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ABSTRACT: We describe and study the formation of confined chemical garden patterns. At
low flow rates of injection of cobalt chloride solution into a Hele-Shaw cell filled with sodium
silicate, the precipitate forms with a thin filament wrapping around an expanding “candy
floss” structure. The result is the formation of an Archimedean spiral structure. We model the
growth of the structure mathematically. We estimate the effective density of the precipitate
and calculate the membrane permeability. We set the results within the context of recent
experimental and modeling work on confined chemical garden filaments.

1. INTRODUCTION

Pattern formation is commonly observed in nature as a result
of physical, chemical, or biological self-organizing processes.1,2

A remarkable example of such self-organizing patterns are
chemical gardens, precipitate structures formed when a metal
salt contacts with a solution of silicate, phosphate, carbonate,
or many other anions.3−5 Various methods have been
developed to grow these structures, which lead to a wide
array of patterns and regimes;6−14 the one characteristic
common to all is the formation of a semipermeable precipitate
membrane separating two fluids which establishes a steep
concentration and pH gradient. The earliest such experimental
method is seed growth, which simply involves placing a solid
crystal of a metal salt in a reservoir containing a silicate
solution. The precipitation reaction forms a membrane
surrounding the seed, across which a concentration gradient
drives water into the seed through osmosis. Eventually, the
increase in pressure causes the membrane to rupture, releasing
a buoyant jet of the inner solution. This process then repeats,
given the periodical rupturing and healing of the membrane by
precipitation. The result is the formation of multiple vertical
tubes; the resemblance of this pattern with the stalks of plants
led to the name chemical garden.3,15 Novel methods were
developed over time, allowing for better control of the
experimental variables, and thus uncovering new chemical
garden patterns. If a metal salt solution is pumped into the
reservoir rather than introduced with a seed, vertical tubular
structures are still formed, which can range from thin jet-like
filaments, to wider oscillating tubes, to even wider bulbous
structures.16,17 These different regimes were found to be due to

the density difference between the lighter injected fluid and the
denser host solution.16,17 Further control over the formation of
these precipitate patterns is achieved with Hele-Shaw
cells:18−22 quasi two-dimensional micro reactors where one
of the reactants is injected into the other. This method reveals
a truly remarkable array of different patterns, shaped by the
viscosity differences of the fluids as well as the local velocity.
Such regimes include “spirals”, “flowers”, “worms”, and
“filaments”.23,24 These filaments are one of the most
noteworthy regimes and occur when the concentrations of
the reactants are both high and the injection flow rate is above
a certain threshold. They consist of thin tubular structures,
with an active tip that periodically changes direction after short
rectilinear paths, resulting in a zigzag pattern.25−29 The motion
of these patterns has been modeled according to the oscillatory
dynamics of the membrane at the tip of the filament.27 Below
the flow rate threshold, no filaments are observed and the
precipitate spreads radially from the nozzle.25,27,30 In this work,
Hele-Shaw cells are used to grow chemical gardens with very
low flow rates but high concentrations of the reactants, sodium
silicate, and cobalt chloride. The evolution of the radial
structures formed is modeled, and a novel pattern is observed,
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an Archimedean Spiral;31 this appears to be the result of the
simultaneous growth of two distinct regimes.

2. EXPERIMENTAL METHODS
A horizontal Hele-Shaw cell was used for experiments (Figure 1). The
setup consisted of two circular perspex plates (30 cm in diameter)
separated by rubber spaces 0.5 mm thick and placed horizontally over
a light pad for illumination. The cell was initially filled from a center
injection nozzle with a host solution of sodium silicate (3.13 M),
prepared by dilution in water of a commercial solution. A displacing
solution of cobalt chloride (0.63 M) was then injected into the cell.
This solution was prepared by dissolution of the powder in water. A
syringe pump was used to pump both solutions into the cell.
Photographs were taken from above during each experiment at 5 s
intervals with a Nikon D300s digital single-lens reflex camera (DSLR,
4288 × 2848 pixels) with a Hoya circular polarizing lens filter. The
images were analyzed with MATLAB to determine the growth of the
precipitate area with time. This involved binarizing the image to black
and white, calculating the area of precipitate in pixels, and then
converting to cm2.

