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Abstract
This study aimed to explore the prognostic impact of spatial distribution of tumor-infiltrating lymphocytes (TILs)
quantified by deep learning (DL) approaches based on digitalized whole-slide images stained with hematoxylin
and eosin in patients with colorectal cancer (CRC). The prognostic impact of spatial distributions of TILs in
patients with CRC was explored in the Yonsei cohort (n = 180) and validated in The Cancer Genome Atlas
(TCGA) cohort (n = 268). Two experienced pathologists manually measured TILs at the most invasive margin
(IM) as 0–3 by the Klintrup–Mäkinen (KM) grading method and this was compared to DL approaches. Inter-rater
agreement for TILs was measured using Cohen’s kappa coefficient. On multivariate analysis of spatial TIL features
derived by DL approaches and clinicopathological variables including tumor stage, microsatellite instability, and
KRAS mutation, TIL densities within 200 μm of the IM (f_im200) remained the most significant prognostic fac-
tor for progression-free survival (PFS) (hazard ratio [HR] 0.004 [95% confidence interval, CI, 0.0001–0.15],
p = 0.0028) in the Yonsei cohort. On multivariate analysis using the TCGA dataset, f_im200 retained prognostic
significance for PFS (HR 0.031 [95% CI 0.001–0.645], p = 0.024). Inter-rater agreement of manual KM grading
was insignificant in the Yonsei (κ = 0.109) and the TCGA (κ = 0.121) cohorts. The survival analysis based on
KM grading showed statistically significant different PFS in the TCGA cohort, but not the Yonsei cohort. Auto-
matic quantification of TILs at the IM based on DL approaches shows prognostic utility to predict PFS, and could
provide robust and reproducible TIL density measurement in patients with CRC.
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Introduction

Standard treatment of colorectal cancer (CRC) includes
curative intent surgical resection followed by postopera-
tive selective chemotherapy with or without radiotherapy

[1]. In patients with unresectable CRC, chemotherapy is
the main treatment option to sustain the survival dura-
tions or to convert patients into resectable status. Postop-
erative chemotherapy has its own role to decrease
recurrence, but its adoption is solely dependent on
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postoperative staging under current guidelines [1]. Per-
sonalized treatment is demanding, because CRC patients
with the same stage of disease may have different sur-
vival outcomes.
The presence of tumor-infiltrating lymphocytes

(TILs) is increasingly recognized as an important bio-
marker in multiple cancer types [2–5]. Previous studies
using immunohistochemical (IHC) staining of various
T-cell markers suggested that densities of TILs in the
tumor microenvironment are associated with survival
outcomes in patients with CRC [2]. In particular, the
Immunoscore that quantifies TIL densities and spatial
distributions has shown a high prognostic value in
patients with CRC, which could provide a more pre-
cise stratification of patient prognosis [6]. However,
application of the Immunoscore requires IHC staining
and expert interpretation, which could incur substantial
cost and requires specialized facilities [2]. Few studies
measuring TILs using hematoxylin and eosin (H&E)-
stained slides also demonstrated its positive role as a
prognostic indicator in patients with CRC [4,7–11].
Nevertheless, standardizing methods to quantify TILs
are known to be labor-intensive and pathologist-
dependent [7]. Although assessing TILs is considered to
be clinically important, TILs have had limited use as a
prognostic biomarker due to the additional requirements
of IHC staining as well as substantial lack of standardiza-
tion of measurement [6,12].
With recent advances in digital pathology and artificial

intelligence (AI) (i.e. deep learning [DL] algorithms),
there has been increasing interest in developing auto-
mated methods for TIL quantification and analysis from
pathology slides. Saltz et al used DL approaches to
detect TILs in H&E-stained whole-slide images (WSIs),
and showed that spatial TIL distribution reflected by
clustering indexes was linked to patient survival across
different tumor types [13]. Corredor et al performed
computerized analysis on H&E-stained tissue microarray
slides, which identified TIL spatial distribution and its
co-localization with cancer cell nuclei to predict likeli-
hood of recurrence in early-stage non-small cell lung
cancer [12]. Bankhead et al showed that the TIL densi-
ties of tumor regions quantified by the QuPath® software
[14] in H&E-stained pathology images could be used to
predict overall survival (OS) in patients with melanoma
[15]. Yoo et al analyzed IHC-stained CRC pathology
slides by using the QuPath® software. The lymphocyte
(e.g. CD3, CD8) densities inside the tumor core and
invasive margins (IMs) were used to classify CRC
patients into clinicopathologically relevant subgroups
[16]. AbdulJabbar et al quantified lymphocytic infiltra-
tion variability between lung cancer regions in pathology
slides, which was shown to correlate with patient

disease-free survival [17]. Although these recent studies
suggest that TIL-related variables extracted by computa-
tional pathology could potentially predict patient clinical
outcomes across different cancer types, the quantitative
analysis of TILs according to spatial distribution using
H&E-stained WSIs has been investigated to only a lim-
ited extent in patients with CRC. To the best of our
knowledge, only one study has investigated quantitative
TIL measurement in CRC pathology slides, but it
required additional IHC staining and manual interactions
with the analyzing software which hindered its wide
application in clinical settings [16].
In this study, we aimed to investigate whether auto-

