 2010; Woodsend 

and Lapata, 2011; Coster and Kauchak, 2011) and the Newsela simplification corpus (Xu 

et al., 2015). Yet, there is an urgent need to simplify medical texts due to health literacy 

levels (World Health Organization, 2013). However, due to a lack of resources with which 

to train model-based simplification systems in this domain, past work has tended to focus 

on lexical simplification (Damay et al., 2006; Kandula et al., 2010; Abrahamsson et al., 

2014; Mukherjee et al., 2017). Recently, Adduru et al. (2018) and Van den Bercken et al. 

(2019) introduced sentence-aligned corpora at the scale of thousands of sentence pairs. In 

contrast to our corpus, these datasets were automatically derived using paraphrase mining 

or monolingual alignment processes. Furthermore, as these are exclusively sentence corpora, 

they limit the set of potential approaches to just those that operate over sentences. Grabar 

and Cardon (2018) created a simplification corpus for medical texts in French, in which a 

small subset of the text pairs are manually sentence-aligned, resulting in 663 sentence pairs, 

112 of which are also from Cochrane.

With respect to modeling, recent work has focused on sentence simplification, treating it 

as a monolingual machine translation task (Wubben et al., 2012; Wang et al., 2016; Xu et 

al., 2016) using encoder-decoder models (Zhang and Lapata, 2017; Kriz et al., 2019; Dong 

et al., 2019). In the medical domain, existing systems tend to adopt lexical and syntactic 

simplification (Damay et al., 2006; Kandula et al., 2010; Llanos et al., 2016). Research 

on document simplification has been sparse; to the best of our knowledge, the few prior 

works on this in English have focused on analysis (Petersen and Ostendorf, 2007), sentence 

deletion (Woodsend and Lapata, 2011; Zhong et al., 2020), and localized explanation 

generation (Srikanth and Li, 2020). This work proposes and evaluates an encoder-decoder 

model for paragraph-level simplification.

3 Technical abstracts vs. plain-language summaries

We compiled a dataset of technical abstracts of biomedical systematic reviews and 

corresponding PLS from the Cochrane Database of Systematic Reviews, which comprises 

thousands of evidence synopses (where authors provide an overview of all published 

evidence relevant to a particular clinical question or topic). The PLS are written by review 

authors; Cochrane’s PLS standards (Cochrane, 2013) recommend that “the PLS should be 

written in plain English which can be understood by most readers without a university 
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education”. PLS are not parallel with every sentence in the abstract; on the contrary, they are 

structured heterogeneously (Kadic et al., 2016).

3.1 Data compilation

To derive the dataset we scraped the online interface to the database for articles containing 

PLS, extracting the raw text of the technical abstracts and PLS for those that we identified. 

In this way we obtained 7820 pairs after removing problematic links (e.g., HTTP 404 

errors). We also excluded reviews with atypical formatting that would have required 

extensive manual inspection.

On average, PLS are shorter than abstracts (Table 2, ‘raw’). They contain sections different 

from those in the abstracts, emphasize different content, and sometimes contain information 

not in the abstract. We divided documents into those that are split into sections with 

subheadings and those without (henceforth “long-form” summaries); 56% of the data are 

long-form. For the sectioned PLS, headers are quite different from those found in the 

abstracts. The latter adhere to one of the 2 following formats:

1. Background, Objectives, Search Methods, Selection Criteria, Data Collection 

and Analysis, Main Results, Authors’ Conclusions

2. Background, Objectives, Methods, Main Results, Authors’ Conclusions

In contrast, PLS contain a variety of headings, with the most common ones shown below:

background, study characteristics, key results, review question, quality of the 

evidence, search date, quality of evidence, conclusions

Others include questions such as What was the aim of this review? And How up-to-date was 
the review?

Manual inspection revealed that the results, discussion, and conclusion sections of abstracts 

and summaries tended to occur in parallel. This motivated us to extract aligned subsets 

of abstracts and summaries to compose our dataset. More specifically, we determined the 

approximate location of the section describing studies and results in each text and kept 

everything from that point forward.