3. EXPERIMENTAL OBSERVATIONS
3.1. Regime Characterization. As the cobalt chloride

solution is injected into the host solution of sodium silicate,
precipitate patterns grow radially from the center injection
point. As the structure grows, various different patterns can be
observed. The different regimes observed are presented in
Figure 2.

A new regime was observed, Archimedean spirals, together
with another possibly novel morphology, termed here candy
f loss. Candy floss growth is characterized by a uniform and
radial seeping of precipitate, with a fluffy pink color, hence the
name. This pattern is similar to the moss regime already
reported in the literature,30 which is also the first regime to
appear in similar experiments, but with a more homogeneous
pink color. The moss pattern is described as having the
features of compact fibers, with large inner fingers and a violet-
blue color,30 quite different from the candy floss morphology.
These differences may be due to the different concentrations of
the reactants in the two cases, as well as the slightly lower flow
rate used to generate the moss pattern (∼1 μL s−1). It is
possible that moss and candy floss are mere variations of the
same regime; however, given the differences, the pattern
observed in this work is referred to as candy f loss in this paper.
Archimedean spirals were found to grow together with

candy floss, for all injection flow rates of 3.3 μL s−1 (0.2 mL
min−1) and above. These spirals consist of a clear line of
precipitate growing around the edge of the existing candy floss
structure. Because these two patterns cogrow, the lines growing
around the edge are approximately equally spaced on
successive turnings, thus forming an Archimedean spiral.
Indeed, such a spiral is defined as a curve increasing its
distance from the origin at a constant rate, along a line that
rotates at a constant angular velocity (expressed mathemati-
cally as r = bθ with b as the filament width); that is similar to
the process observed experimentally in the chemical garden.
(The angular velocity of the precipitate spiral is not constant,
but the velocity is. The result is ultimately the same, the
formation of the chemical garden just slows down with time.)
The equation for the arclength of an Archimedean spiral is

θ θ θ θ= + + + +l
b
2

( 1 log( 1 ))2 2
(1)

If we assume the spiral grows at a constant speed and take the
derivative with respect to t, we obtain

θ θ= = +l
t

v b
t

d
d

d
d

1 2
(2)

This first-order nonlinear ordinary differential equation may be
integrated to derive an implicit expression relating θ and t:

θ θ θ+ + =− vt
b

1
2

( 1 sinh )2 1
(3)

defining θ = 0 at t = 0. A similar implicit expression for r and t
may easily be obtained from the equation for an Archimedean
spiral:

θ= +r a b (4)

Figure 1. Schematic of the experimental setup.

Figure 2. Different regimes observed during an experiment. The
structure spreads radially from the nozzle at the center; different
patterns emerge as the local velocity decreases: (A) Archimedean
spirals/candy floss, (B) candy floss, and (C) lichen/worms.
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Here, we consider the curve produced by a physical process
in which material is injected into a 2D setup, so having
negligible width. At the beginning of the process, a circle of a
certain diameter forms. At this point the circle becomes
unstable and material starts to leak out to form a filament that
wraps around itself. The process then continues as an
advancing filament of fixed width of this material hugs itself.
Before the amount of material injected is sufficient to form a
filament, precisely what form this curve takes depends on how
we might describe in detail the initial injection. However, once
past this initial stage, a self-hugging filament of fixed width is
described by a spiral; the distance between whose turns is
constant. Such a curve is an Archimedean spiral,31 or its close

relative, the involute of the circle.32,33 These two curves are
practically indistinguishable except very close to the origin (the
Archimedean spiral is in fact the pedal curve of the involute of
a circle, with the center as pedal point34). Therefore, we refer
for simplicity to the curve as an Archimedean spiral. The way
Archimedes formed his spiral is to think of a point moving at a
constant rate along a straight line that rotates around a point
lying on that straight line. Imagine something like the path an
ant makes when it walks along the hand of a clock from the
center outward. If one thinks of the spiral being constructed
thus, if you consider the ant’s speed relative to the fixed clock
face, it increases as it moves outward. But you obtain the same
spiral, only being drawn at the constant speed, rather than a