mated quantification of spatial distribution of TILs in
tumor IMs based on DL approaches utilizing H&E-
stained WSIs could predict progression-free survival
(PFS) outcomes in patients with CRC. In addition, we
also sought to compare the Deep Learning based TIL
density measurement (DeepTIL) in terms of its ability
to predict prognosis in these patients against the man-
ual scoring of TILs at the deepest invasive area by
pathologists. Overall, the DeepTIL tools developed are
aimed at providing effective and efficient assessments
of TIL distributions inside the H&E-stained WSI, and
assisting in CRC patient prognosis via fully automatic
analysis.

Materials and methods

Datasets
Two independent cohorts of H&E-stained WSIs from
448 colorectal cancer patients were included in this
study: the Yonsei (n = 180) and The Cancer Genome
Atlas (TCGA) (n = 268) cohorts. The Yonsei cohort
consists of 180 diagnostic WSIs and corresponding
clinical information from stage II or III colon cancer
patients who underwent curative resection followed by
FOLFOX (5-fluorouracil, leucovorin, and oxaliplatin)
chemotherapy between September 2005 and January
2014. The Yonsei cohort was collected from Gangnam
Severance Hospital, Yonsei University College of
Medicine, Republic of Korea.
The whole TCGA CRC cohort with corresponding

clinical information and diagnostic WSIs was down-
loaded from TCGA data portal (https://portal.gdc.can-
cer.gov/). After visual evaluation by two pathologists,
268 CRC patients whose WSIs have reasonably good
quality and enough clinical information were used for
analysis in this study.
The WSIs from the Yonsei dataset (.mrxs format

slides) were generated using Pannoramic® 250 Flash
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III scanner (3DHISTECH, Budapest, Hungary) with
the pixel resolution of 0.2428 μm/pixel. The TCGA
pathology slides were generated and uploaded by
many different institutions, where images (.svs format
slide) were scanned by using the Aperio Scanscope
Q5 CS scanner (Leica Biosystems, Wetzlar, Germany)
with the pixel resolution of 0.2527 μm/pixel.
Patients who had postoperative WSIs and available

clinicopathological and follow-up data were included.
For the TCGA dataset, patients with very poor quality
slides, absence of survival status or duration, and
patients whose survival time was denoted as 0 months
were excluded. When the pathologists evaluated the
manual scoring of TILs, they found that some slides
did not include the IMs and these patients were
excluded at the stage of measuring the agreement rat-
ing and further comparison processing between human
scoring versus AI-based scoring (supplementary mate-
rial, Figure S1).
For each patient, the following outcomes were col-

lected if available: sex, age (years), American Society of
Anesthesiologists classification, body mass index (BMI)
(kg/m2), carcinoembryonic antigen (ng/ml), tumor loca-
tion, complications, histological grade, lymphovascular
invasion (LVI), total retrieved lymph node numbers,
stage, microsatellite instability (MSI), and KRAS muta-
tion status.
This study was conducted after approval from the

Institutional review board of the Gangnam Severance
Hospital, Yonsei University College of Medicine (Seoul,
Republic of Korea) (approval no. 3-2020-0076). The
need for informed consent was waived for this retrospec-
tive study.

Development of DeepTILs using H&E-stained WSIs
The developmental process of DeepTILs was com-
posed of four main modules: tumor detector, TIL
detector, automatic quantification of TILs, and statisti-
cal and survival analyses (Figure 1). The details are
described in the following sections.

Tumor detector

To develop an automatic tumor detector, we performed
transfer learning on Resnet18 DL model that was orig-
inally trained on ImageNet dataset [18]. We trained
the Resnet18 on a public dataset containing 11,977
image patches (256 μm edge length per image) of
H&E-stained histological samples of human CRC
[18–20]. Regions in these images were manually anno-
tated into three classes: tumor tissue, loose non-tumor
tissue (i.e. adipose tissue and mucus), and dense non-
tumor tissue (i.e. stroma and muscle). To train and test