Therefore, in the abstracts we kept the text from the Main Results section onward. For the 

sectioned PLS we kept every section after and including the first that contained one of the 

following substrings: find, found, evidence, tell us, study characteristic. For the long-form 

PLS, we found the first paragraph containing any of the following words within the first 

couple sentences and included that and subsequent paragraphs: journal, study, studies, trial. 
We keep one-paragraph PLS in their entirety. We also exclude instances where the PLS 

and abstracts are drastically different in length, by keeping only instances where the length 

ratio between the two falls between 0.2 and 1.3. Our final dataset comprises 4459 pairs of 

technical abstracts and PLS, all containing ≤1024 tokens (so that they can be fed into the 

BART model in their entirety).
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3.2 Characterizing readability differences Readability metrics.

Designing metrics that reliably capture readability remains an open topic of research. In 

recent years, a host of metrics have been developed that use a wide variety of linguistic 

features to assess readability in a supervised manner. For example, Kate et al. (2010) 

developed a metric based on syntactical, semantic, and language model-based features, 

and Vajjala and Lučić (2018) developed a new readability corpus, on which they trained 

support vector machines to predict text readability. For this medical text simplification task, 

however, we considered a couple established heuristics-based readability metrics due to 

clear domain differences between our Cochrane corpus and those used to train supervised 

readability metrics: the Flesch-Kincaid score (Kincaid et al., 1975) and the automated 

readability index (ARI) (Senter and Smith, 1967), which estimate the educational maturity 

(grade-level) required to comprehend a text. These metrics rely on a combination of shallow 

cues, most notably lengths of words, sentences, and documents.

Table 3 reports the mean grade levels of abstracts and PLS calculated via the above 

metrics. There are small but statistically significant (p < 0.01, paired t-test) differences 

between the abstract and PLS distributions, especially for Flesch-Kincaid. For instance, the 

maximum difference in mean minimum grades (1.5) is achieved by Flesch-Kincaid, and 

the number is only 0.6 with ARI. By contrast, a 3–5 grade level difference was shown 

on the Wikipedia and Britannica simplification datasets (Li and Nenkova, 2015). The high 

gradelevel suggested by standard readability metrics confirms prior studies highlighting that 

these ‘plain language’ summaries of medical systematic reviews remain at higher reading 

levels than those of average US adults (Karačić et al., 2019).

Masked language models.—Despite the small differences in readability metrics, PLS 

do qualitatively seem easier to understand (see Table 1 for an example). This suggests that 

existing measures are incomplete. We propose adopting modern masked language models 

— namely BERT (Devlin et al., 2019) — as another means of scoring the ‘technicality’ of 

text. In particular, when such models are trained on specialized or technical language (e.g., 

scientific articles) we would expect the likelihoods subsequently assigned to ‘jargon’ tokens 

to be relatively high compared to a model trained over general lay corpora, as in the original 

BERT model (Devlin et al., 2019).

Capitalizing on this intuition, we consider two large-scale pre-trained masked language 

models: (1) BERT (Devlin et al., 2019) trained on BooksCorpus (Zhu et al., 2015) and 

English Wikipedia; and (2) SciBERT (Beltagy et al., 2019), trained on a sample of 1.14 

million technical papers from Semantic Scholar (Ammar et al., 2018) (mostly biomedical 

and computer science articles). Inspired by the original training objective for these models, 

we compute a probability score for a document by splitting it into sentences, masking 10 

subsets of 15% of the tokens in each sentence (exempting CLS and SEP), computing the 

likelihoods of the original tokens in the distributions output by the model in each masked 

position, and averaging these probabilities over all the masked subsets and sentences in the 

document. The details are shown in Algorithm 1.
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Algorithm 1

Used to compute a probability score for a text document D given a masked language model 

M. The output of the model returned by a call to FORWARD is a matrix where each row maps 

to a distribution over all the tokens in the vocabulary. The APPEND function adds a value to 

the end of a list.

procedure MASKED-PROB(D, M)

 sents ← SENTENCE-SPLIT(D)

 P ← Initialize empty list

 for i = 1 … |sents| do

  T ← TOKENIZE(sents[i])

  for j = 1 … 10 do

   A ← sample 15% from 1… |T|

   T′ ← T

   for all a ∈ A do

    T′[a] ← [MASK]

   outputs ← FORWARD(M, T′)

   for all a ∈ A do

    prob ← outputs[a][T[a]]

    APPEND(P, prob)

return mean(P)

Figure 1 depicts the distributions of probabilities output by general BERT and SciBERT for 

the abstracts and PLS in our dataset. Both masked LMs induce distributions over instances 

from the respective sets that are clearly different. For example, SciBERT (which yields 

sharper differences) outputs higher likelihoods for tokens comprising the technical abstracts 

than for those in the plain language versions, as we might expect given that this is pretrained 

on technical literature. A paired t-test confirms that these observed differences between the 

abstracts and PLS distributions are statistically significant (with p < 0.01).