Figure 3. Time sequence of photographs showing the motion of a spiral segment. The arrow points to the starting point of the line; it then grows
counterclockwise. The segment forms at the edge of the candy floss region, which separates the various curves of the spiral. The Archimedean spiral
and the candy floss grow simultaneously; candy floss grows in all directions (note how it eventually even starts leaking from the outside of the spiral
itself, starting at t = 12 s), and the spiral evolves independently, adding new sections to its moving tip in a linear fashion.

Figure 4. Sequence of photographs of precipitate patterns formed under different injection flow rates (1.71−6.7 μL s−1; 0.1−0.4 mL min−1) for
different volumes of injected cobalt chloride (field of view: 9.7 × 9.7 cm).
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constant angular velocity, if a second ant marches round and
round the clock face from the center at a constant speed
spiralling outward while following the trajectory left by the
first. This is our case. In fact, Archimedes himself is interested
in his original exploration of the spiral31 in the areas between
successive turns, which he found to be in arithmetic
progression,35 and these areas tell us how long it takes for
our filament to complete each succeeding coil.
The expanding candy floss does not spread as a perfect

circle, however, so the path of the precipitate spiral may
slightly deviate from a perfect Archimedean spiral (Figure 3).
In a normal Archimedean spiral, the radius increases in so-
called arithmetic progression, by a constant increment for each
turn; here that is so, but with a deal of statistical noise.
Nevertheless, we consider this term effectively communicates
the mechanism of growth, while distinguishing it from other
confined chemical garden spirals.18

Candy floss growth eventually dominates over the spirals,
these cover a larger area with increasing Q. For Q ≤ 1.7 μL s−1,
no spirals are observed and only candy floss is present, which
generally grows symmetrically. The spirals can lead to an
asymmetric growth of the precipitate in later stages, as shown
for Q = 3.3 μs −1 in Figure 4. After the candy floss regime, the
precipitate growth transitioned to patterns of lichen and
worms, as already described in the literature. These are
characterized by a blue-green color and a wavier perimeter.
The transition to new regimes always occurred at a larger
radius of precipitate for higher injection flow rates.
3.2. Effect of Local Velocity. The appearance of the

different growth regimes is dependent on the local velocity at a
given time.30 Because the flow rate of cobalt chloride injected
into the cell is constant, the local velocity u = Q/(2πLr)
decreases with radius r from the center injection point as the
structure grows. Figure 5 shows the different patterns observed
as a function of local velocity, for each Q tested. As the
structure grows and the local velocity at its periphery
decreases, higher flow rate patterns become unstable and
new regimes emerge: filaments turn into Archimedean spirals,
spirals stop and candy floss dominates, and eventually candy
floss turns into lichen/worms.

Multiple regimes may be observed simultaneously, with the
secondary patterns appearing in cogrowth always correspond-
ing to lower local velocity regimes.27,30 It is common, for
instance, for filaments to start leaking from the walls27 and for
Archimedean spirals to appear together with candy floss. This
implies that the local velocity may not be constant all across
the perimeter of the precipitate, and it may decrease locally
because of physical barriers caused by asymmetries in the
precipitate morphology.30 The most noteworthy cases of
cogrowth involve filaments, which require the highest local
velocity. As initially expected, one can observe that filaments
leak from the walls and then transition to candy floss, as shown
in Figure 5. However, it is also possible for spirals to lead to
filaments, as presented in Figure 6. This suggests that spiral
growth may be very similar to filaments because the latter can
emerge seamlessly from a loop of a spiral.
In addition, these data show that while it is often possible to

predict which regimes will appear for a particular injection flow
rate, there are still rather wide transition regions between
regimes, where any of these patterns may emerge.27