tumor detector, we randomly divided the whole dataset
into training (80%), validation (10%), and testing
(10%) sets. We then trained the Resnet18 model to
distinguish tumor and non-tumor image patches.
Image augmentations including random horizontal and
vertical flipping and color jittering (i.e. alteration of
image contrast, brightness, and saturation) were
applied along with training. We trained the model by
freezing different percentiles of trainable layers, and
using different parameter configurations in terms of
optimizer, batch size, and learning rate (supplementary
material, Table S1). Overall, we trained and tested
24 different tumor detection models. These DL models
were trained on a local GPU server (CentOS Linux7
system) with the Intel Xeon 8353H CPU (128 G
RAM) and two RTX 3090 GPUs (24 G Memory). The
PyTorch (torch: 1.7.1; torchvision: 0.8.2) and scikit-
image (v 0.17.2) libraries were used to implement
these models. Testing accuracies of the 24 models
with different configurations are described in supple-
mentary material, Figure S2. The tumor detector,
which was trained by fine-tuning all trainable layers of
Resnet18 and using Adam optimizer with a learning
rate of 0.0001 and batch size of 64, provided the best
test accuracy (100%). This best performing tumor
detector was applied to predict tumor regions for all
WSIs from the Yonsei and TCGA cohorts. Specially,
the WSI was divided into a set of non-overlapping
image tiles (256 μm � 256 μm per tile), which were
predicted with the probabilities of belonging to tumor
tiles by using our best tumor detector. The predicted
probabilities of different image tiles were then stitched
together according to tile locations, such that the WSI-
level tumor predictions were obtained. Finally, the typ-
ical threshold 0.5 was applied on the WSI-level predic-
tion map to obtain the tumor detection results that are
indicated by red pixels in supplementary material,
Figure S3A (tumor detection).

TIL detector

By following a similar procedure to that for tumor
detection, we trained and applied DL models to iden-
tify TIL regions in the WSI. As TIL identification is
more challenging, we retrained three different DL
architectures including Resent18, Resent34, and
Shufflenet [21] on a public dataset, where 43,440
image tiles were adopted [13]. The whole dataset was
randomly divided into three parts: training (80%), vali-
dation (10%), and testing (10%) sets. Image augmenta-
tions including random flipping and color jittering
were applied along with training, which was per-
formed in the same manner as training tumor detec-
tors. We trained the models by freezing different
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percentiles of trainable layers, and using different param-
eter configurations in terms of optimizer, batch size, and
learning rate (supplementary material, Table S2). Overall,
we trained and tested 144 different TIL detectors, and
testing accuracies of 144 models with different configura-
tions are described in supplementary material, Figure S4.
The TIL detection model, which was trained by fine-
tuning all trainable layers of Resnet18 and using Adam
optimizer with a learning rate of 0.0001 and batch size
of 4, provided the best test accuracy (80.06%). Several
TIL prediction examples randomly selected from the test-
ing set are provided in supplementary material,
Figure S5. Supplementary material, Figure S6 shows
visualized features learned by the TIL detector, where
the reconstructed color and gray-scale images are gener-
ated by using the guided backpropagation method. The
best TIL detection model was used to identify TIL
regions for all WSIs from the Yonsei and TCGA cohorts.
Specially, the WSI was divided into a set of non-
overlapping image patches (112 μm � 112 μm/patch)
which were predicted with the probabilities of belonging

to TILs. The WSI-level TIL prediction was finally
obtained by stitching tile-level predictions. The threshold
of 0.5 was used to determine regions containing TILs in
the WSI-level prediction map. Supplementary material,
Figure S3B (TIL detection) illustrates a TIL detection
example (yellow pixels).

Automatic quantification of TILs from H&E-stained WSIs

Based on predicted tumor and TIL regions by DL
models, we quantified the density of TILs inside IM
and tumor regions, respectively. If more than one
tumor region was detected, the largest tumor region
was selected. We used image morphological dilation
operation with a square structuring element to detect
the tumor IM automatically. Note that by adjusting the
physical size of structuring elements, we could obtain
different widths of IM layers. For instance, in order to
detect the 200-μm IM layer, we first used the square
structuring element with an edge length of 400 μm to
perform the morphological dilation. The 200-μm IM
layer was then obtained by removing tumor pixels in

Figure 1. Overview of the approach taken in this study. Tumor region and TILs are first detected in the H&E-stained WSI based on DL
approaches. We then quantify TILs across and within tumors. The spatial distributions of TILs densities at tumor IMs and tumor core are
used to identify patient subgroups with distinct PFS outcome.
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the dilated binary mask. The schematic explanation of
tumor IMs is shown in supplementary material,
Figure S7, and the example overlapped with automati-
cally extracted IM boundaries is illustrated in
Figure 1. The red contour indicates the tumor border,
while the IM layers with the distance of 200, 300,
400, and 500 μm from the tumor border are indicated
by different color lines. The TIL densities were
computed and denoted as ‘f_im200’, ‘f_im300’,
‘f_im400’, and ‘f_im500’ at each IM layer, respec-
tively. For example, ‘f_im200’ represents the ratio
between the number of TIL pixels inside the 200-μm
IM layer and the whole number of pixels at the
200-μm IM layer. In addition to TIL densities at IM
layers, we further quantified TIL densities at tumor
regions. The TIL density at the whole tumor region
was computed as ‘f_wt’. The area that occupies 25%
of the central part of the whole tumor region was
defined as the tumor core and the TIL density in the
tumor core was denoted as ‘f_tc’. We applied morpho-
logical erosion operation to obtain the 200-μm inverse
IM layer and computed the corresponding TIL density
as ‘f_inv200’. Finally, in the whole tumor region, the
area of inverse 200-μm IM layer was subtracted and
the remaining area was defined as TC2, and the TIL
density of this area was defined as ‘f_tc2’ (for further
descriptions, please see supplementary material,
Table S3 and Figure S7).