Which metric discriminates better?—To better determine how well the proposed 

masked probability outputs discriminate between technical abstracts and PLS, we plot 

receiver operating characteristic (ROC) curves for the outputs of BERT, SciBERT, Flesch-

Kincaid and ARI, coding technical and PLS abstracts as 0 and 1, respectively. The SciBERT 

curve has a higher AUC score (0.70) than the general BERT curve (0.66), indicating that it 

is better at discriminating between plain language and technical abstracts.For this reason, we 

use the SciBERT masked probabilities when analyzing the texts generated by our models.

The AUC score for SciBERT is also higher than that for Flesch-Kincaid, indicating that 

simplicity in PLS can be better captured by probabilistic means than by surface-level 

linguistic cues, and that it is more appropriately viewed as a stylistic difference rather 

than one of readability.This echoes the arguments made by early investigators of readability 

metrics that these measures do not replace more subtle linguistic characteristics, e.g., style 

(Klare, 1963; Chall, 1958).
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3.3 Lexical analysis

We next investigate lexical differences between technical abstracts and PLS. In prior work, 

Gledhill et al. 2019 performed extensive lexical analysis on this corpus by comparing the 

relative frequencies of different part-of-speech n-grams found in the abstracts and PLS. 

Here, we analyze the weights from a logistic regression model that classifies whether a text 

is a technical abstract or a PLS (coding the latter as y = 1); the weights learned by the model 

can be conveniently incorporated into the loss function we use to train our simplification 

model (Section 4.2).

We represent texts as normalized bag-of-words frequency vectors (with a feature for each 

token in the BART vocabulary). We performed 5-fold cross validation on the data and 

observed an average accuracy of 92.7%, which indicated that even this relatively simple 

model is capable of accurately distinguishing technical abstracts from PLS. We also 

evaluated this model on the train-validation split described in Section 4.3. The model 

achieves a very high AUC score of 0.99, indicating that it almost perfectly separates 

abstracts from PLS.

To better understand which kinds of tokens are most associated with technical abstracts and 

PLS, we examined the tokens with the highest-magnitude learned weights in the model, with 

the most negative weights corresponding to tokens indicative of technical abstracts and the 

most positive ones being indicative of PLS. These notable tokens are displayed in Table 4. 

From this table it is clear that numerical tokens and those related to statistical analysis, like 

bias and CI (confidence interval) are most indicative of abstracts. The tokens indicative of 

PLS are less illuminating and merely reflect common phrases include in PLS, such as In this 
review and We searched scientific databases.

In Section 4, we use this model as a discriminator along with our transformer encoder-

decoder model during training to penalize the generation of tokens that are indicative of 

technical abstracts.

4 Baseline models for simplification

4.1 Pretrained BART

Our baseline simplification model is BART (Lewis et al., 2020), an encoder-decoder 

architecture in which both components are transformers (Vaswani et al., 2017). The decoder 

is auto-regressive, making it a natural fit for generation tasks. BART has been shown to 

achieve strong performance on text summarization, specifically on the CNN/Daily Mail 

(Hermann et al., 2015) and XSum (Narayan et al., 2018) datasets.

We initialize the weights in BART to those estimated via fine-tuning on the XSum (Narayan 

et al., 2018) dataset as provided by HuggingFace’s Model Hub (Wolf et al., 2019). We then 

fine-tune these models on our corpus.1

1We also considered starting from a checkpoint corresponding to training over CNN/Daily News but preliminary manual examination 
of model outputs suggested starting from XSum yielded higher quality outputs.
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In the decoding step, we use nucleus sampling (Holtzman et al., 2019): at each step of token 

generation the next token is sampled from a probability distribution constructed by removing 

the ‘tail’ of probability mass from BART’s output distribution and then renormalizing. This 

strategy mitigates the awkward repetition typical of greedy methods like beam search while 

still avoiding incoherence by truncating the unlikely tail in the original model distribution.