Cogrowth can also appear as internal reaction zones in the
precipitate structure. During the lichen/worms phase, a darker
blue layer within the main front can be seen to expand at the
same time as the whole precipitate area grows, as shown in
Figure 7. One possible explanation for this are the inclusions of
unreacted sodium silicate left behind during the worms phase,
presented in Figure 8b. These react at later times as more
cobalt chloride flows through the system and is fed to the
external surface of the precipitate. This effect complicates the
modeling of the lichen/worms phase because the quantity of
cobalt chloride that reaches the outer edge of solid and that
contributes to the expansion of the structure is reduced. It also
adds an error into the estimation of the precipitate area
through the binary image processing method because these
pockets of sodium silicate are difficult to detect automatically.

3.3. Effective Density Estimation. One important
parameter when studying the growth of these chemical garden
regimes is the density of the precipitate. Given how the
precipitate membrane formed in the reaction is a hydrous,
porous material, an experiment was conducted to estimate the
effective density of the chemical garden structure. The
experiment involved injecting known quantities of both
solutions into the cell, first the silicate one and then cobalt,
with known densities ρSi and ρCo. With image analysis it is
possible to determine the volume of sodium silicate before and
after reaction, as well as the volume of precipitate formed.
Assuming negligible density changes in the liquids and that the
osmotic flow of water out of the chemical garden did not dilute
the sodium silicate solution, the effective density can be
calculated as

ρ =
+ −M M M

Veff
Co,1 Si,1 Si,2

prec (5)

Here, the subscript 1 refers to the mass of the reactant before
the injection of cobalt chloride (and thus before reaction has
taken place) and the subscript 2 refers to the end of the
experiment, after the reaction is complete. Thus, MSi,1 is the
mass of silicate injected into the cell at the start,MCo,1 the mass
of cobalt injected after, and MSi,1 the mass of silicate not
consumed by reaction and advected by the cobalt solution.
Vprec is the volume of precipitate, measured with image analysis
and assumed to fill the entire gap of the cell. The density was

Figure 5. Pattern regime formed at calculated local velocities for
different flow rates. Red bars, Archimedean spirals; orange bars,
Candy-floss; and blue bars, lichen/worms regimes. Images above bars
also indicate regime pattern. Transition to gray bars signify the end of
the experiment.
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Figure 6. Photographs of precipitate after 175 s for three repeat experiments at Q = 6.7 μL s−1(0.4 mL min−1): (a) leaking from filaments; (b)
spirals, no filaments; (c) filaments from spirals. In spite of the same experimental conditions, different results may be obtained. This is commonly
observed in chemical garden experiments in Hele-Shaw cells; there exists a transition region between regimes where any one pattern may be
observed. The fact that filaments are formed under the same conditions as spirals, or even emerging directly from them, suggests spiral segments
may correspond to a filament wrapping around the candy floss structure; this would make them very similar to when filaments start leaking inner
fluid from the walls (as shown in panel a). Spirals would then correspond to filaments self-hugging the leaking inner fluid.

Figure 7. Thin dark annulus of secondary precipitate is apparent in the worms/lichen growth phase (see panel a). At a later time (b), the dark
annulus of secondary precipitate has expanded through internal reaction zones.

Figure 8. (a) Close-up of precipitate growth with the candy floss and Archimedean spiral regimes. The spiral segments sometimes are broken up
into shorter ones by the expanding candy floss. These segments exhibit some bumps along their outline, possibly an indication of oscillatory
dynamics similar to chemical garden filaments. (b) Detail of the lichen regime, which does not grow in a uniform manner. As a result, inclusions of
outer solution may form within the precipitate, reacting with the inner solution at a later stage of the experiment. These areas are difficult to detect
rigorously with image analysis, introducing uncertainties in the estimation of the effective density.
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estimated to be ρeff = (1.19 ± 0.07) × 103 kg m−3, for a
precipitate grown at injection rate Q = 0.3 mL min−1. The
error in the measurement is due to any solid formed within the
nozzle being unaccounted for, as well as uncertainty regarding
the moment when the solid started spreading in the cell. The
effective density is much closer to the density of water than
that of cobalt silicate crystals, suggesting a highly porous
structure. Assuming that the only species present are the 0.63
M cobalt chloride solution and the crystals, which have
densities of ρCo = 1070 kg m−3 and ρcrystals = 4600 kg m−3,
respectively, then ρeff = ρCo(1 − ε) + ρcrystalsε, where ε is the
liquid volume fraction. Solving this equation leads to ε = 0.97
± 0.02.
Densities of various dry cobalt-silicate chemical garden