Manual scoring of TILs by pathologists using the
KM recommendation
Two board-certified pathologists, who had 9 and 10 years
of experience, respectively, graded each patient’s TILs
using the Klintrup–Mäkinen (KM) recommendation (KM
grading) [10]. The overall inflammatory reaction of the
deepest area of the IM of the tumor was assessed by
using a 4� scale based on visual examination of H&E-
stained pathology slides (supplementary material, Figure
S8). A score 0 denoted no increase in inflammatory cells,
1 denoted a mild and patchy increase in inflammatory
cells, 2 denoted a moderate and band-like inflammatory
infiltrate with some destruction of cancer cell islands, and
3 denoted a marked and florid cuplike inflammatory infil-
trate with frequent destruction of cancer cell islands [8,9].
Patients were dichotomized as KM-low (KM gradings
0 and 1) and KM-high (KM gradings 2 and 3), and sur-
vival outcome were compared between these two groups.

Statistical analysis
All statistical analyses were performed using R version
3.6.3 (R-project, Institute for Statistics and Mathematics,

Vienna, Austria). Patients’ clinicopathological character-
istics were compared using chi-square and t-tests for
categorical and continuous variables, respectively. Corre-
lation between TIL counts and clinical variables were
assessed using the Mann–Whitney U-test for dichoto-
mous values, Kruskal–Wallis tests for more than three-
group comparisons, and Spearman correlations for con-
tinuous parameters.
The kappa statistic was used to assess inter-rater

agreement with respect to scoring and was interpreted
according to the guidelines of Landis and Koch [22].
We used the following definition to interpret the kappa
coefficients: a kappa (κ) value of ≤0.20 indicated insig-
nificant agreement, values of 0.21–0.40 indicated
median agreement, values of 0.41–0.60 indicated mod-
erate agreement, values of 0.61–0.80 indicated sub-
stantial agreement, and values of 0.81–1.00 indicated
almost perfect agreement.
PFS was calculated from the date of surgery until

the date of recurrence detection in the Yonsei dataset.
Patients alive at the last follow-up or dead were cen-
sored. The Kaplan–Meier method was used to con-
struct survival curves and the log-rank test was used to
compare survival rates between groups. Cox propor-
tional hazards models were used to estimate the hazard
ratios (HRs) and 95% confidence interval (CI). All
variables with p < 0.1 on univariate analysis were
entered for multivariate analysis with backward step-
wise selection of variables. A two-sided p < 0.05 was
considered statistically significant.

Results

Clinicopathological characteristics of the patients
Among the patients included in the study, 29 of
180 patients (16.1%) in the Yonsei cohort and 74 of
268 patients (27.6%) in the TCGA cohort had recur-
rences. The median follow-up period for patients was
89 months (interquartile range [IQR], 71–122 months)
for the Yonsei cohort and 19.6 months (IQR, 12.4–
32.9 months) for the TCGA cohort. Details of clinico-
pathological features for the included patients are pres-
ented in Table 1.

Prognostic evaluation of automated TIL features by
DeepTILs from the Yonsei dataset
The composition of TILs according to spatial distribu-
tion is illustrated in supplementary material, Table S4.
The median TIL density of each spatial distribution
ranged from 0.0447 to 0.2002. Univariate Cox
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proportional hazards model of PFS in the Yonsei
cohort revealed that ‘f_im200’, ‘f_im300’, ‘f_im400’,
‘f_im500’, and ‘f_inv200’ are significant prognostic
factors (supplementary material, Table S5). In multi-
variate analysis using features derived from various
IMs, ‘f_im200’ remained as an independent significant
factor (supplementary material, Table S6A). For fea-
tures derived from inner tumor area, ‘f_wt’ and
‘f_inv200’ were identified as prognostic factors (sup-
plementary material, Table S6B). When all features
were considered, ‘f_wt’ and ‘f_im200’ remained statis-
tically significant prognostic factors (supplementary
material, Table S6C). Thus, these two variables were
included in further analysis by adjusting with clinico-
pathological variables.
In the Yonsei cohort, univariate analysis revealed

that LVI (p = 0.009) and ‘f_im200’ (p = 0.002) were
significantly associated with PFS. In the multivariate
analysis, ‘f_im200’ was an independent significant
prognostic factor (HR 0.004, 95% CI 0.0001–0.15,
p = 0.0028) (Table 2).

Validation of automated TIL features in the TCGA
dataset
The median TIL densities of spatial distribution of ‘f_wt’
and ‘f_im200’ were 0.0808 and 0.1085, respectively
(supplementary material, Table S7). Among the
268 patients from the included TCGA dataset, age, stage,
‘f_wt’, and ‘f_im200’ were significant prognostic factors
in the univariate analysis. Factors with p < 0.1 were
entered into the multivariate analysis. Multivariate analy-
sis revealed that ‘f_im200’ retained prognostic signifi-
cance for PFS (HR 0.031 [95% CI 0.001–0.645],
p = 0.024) along with age (HR 1.994 [95% CI 1.233–
3.222], p = 0.004) and stage (I and II versus IV, HR
3.342 [95% CI 1.804–6.191], p = 0.0001) (Table 3).