4.2 Unlikelihood training

As an additional mechanism to encourage simple terminology in the PLS generated by our 

model, we propose a new method in which we explicitly penalize the model for producing 

seemingly technical words via unlikelihood training (Welleck et al., 2019; Li et al., 2020). 

The idea is to add a term to the objective that encourages the model to decrease the 

probability mass assigned to some set of tokens S. This is realized by adding a term to the 

(log) loss: UL = ∑j = 1
|S| − log 1 − pθ sj ∣ y < t, x , where x is the technical abstract input to 

the encoder, y<t is the prefix of the target summary y input to the decoder at time t, and 

pθ(sj|y<t, x) is the probability assigned to token sj in the distribution output by BART (with 

model parameters θ) at time t. This expression is referred to as Unlikelihood Loss (UL). 

The UL term is weighted by a positive constant α and added to the typical log-likelihood 

objective.

We construct S by collecting tokens with negative weights from a bag-of-words logistic 

regression model trained to classify whether a document is simple (1) or complex (0), for 

which negative tokens are indicative of complex language. We then softmax the absolute 

values of these weights so that they sum to 1 and the tokens most indicative of technical 

abstracts (i.e., those with the most negative weights initially) contribute the most to this sum. 

We consider three variants of this procedure. (1) We classify whether a document is a PLS 

or an abstract (Section 3.3). (2) We use external data, namely the Newsela corpus (Xu et al., 

2015), and train a model to distinguish between documents of reading levels 0 and 3.2 (3) 

We train two different models for the previous tasks and then sum the weight vectors before 

applying a softmax to derive token penalties.

Let wj denote the learned logistic regression weight for token sj ∈ S. The final weight wj′
used in the unlikelihood loss function is:

wj′ = exp wj /T
∑i = 1

S exp wi /T
(1)

where T is the temperature of the softmax.

A modification we make to the unlikelihood loss function is that we only apply the loss for 

a given token sj if the probability distribution output for the token at position t indicates 

that sj should be output, that is, if sj = argmax
v ∈ V

pθ v ∣ y < t  where V denotes BART’s token 

2Five-fold evaluation showed that the model achieved > 90% accuracy. We also experimented with the Simple Wikipedia/Wikipedia 
dataset (Zhu et al., 2010), but this model was not effective in early experiments.
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vocabulary. Denoting an indicator function for this event by 1sj, t, our final unlikelihood loss 

term ℒ pθ, S, y  is:

− ∑
t = 1

y
∑
j = 1

S
1sj, twj′log 1 − pθ sj ∣ y < t (2)

4.3 Experimental setup

Data.—We split our dataset of 4459 abstract-PLS pairs so that 3568 reviews are in the 

training set, 411 in the validation set, and 480 in the test set. We experimented with 

hyperparameters by manually inspecting a subset of the validation set and report results on 

the entire test set.

Hyperparameters.—For nucleus sampling, we use a top-p value of 0.9. In the 

unlikelihood training procedure, we experimented with different values of α in our total 

loss function (1, 10, 103, 106) on the validation set and different temperatures T in the 

softmax step (1, 2, 5, 10). Based on manual examination of the generated texts in the 

validation set, we determined that (T = 2, α = 100) yields the most coherent and high-quality 

simplifications, so we only report results for this case. All models are fine-tuned on our 

dataset for 1 epoch with a batch size of 1 and a learning rate that starts at 3e-5 and decreases 

linearly to 0 over the course of training. For optimizer, we used AdamW with ε = 1e-8 

(Kingma and Ba, 2015; Loshchilov and Hutter, 2019).

5 Results

In this section we comment on the generated texts’ readability, quality of summarization and 

simplification, stylistic fidelity with the PLS, and overall coherence and simplicity based on 

human examination. In the results tables, we indicate whether lower or higher scores for the 

metrics reported are better with ↓ and ↑ symbols, respectively.

5.1 Readability scores

Table 5 reports the mean readability scores achieved under different training settings. 

Results generated via models trained with the proposed UL objective achieve significantly 

lower Flesch-Kincaid scores than those achieved by both the technical abstracts and 

reference PLS, whereas the model trained without UL produced texts with a higher reading 

level than the PLS. Rather surprisingly, the UL-Newsela and UL-both settings, both of 

which use the Newsela dataset to produce unlikelihood weights, did not yield a decrease in 

estimated grade levels. We suspect that this could be attributed to the difference in domains, 

that is, the tokens contributed by the Newsela classifier are not generated frequently enough 

to have a noticeable impact during unlikelihood training.