Inter-rater agreement of KM grading for Yonsei
and TCGA datasets by two pathologists
KM grading was manually performed by two patholo-
gists for the Yonsei (n = 180) and TCGA (n = 249)

Table 1. Patient characteristics of the Yonsei and TCGA datasets
Variables Yonsei (n = 180), N (%) TCGA (n = 268), N (%) p

Sex Female 74 (41.1) 130 (48.5)
Male 106 (58.9) 138 (51.5) 0.149

Age (years) <70 28 (15.6) 178 (66.4)
≥70 152 (84.4) 90 (33.6) <0.001

BMI (kg/m2) <25 134 (74.4) 54 (20.1)
≥25 46 (25.6) 150 (56)
No data — 64 (23.9) <0.001

CEA (ng/ml) <5 113 (62.8) —

≥5 67 (37.2) — NA
Tumor location Right colon 62 (34.4) 134 (50)

Left colon 118 (65.6) 105 (39.2)
Rectum — 19 (7.1)
No data — 10 (3.7) NA

Complications No 145 (80.6) —

Yes 35 (19.4) — NA
Histological grade G1 and G2 149 (82.8) —

G3, etc. 31 (17.2) — NA
LVI Absent 109 (60.6) 102 (38.1)

Present 66 (36.7) 144 (53.7)
No data 5 (2.8) 22 (8.2) <0.001

LN numbers <12 10 (5.6) 35 (13.1)
≥12 170 (94.4) 212 (79.1)
No data — 21 (7.8) <0.001

Stage I — 39 (14.6)
II 27 (15) 105 (39.2)
III 153 (85) 94 (35.1)
IV — 30 (11.2) <0.001

MSI MSS/MSI-low 83 (46.1) 159 (59.3)
MSI-high 13 (7.2) 49 (18.3)
No data 84 (46.7) 60 (22.4) <0.001

f_wt Continuous 0.1 (0.1) 0.1 (0.1) 0.619
f_im200 Continuous 0.2 (0.1) 0.1 (0.1) <0.001

CEA, carcinoembryonic antigen; LN, lymph node; MSS, microsatellite stable; NA, not available.
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datasets. Note that some patients (n = 19) from the
TCGA dataset were excluded from the analysis due to
poor slide quality and/or difficulty by both patholo-
gists in manually finding the IMs. The agreement of
KM grading for each dataset by two pathologists was
evaluated using kappa statistics.
Inter-rater agreement of each KM grading was insig-

nificant in the Yonsei dataset (κ = 0.109) and in the
TCGA dataset (κ = 0.121). When we repeated kappa
statistics using KM-low (KM gradings 0 and 1) versus
KM-high (KM gradings 2 and 3) groups, insignificant
agreement was still observed in the Yonsei dataset
(κ = 0.151); however, median agreement was observed
in the TCGA dataset (κ = 0.404) (supplementary mate-
rial, Table S8). Kappa scores for DeepTILs versus man-
ual KM are provided in supplementary material,
Table S9. The kappa score indicated insignificant and
median agreement between DeepTILs and pathologic
evaluation.

Comparison of patient subgrouping based on the
DeepTILs and KM grading by the pathologists
We first investigated whether there were statistically sig-
nificant differences between ‘f_im200’ values across KM

grading patient subgroups. The median values of
‘f_im200’ according to the KM gradings 0, 1, 2, and
3 by pathologist 1 were 0.075, 0.142, 0.230, and 0.329,
respectively, in the Yonsei dataset (p < 0.001). The
median values of ‘f_im200’ according to the KM grad-
ings 1, 2, and 3 by pathologist 2 were 0.055, 0.194, and
0.234, respectively, in the Yonsei dataset (p < 0.001).
There was no KM grading 0 by pathologist 2 in the
Yonsei dataset.
The median values of ‘f_im200’ according to KM

gradings 0, 1, 2, and 3 by pathologist 1 were 0.058,
0.109, 0.142, and 0.225, respectively, in the TCGA
dataset (p < 0.001). The median values of ‘f_im200’
according to KM gradings 0, 1, 2, and 3 by pathologist
2 were 0.049, 0.077, 0.123, and 0.179, respectively, in
the TCGA dataset (p < 0.001) (supplementary material,
Figure S9). These results indicate that patient subgroups
with higher KM grading patient by the pathologists carry
higher TIL densities within the 200-μm IM layer by the
DeepTILs.
We used the X-tile program to find an optimal cut-off

value of ‘f_im200’ in the Yonsei dataset [23] and identi-
fied 0.14 as the cut-off value producing the largest χ2

using the Mantel–Cox test (supplementary material,
Figure S10). Based on this cut-off value, we divided

Table 2. Univariate and multivariate analyses associated with PFS in the Yonsei dataset (n = 180)
Univariate analysis Multivariate analysis