These results suggest that: (1) BART is capable of performing simplification of medical 

texts such that outputs enjoy reduced reading levels compared to those of the technical 

abstracts; (2) The proposed use of UL to explicitly penalize the model for outputting 

jargon allows for the generation of text with even greater readability than the reference 
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PLS. The reading levels of even the simplified outputs, however, are at the late-high school/

early college levels. This could reflect the relatively small differences in readability scores 

between abstracts and PLS in general (Section 3.2).

5.2 Style

In Section 3.2 we showed that SciBERT masked probability scores are more useful as a 

discriminator between technical abstracts and PLS than the standard readability metrics, 

which use surface-level cues like word and sentence counts. Experiments by Jawahar et al. 

(2019) suggest that BERT-style masked language models encode a wide array of syntactic 

and semantic features of language, which they then employs for downstream tasks. For 

this reason, we use SciBERT masked probability scores as our notion of style, with lower 

scores corresponding to simpler, less technical language. To explore the extent to which 

the generated summaries stylistically resemble the PLS, we computed the average of the 

SciBERT masked probability scores of the generated texts for each model. The results are 

shown in Table 5 along with the readability scores.

We see that every model produces text with significantly lower probability scores than the 

abstracts, which suggests that they successfully convert input abstracts into less-technical 

summaries. Though the average scores are higher than that of the PLS, this difference is not 

statistically significant, so we can consider the outputs of the models to be stylistically on 

par with the target PLS.

5.3 Content

We report SARI (Xu et al., 2016), a standard edit-based metric for text simplification, and 

BLEU (Papineni et al., 2002), a precision-based method for machine translation that is also 

often reported for simplification systems. Xu et al. (2016) showed that SARI correlates 

better with human evaluation for simplification tasks, focusing more on simplicity, while 

BLEU is stronger with respect to meaning and grammar. Finally we report the F1 versions of 

ROUGE-1, ROUGE-2, and ROUGE-L (Lin, 2004), which are the standard metrics typically 

used for summarization tasks.

Table 6 shows the mean ROUGE, BLEU, and SARI scores. While UL models yielded 

small but significantly better SARI scores, the opposite is true for the ROUGE and BLEU 

measures. Despite the lack of clear patterns in these scores, there are clear qualitative 

differences between the different models’ outputs, which are expounded upon in Section 5.4.

Extractive vs. abstractive?—Although not reflected in the automatic evaluation metrics 

above, the increase in readability of UL models led us to suspect that UL models are more 

abstractive than extractive, namely, they contain more paraphrases. To determine the degree 

to which the outputs directly copy content from the technical abstracts, we computed the 

fraction of n-grams in the output PLS that also occur in the abstract (without considering 

repetition). These results are shown in Table 7.

We observe that the introduction of UL clearly decreases n-gram overlap, and the difference 

becomes more marked as n increases. The use of Cochrane weights (those from the logistic 

regression model trained to discriminate between technical abstracts and PLS) likely reduces 
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n-gram overlap because the tokens most penalized in UL training are those used to represent 

numerical data, e.g., statistics and confidence intervals. Penalizing these tokens discourages 

the regurgitation of numerical details from the technical abstract. The use of Newsela 

weights does not have the same effect, again likely due to the domain difference between 

the tokens penalized during unlikelihood training and those generated by the model. None 

of the model settings, however, achieve n-gram overlap scores nearly as low as the reference 

PLS, indicating that the generated summaries remain considerably more extractive than 

human-written PLS.

5.4 Manual examination and analysis

We manually examined the outputs generated by our models on a random sample of 40 

technical abstracts from the test split of our dataset. While reading these outputs, we 

made special note of text length, readability and coherence, the presence of hallucinated 

information not found in the corresponding abstract, and artifacts such as repetition and 

misspelled words.

Our examination demonstrated that the generated texts were all significantly shorter than 

their respective abstracts and also shorter than the reference PLS. Furthermore, the models 

trained with Cochrane weights (‘UL-Cochrane’ and ‘UL-Both’) produced shorter texts on 

average than the models trained without UL or with Newsela weights. This observation 

is supported by the results in Table 9, which displays the average number of tokens and 

sentences in the summaries generated under different training settings.