Variables HR (95% CI) p HR (95% CI) p

Sex Female Ref
Male 0.83 (0.40–1.72) 0.622

Age (years) <70 Ref
≥70 1.21 (0.42–3.48) 0.719

BMI (kg/m2) <25 Ref
≥25 0.56 (0.21–1.48) 0.245

CEA (ng/ml) <5 Ref
≥5 0.59 (0.26–1.33) 0.205

Tumor location Right colon Ref
Left colon 1.72 (0.73–4.03) 0.21

Complications No Ref
Yes 1.11 (0.45–2.73) 0.812

Histological grade G1 and G2 Ref
G3, etc. 1.03 (0.39–2.72) 0.939

LVI Absent Ref Ref
Present 2.71 (1.27–5.80) 0.009 2.60 (1.21–5.55) 0.013
No data 1.81 (0.23–14.03) 0.569 1.36 (0.17–10.57) 0.766

LN numbers <12 Ref
≥12 1.51 (0.20–11.12) 0.684

Stage II Ref
III 2.55 (0.60–10.73) 0.201

MSI MSS/MSI-low Ref
MSI-high 1.18 (0.26–5.30) 0.822
No data 1.29 (0.60–2.77) 0.502

f_wt Continuous 0.095 (0.0007–12.16) 0.342
f_im200 Continuous 0.003 (0.0001–0.14) 0.002 0.004 (0.0001–0.15) 0.0028

CEA, carcinoembryonic antigen; LN, lymph node; MSS, microsatellite stable; Ref, reference.
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patients from the Yonsei dataset into two subgroups.
Specifically, patients with a ‘f_im200’ value higher than
0.14 were included in the TIL-high subgroup, otherwise
they were included in the low subgroup. The same cut-
off value (0.14) was also applied to identify TIL-high
and -low subgroups for patients from the TCGA dataset.
A total of 71 patients (39.4%) in the Yonsei dataset and
168 patients (62.6%) in the TCGA dataset were allocated
into the low DeepTIL group. There was no significant
difference in clinicopathological characteristics between
patients with low and high DeepTILs in the Yonsei
dataset. In contrast, there were statistically significant
differences in BMI, LVI, and stage between the two
groups in the TCGA dataset (supplementary material,
Table S10).
As 249 patients in the TCGA cohort were graded by

both pathologists, those 249 patients were included for
the survival analysis. When we re-analyzed the multi-
variate analysis using the 249 selected patients in the
TCGA dataset, f_im200 was again identified as an
independent prognostic factor for PFS (HR 0.005

[95% CI 0.001–0.173], p = 0.003) (supplementary
material, Table S11). When we evaluated the associa-
tion between the binary classification of DeepTILs and
pathologists’ KM grading systems in these 249
patients, as the KM grading was increased, the rate of
high grading by DeepTILs was also increased (supple-
mentary material, Figures S11 and S12).

Prognostic utility of spatial TIL features based on
DeepTILs and KM grading
We performed Kaplan–Meier survival analysis in the
Yonsei cohort, and found that patients in the TIL-high
subgroup (i.e. patients with higher densities defined by
the DeepTILs) showed better PFS compared with
those patients belonging to the TIL-low subgroup
(log-rank test, p = 0.0018) (Figure 2A). Interestingly,
there were no significant survival differences between
KM-low and KM-high groups assigned either by
pathologist 1 (p = 0.16) or pathologist 2 (p = 0.66)
(Figure 2B,C). Based on the same cut-off value

Table 3. Univariate and multivariable analyses of factors associated with PFS in the TCGA dataset (n = 268)
Univariate analysis Multivariate analysis

Variables HR (95% CI) p HR (95% CI) p

Sex Female Ref
Male 1.592 (0.992–2.555) 0.053

Age <70 Ref Ref
≥70 1.708 (1.079–2.705) 0.022 1.994 (1.233–3.222) 0.004

BMI (kg/m2) <25 Ref
≥25 1.454 (0.782–2.701) 0.236
No data 0.896 (0.426–1.887) 0.774

CEA (ng/ml) <5 NA
≥5 NA

Tumor location Right colon Ref
Left colon 0.830 (0.504–1.365) 0.464
Rectum 1.017 (0.428–2.417) 0.969
No data 1.662 (0.589–4.690) 0.337

Complications No NA
Yes NA

Histological grade G1 and G2 NA
G3, etc. NA

LVI Absent Ref
Present 1.620 (1.008–2.603) 0.046
No data 1.338 (0.522–3.424) 0.543

LN numbers <12 Ref Ref
≥12 0.629 (0.337–1.175) 0.146 0.571 (0.302–1.078) 0.084
No data 0.323 (0.090–1.164) 0.084 0.270 (0.072–1.017) 0.053

Stage I and II Ref Ref
III 1.598 (0.945–2.702) 0.080 1.557 (0.910–2.662) 0.105
IV 4.062 (2.241–7.361) <0.001 3.342 (1.804–6.191) 0.0001

MSI MSS/MSI-low Ref
MSI-high 0.873 (0.457–1.667) 0.682
No data 1.485 (0.881–2.503) 0.137

f_wt Continuous 0.007 (0.0002–0.2793) 0.0079
f_im200 Continuous 0.0103 (0.0005–0.1999) 0.0024 0.031 (0.001–0.645) 0.024