One explanation for why UL with Cochrane weights produces shorter summaries is that 

training with these weights discourages the copying of statistics from the original abstract, a 

phenomenon exemplified in Appendix A, Table 10. Another trend that we noticed was that 

higher α values produce shorter, more readable summaries at the expense of information 

completeness. Training with a high α also increases the likelihood of hallucination, 

misspelling, and repetition. These drawbacks greatly impacted coherence for α ≥ 1000. 

These observations suggest a tradeoff between completness of information and conciseness 

as α is varied in the training process.

The most common hallucination found in all settings, and especially with high α, was the 

inclusion of a statement of the form The evidence is current to [month] [year]. The reason 

for this is that many PLS contain such a statement of currency not found in the technical 

abstracts, so models learn to include such a statement even if it cannot be factually deduced 

from the abstract. Another observation is that most commonly misspelled words are those of 

medications and diseases. Table 8 provides examples of the various kinds of artifacts found 

in the generated PLS. The presence of these artifacts suggest that in practice, generated texts 

should be reviewed before being used.

6 Conclusions

In this work we considered the important task of medical text simplification. We derived 

a new resource for this task made up of technical abstracts summarizing medical evidence 

paired with plain language versions of the same; we have made this data publicly available 
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to facilitate further research.3 We proposed a new masked language model (MLM)-based 

measure of the technicality of text, which quantifies technicality by calculating the 

likelihood of tokens in the input text with respect to a transformer-based MLM trained on 

a technical corpus. We demonstrated that this metric better discriminated technical abstracts 

from PLS than more traditional notions of readability.

We proposed models for automated simplification based on BART (Lewis et al., 2020), 

extending the training objective by incorporating an explicit penalty for production of 

‘jargon’ terms. We found that this method can improve model outputs (i.e., can increase 

simplicity and the abstractiveness of summaries) according to the metrics considered.

7 Ethical Considerations

This paper presents a dataset from the Cochrane library; this comprises only the freely 

available portion of the information on Cochrane (abstracts that are readily available to all). 

No annotators other than the authors of this paper are involved in the manual inspection of 

this data. In addition, the Cochrane data in itself, and our collection and inspection of it, 

does not involve any personally identifiable information.

The baseline models presented involves simplifying medical texts. Inconsistencies (e.g., 

hallucinations) of the generated PLS with respect to the original review is an artifact 

discussed in Section 5.4. This can lead to misinformed readers. Therefore, the outputs of 

the proposed systems should always be manually examined before being used.
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Appendix A: Example outputs

Table 10:

A full example of technical abstract, reference PLS and model outputs.

Technical abstract: We included a total of 40 studies in the review, with more than 140,000 women aged between 
20 and 70 years old. Many studies were at low risk of bias. There were a sufficient number of included studies with 
adequate methodology to perform the following test comparisons: hybrid capture 2 (HC2) (1 pg/mL threshold) versus 
conventional cytology (CC) (atypical squamous cells of undetermined significance (ASCUS)+ and low-grade squamous 
intraepithelial lesions (LSIL)+ thresholds) or liquid-based cytology (LBC) (ASCUS+ and LSIL+ thresholds), other 
high-risk HPV tests versus conventional cytology (ASCUS+ and LSIL+ thresholds) or LBC (ASCUS+ and LSIL+ 
thresholds). For CIN 2+, pooled sensitivity estimates for HC2, CC and LBC (ASCUS+) were 89.9%, 62.5% and 72.9%, 
respectively, and pooled specificity estimates were 89.9%, 96.6%, and 90.3%, respectively. The results did not differ 
by age of women (less than or greater than 30 years old), or in studies with verification bias. Accuracy of HC2 was, 
however, greater in European countries compared to other countries. The results for the sensitivity of the tests were 
heterogeneous ranging from 52% to 94% for LBC, and 61% to 100% for HC2. Overall, the quality of the evidence for 
the sensitivity of the tests was moderate, and high for the specificity. The relative sensitivity of HC2 versus CC for CIN 
2+ was 1.52 (95% CI: 1.24 to 1.86) and the relative specificity 0.94 (95% CI: 0.92 to 0.96), and versus LBC for CIN 
2+ was 1.18 (95% CI: 1.10 to 1.26) and the relative specificity 0.96 (95% CI: 0.95 to 0.97). The relative sensitivity of 
HC2 versus CC for CIN 3+ was 1.46 (95% CI: 1.12 to 1.91) and the relative specificity 0.95 (95% CI: 0.93 to 0.97). 
The relative sensitivity of HC2 versus LBC for CIN 3+ was 1.17 (95% CI: 1.07 to 1.28) and the relative specificity 
0.96 (95% CI: 0.95 to 0.97). Whilst HPV tests are less likely to miss cases of CIN 2+ and CIN 3+, these tests do lead 

3We emphasize that the data here comprises only text derived from publicly accessible abstracts.
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to more unnecessary referrals. However, a negative HPV test is more reassuring than a negative cytological test, as the 
cytological test has a greater chance of being falsely negative, which could lead to delays in receiving the appropriate 
treatment. Evidence from prospective longitudinal studies is needed to establish the relative clinical implications of 
these tests.

Plain-language summary: We searched for all relevant studies up to November 2015. Forty studies compared the HPV 
test to the Pap test on over 140,000 women between 20 to 70 years old who attended for their routine cervical screening. 
The studies examined which test can detect precancerous cervical changes which are called cervical intraepithelial 
neoplasias (CIN 2 and CIN 3). There were enough studies with enough women in them to allow us to draw conclusions. 
However, some of the results from the studies were different from each other. For example, tests were more accurate in 
studies in Europe than in Asia or Central or South America. Overall, the quality of the evidence was moderate to high. 
A perfect test would correctly say if a woman has precancerous changes or if a woman does not. But most tests are not 
perfect. This review found that for every 1000 women screened, around 20 women will have precancerous changes. The 
HPV test will correctly identify 18 of these women (but will miss 2 women). The Pap test will identify 15 of the women 
(but will miss 5 women). The women who are missed could develop cervical cancer. For every 1000 women screened, 
there will be 980 women who will not have precancerous changes. The HPV test will correctly identify 881 women 
(but 99 women will be incorrectly told that they have a lesion). The Pap test will correctly identify 885 women (but 95 
will be incorrectly told that they have a lesion). Women who are incorrectly told that they have a lesion may have their 
cervix examined or may receive surgery unnecessarily.

No UL: We included 40 studies in the review, with more than 140,000 women aged between 20 and 70 years old. 
Many studies were at low risk of bias. There were a sufficient number of included studies with adequate methodology 
to perform the following test comparisons: hybrid capture 2 (HC2) (1 pg/mL threshold) versus conventional cytology 
(atypical squamous cells of undetermined significance (ASCUS)+ and low-grade squamous intraepithelial lesions 
(LSIL)+ thresholds) or liquid-based cytology or other high-risk HPV tests versus conventional or liquid cytology 
thresholds. For CIN 2+, pooled sensitivity estimates for HC2, CC and LBC were 89.9%, 96.6%, and 90.3%, 
respectively. The results did not differ by age of women (less than or greater than 30 years old), or in studies with 
verification bias. The accuracy of HC2 was, however, greater in European countries compared to other countries. 
Overall, the quality of the evidence for the sensitivity of the tests was moderate, and high for the specificity. Whilst HPV 
tests are less likely to miss cases of CIN2+ and CIN 3+, these tests do lead to more unnecessary referrals. However, 
a negative HPV test is more reassuring than a negative cytological test, as the cytology test has a greater chance of 
being falsely negative, which could lead to delays in receiving the appropriate treatment. Evidence from prospective 
longitudinal studies is needed to establish the relative clinical implications of these tests.

UL, Cochrane Weights, Temp=2, α=100: We found 40 studies involving more than 140,000 women aged between 20 
and 70 years old. The studies compared different types of HPV tests with each other, or with conventional cytology. The 
results showed that the tests were more accurate than conventional cytological tests. However, the results did not differ 
by age of women (less than or greater than 30 years old), or in studies with verification bias. Overall, the quality of the 
evidence for the sensitivity of the tests was moderate, and the specificity was high for the tests. The accuracy of the test 
was, however, greater in European countries compared to other countries. Whilst HPV tests are less likely to miss cases, 
they do lead to more unnecessary referrals, as the cytological test has a greater chance of being falsely negative, which 
could lead to delays in receiving the appropriate treatment. Evidence from prospective longitudinal studies is needed to 
establish the relative clinical implications of these tests.
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Figure 1: 
BERT (left) vs SciBERT (right) probabilities of technical abstracts (blue) and PLS (red).
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Figure 2: 
ROC Curves for Readability Metrics.
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Table 1:

Sample excerpts from a technical abstract (top) and corresponding plain-language summary (bottom) from the 

Cochrane Library.