CEA, carcinoembryonic antigen; LN, lymph node; MSS, microsatellite stable; NA, not available; Ref, reference.
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determined in the Yonsei cohort, Kaplan–Meier sur-
vival analysis was performed in the TCGA cohort.
Those patients with higher densities defined by the
DeepTILs showed better PFS compared with patients
with lower TIL densities (log-rank test, p = 0.0026)
(Figure 2D). The KM-high groups defined by patholo-
gists 1 and 2 showed better PFS than the KM-low
groups (log-rank test, p = 0.001 by pathologist 1 and
p = 0.026 by pathologist 2) (Figure 2E,F).

Combination of DeepTILs and pathologic grading
and its prognostic effect
Lastly, we investigated whether integrating KM grad-
ing by the pathologists with TIL subgroups by
DeepTILs could improve patient prognostication. Spe-
cifically, we grouped patients into four subgroups: TIL
high and high, TIL high and low, TIL low and high,
and TIL low and low by DeepTILs and the patholo-
gists. We generated Kaplan–Meier plots for four

subgroups and performed univariate and multivariate
analyses of subgroups (Figure 3 and supplementary
material, Table S12). Patients belonging to the TIL-
high subgroup by both KM grading and DeepTILs
showed better PFS across datasets, while patients
belonging to the TIL-low subgroup by both
approaches showed the poorest PFS. For example, on
multivariate analysis using the TCGA dataset, we
found that TIL-high subgroups identified by both
approaches showed statistically better PFS compared
to TIL-low subgroups identified by two approaches
(e.g. TIL-high subgroup by pathologist 1 and
DeepTILs: HR 0.372 [95% CI 0.154–0.896],
p = 0.027, and TIL-high subgroup by pathologist
2 and DeepTILs: HR 0.472 [95% CI 0.230–0.968],
p = 0.040) (supplementary material, Table S12C,D).
Another interesting observation is that patients
assigned as TIL-low by KM grading but TIL-high by
DeepTILs showed a trend toward better PFS compared
to TIL-low subgroups by both approaches. However,

Figure 2. Kaplan–Meier plots for patient subgroup analysis identified by DeepTILs and KM gradings by the pathologists. (A) TIL-high and
-low subgroups identified by DeepTILs in the Yonsei cohort. (B, C) TIL-high and -low subgroups identified by KM gradings from
(B) pathologist 1 and (C) pathologist 2 in the Yonsei cohort. (D) TIL-high and -low subgroups identified by DeepTILs in TCGA cohort.
(E, F) TIL-high and -low subgroups identified by KM gradings from (E) pathologist 1 and (F) pathologist 2 in the TCGA cohort.
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patients assigned as TIL-high by KM grading but TIL-
low by DeepTILs showed poorer PFS compared to
those of TIL-high subgroup by both approaches. This
might indicate that incorporating TIL subgroups
derived by DeepTILs with the pathologists’ KM grad-
ing could improve patient stratification compared to
the KM grading alone.

Discussion

We have shown that the DL models based on H&E-
stained WSIs can quantify TIL densities at the IMs
and across regions of surgically resected CRC. In
experiments using datasets from the Yonsei and
TCGA cohorts, we have shown that TIL densities

quantified by DeepTILs could be used to identify sub-
groups of CRC patients with distinct survival differ-
ences. In particular, we performed comprehensive
evaluation of TIL densities at various IMs as well as
tumor core and whole tumor regions. Our subgroup
analysis based on the automatic quantification of TIL
densities showed that the patient subgroup with high
TIL densities at the 200-μm IM layer (i.e. ‘f_im200’)
has statistically significant better PFS in the Yonsei
and TCGA cohorts. However, the subgroup analysis
based on pathologists’ independent TIL grading only
showed statistically significant different PFS outcome
in the TCGA cohort, but insignificant difference in the
Yonsei cohort.
Pathologists’ manual TIL grading on H&E- or IHC-

stained slides has to manually identify tumor boundary
and its IM, which is time-consuming and labor-intensive.

Figure 3. Kaplan–Meier survival analysis based on combination of subgroups derived from KM grading and DeepTILs. Patients were
assigned to four subgroups; TILs high and high, TILs high and low, TILs low and high, and TILs low and low using KM grading by two
pathologists and DeepTILs in the Yonsei and TCGA CRC cohorts, respectively. (A) Combination of patient subgroups by pathologist 1 and
DeepTILs in the Yonsei cohort. (B) Combination of patient subgroups by pathologist 2 and DeepTILs in the Yonsei cohort.
(C) Combination of patient subgroups by pathologist 1 and DeepTILs in the TCGA cohort. (D) Combination of patient subgroups by
pathologist 2 and DeepTILs in the TCGA cohort.
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In addition, inter-rater variability in manual TIL grading
by pathologists could make the universal application of
TIL analysis in routine clinical practice difficult. For
example, the agreements of KM scoring using a 4-grade
system between pathologists were insignificant in both
the Yonsei and TCGA datasets, which indicates inter-
rater issues for manual grading. The agreement of KM
scoring using a 2-grade system (i.e. KM-low versus
-high subgroups) showed that kappa value was increased
in the TCGA dataset, but no clear change was observed
in the Yonsei dataset. This also indicates that both 2 and
4 manual KM grading systems contain inter-rater
variability.
One strength of our approaches is to reduce inter-rater