Technical abstract: Analysis showed a higher rate of weight gain in the high-volume feeds group: mean difference 6.20 g/kg/d (95% 
confidence interval 2.71 to 9.69). There was no increase in the risk of feed intolerance or necrotising enterocolitis with high-volume feeds, but 
95% confidence intervals around these estimates were wide.

Plain-language summary: Very low birth weight infants who receive more milk than standard volumes gain weight more quickly during their 
hospital stay. We found no evidence suggesting that giving infants high volumes of milk causes feeding or gut problems, but this finding is not 
certain.
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Table 2:

Means and standard deviations of original abstract and PLS lengths (tokens), and our compiled data before & 

after filtering out texts with more than 1024 tokens.

Compiled data

Raw Before-filter After-filter

Abstract 815 ± 331 551 ± 272 501 ± 211

PLS 394 ± 216 284 ± 156 264 ± 136
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Table 3:

Means and standard deviations of different readability scores calculated over abstracts and PLS.

Metric Abstracts PLS

Flesch-Kincaid 14.4 ± 2.3 12.9 ± 2.4

ARI 15.5 ± 2.8 14.9 ± 3.0
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Table 4:

The tokens with the most negative and most positive weights in a logistic regression model trained to 

distinguish technical abstracts from PLS.

Token Weight Token Weight

0 −7.262 people 4.681

. −6.126 review 4.551

% −5.379 We 4.461

CI −4.986 This 3.413

; −4.821 that 2.943

95 −4.593 The 2.836

significant −4.273 side 2.722

R −3.726 who 2.671

1 −3.685 blood 2.515

There −3.477 found 2.514

bias −3.303 searched 2.407

criteria −3.263 The 2.114

outcome −3.247 results 2.098

( −3.195 their 2.022

inclusion −3.148 current 1.984
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Table 5:

Flesch-Kincaid, ARI, and SciBERT masked probability scores for generated PLS. Differences wbetween 

abstracts and generated PLS are statistically significant; so are differences in FK and ARI between UL models 

and No-UL (p < 0.01, paired t-test).

FK↓ ARI↓ SciBERT↓

Abstracts 14.42 15.58 0.57

PLS 13.11 15.08 0.53

No UL 13.44 15.09 0.55

UL-Cochrane 11.97 13.73 0.55

UL-Newsela 12.51 14.15 0.54

UL-Both 12.26 14.04 0.54
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Table 6:

ROUGE, BLEU, and SARI scores for generated PLS. All differences between No-UL and UL models, except 

for (BLEU, UL-Newsela), are statistically significant (p < 0.01, paired t-test).

R1↑ R2↑ RL↑ BLEU↑ SARI↑

No UL 0.40 0.15 0.37 0.44 0.38

UL-Cochrane 0.38 0.14 0.36 0.39 0.40

UL-Newsela 0.39 0.15 0.37 0.43 0.39

UL-Both 0.38 0.14 0.37 0.40 0.39
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Table 7:

% of n-grams in reference/generated PLS that are also in the abstracts.

N=1 N=2 N=3 N=4

PLS 0.56 0.29 0.19 0.14

No-UL 0.95 0.89 0.84 0.79

UL-Cochrane 0.84 0.67 0.57 0.49

UL-Newsela 0.92 0.81 0.73 0.66

UL-Both 0.89 0.76 0.67 0.59
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Table 8:

Example of artifacts found in generated PLS.

Hallucination: The evidence is up-to-date as of February 2016. We found seven studies, involving 1839 participants, that compared home-
based treatment with hospital-based care for venous thromboembolism.

Misspelling: The review authors provided no information on other important outcomes, including gastro-oesophageal reflux, aspiration 
pneumonia, necrotise enterulitis…

Repetition: However, we were not able to combine their results because of the small number and small number of people in the included 
studies.
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Table 9:

Lengths of generated PLS.

# Tokens # Sentences

Abstracts 492.04 14.03

PLS 254.60 9.59

No UL 228.27 8.34

UL-Cochrane 163.79 7.10

UL-Newsela 201.01 8.45

UL-Both 173.88 7.75
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