variability by evaluating TIL densities across different
tumor regions and IMs with fewer biases compared to
human grading. Specifically, DL approaches measured
TIL density of whole tumor regions and IMs without
manually selecting certain regions (i.e. manually selected
representative or subsets of tumor regions and/or IMs),
which can provide a less subjective measurement of TIL
densities. In addition, our approach can effectively mea-
sure TIL densities throughout the tumor center and IMs,
and thus could provide a comprehensive prognostic eval-
uation across the whole tumor and its boundary using
H&E-stained WSIs.
The pathologists revisited cases from the TCGA

cohort that had different TIL-high or -low grading at
the tumor IM by KM grading and DeepTILs. We
found that the disagreement was largely due to lack of
consensus in the definition of tumor IM (supplemen-
tary material, Figure S13). For instance, most of the
cases identified as belonging to the TIL-high subgroup
by pathologists had a high-level TIL quantification
within tumors by DeepTILs. However, those cases
have few TILs present at the 200-μm tumor IM, and
thus they are graded as TIL-low by DeepTILs (supple-
mentary material, Figure S13C,D). Similarly, the TIL-
low subgroup by KM grading had few TILs found
within the slide, while these cases were identified as
belonging to the TIL-high group by DeepTILs (sup-
plementary material, Figure S13A,B) as those few
TILs appeared at the 200-μm tumor IM. We also
found that some inflammatory cells in necrotic debris
and/or fibrosis tissue from few cases were detected as
TILs by DeepTILs (supplementary material,
Figure S13A,B). Although these false positives did not
significantly affect patient subgrouping in our study,
the DL approaches could be further improved to
reduce the false-positive prediction by learning these
patterns.
Recent meta-analysis showed that manual TIL anal-

ysis of certain T-cells (e.g. CD4, CD8, etc.) in tumor

center, stroma, and at the IM based on IHC staining
was associated with OS and disease-free survival [2].
The discrepancies between our findings (i.e. no statisti-
cal PFS difference using TIL densities in the tumor
center derived by DeepTILs) compared to the recent
meta-analysis could be due our approaches only utiliz-
ing H&E-stained WSIs where we cannot take into
account densities of certain types of T-cells within the
tumor regions and at IMs. In addition, our discovery
cohort, the Yonsei cohort, was collected from patients
who underwent surgical resection at a single institute
and could pose ethnic-specific disease outcome and/or
morphological differences across ethnicities [20,24].
We plan to collect WSIs immunostained for CD3,
CD8, and FOXP3 and integrate them with matched
H&E-stained WSIs, to allow more accurate quantifica-
tion of TIL density and evaluation of prognostic infor-
mation of TIL features from certain types of T-cell
across the tumor center, tumor core, and at IMs. With
additional larger training and testing datasets from
multiple centers and international institutes, we will
further validate our findings and assess whether TIL
densities at the 200-μm IM layer could serve as a
robust prognostic biomarker for patients with CRC.
Another limitation was that we did not incorporate
morphological features present in tumor and stroma
regions with TIL densities at various tumor regions
and IMs to correlate with patient outcome. There are
several new studies showing that H&E-stained WSI-
based DL models utilizing morphological features
from WSIs can accurately predict CRC patient sur-
vival. Incorporating such morphologic features with
TIL densities could possibly further improve CRC
patient prognostication. Lastly, while we showed that
combining manual TIL grading by pathologists and
DeepTILs could improve patient subgrouping, we did
not attempt to use the DL model as an assistant for
pathologists’ TIL grading. A recent study showed that
systematic incorporation of the DL model to assist
physicians in predicting MSI status based on H&E-
stained WSI could provide labor and cost-saving bene-
fits [25]. Similarly, proper integration of the DL
models as guidance for TIL grading could potentially
provide similar benefits.
Taken together, we have developed DL approaches

for TIL detection and their spatial quantification in
H&E-stained WSIs. Our analyses indicate that auto-
matic TIL grading could identify CRC patient sub-
groups with distinct PFS. The analyses also indicate
that the DeepTILs could address the inter-rater dis-
agreements of TIL evaluation by pathologists in H&E-
stained slides. Finally, we have shown that combining
the DL-based TIL subgroup with KM grading could
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improve patient prognostication. Our trained TIL
detector has the potential to be deployed in the clinical
setting, which could help pathologists in TIL identifi-
cation and quantification. In future, we plan to test and
validate the DL approaches for spatial TIL quantifica-
tion through a larger number and diversity of datasets
as well as compare the IHC-based scoring system to
help in selecting CRC patients with high or low risk.
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