pellets have been reported to lie in the range of 240−580 kg
m−3,22 which correspond to porosities of 0.95−0.87, assuming
the same density for the cobalt silicate crystals. The porosity
estimated here is thus of a similar magnitude as these previous
findings. The fact that the pellets have a lower porosity is also
to be expected because these were grown over a much longer
time scale of 1−2 h, instead of the few minutes for the
experiments described in this study. In addition, these pellets
were grown without injection, giving the solid more time to
grow denser and without being spread by injection.

4. MATHEMATICAL MODELING
4.1. Precipitate Growth. By applying conservation of

mass to this system, it is possible to model the growth of the
precipitate structure during an experiment. This involves taking
into account the effects of injection, chemical reaction,
osmosis, and density change. The in/out flows and phase
changes are illustrated in Figure 9.
These different contributions can be expressed mathemati-

cally as follows: 1. Injection: a cobalt chloride solution is
continually injected into the cell with a syringe pump. The
mass flow rate is thus

ρ̇ =M QCo Co Co (6)

2. Osmosis: the precipitation reaction forms a semi-
permeable membrane, which allows the passage of water

molecules but inhibits the flow of metal ions. Given that a 0.63
M solution of cobalt chloride is injected into a more
concentrated 3.13 M sodium silicate host solution, an osmotic
pressure is created that drives water out of the chemical
garden. The velocity of water uH O2

can be approximated with
Darcy’s law as follows:

μ
= ΔΠ

u
k

rH O2 (7)

where k is the precipitate membrane system permeability, μ the
viscosity of water, r the average radius of the precipitate
system, and ΔΠ the osmotic pressure. The osmotic pressure
can be estimated from the following equation:

ϕ ϕΔΠ = −iRT C C( )Si Si Co Co (8)

where i is the dimensionless van’t Hoff index, R the molar ideal
gas constant, and T the temperature in Kelvin; ϕCo and ϕSi are
the activity coefficients of CoCl2 and Na2SiO3, respectively,
and CCo and CSi are the molar concentrations of CoCl2 and
Na2SiO3, respectively. The values for i and ϕj may be found in
the literature;36,37 here, i = 1, ϕSi = 0.3, and ϕCo = 0.47. The
permeability k of the precipitate membrane was initially
unknown, and as a result was a fitting parameter in the model.
Permeability is expected to vary with time as the membrane
grows thicker;38,39 in this case, it should assume a value higher
than that published for pellet growth (longer time scale for
membrane formation) but lower than the permeability of a
membrane at the tip of a moving filament (shorter time scale
for membrane formation). The mass flow of water out of the
system is thus

ρ π
μ

̇ = · · ΔΠ
M Hr

k
r

2H O H O2 2 (9)

where H is the gap between the plates of the Hele-Shaw cell.
3. Reaction: the two solutions react to form a hydrous

precipitate of cobalt silicate

+ [ ] →+ −Co (aq) SiO (aq) CoSiO (s)2
3

2
3 (a)

Figure 9. (a) Schematic of the mass flows into and out of the precipitate structure. Injection feeds cobalt chloride through the nozzle at the center;
silicate ions are driven from the outer fluid and consumed in the precipitation reaction to form a membrane; the concentration gradient established
across the membrane drives water into the structure through osmosis. (b) Density changes occur in the system: the reaction forms a precipitate
product with a higher density than the liquid reactants, and the overall structure thus consists of the injected inner liquid and the precipitate
product, with an effective density ρeff. The consumption of silicate ions in the reaction also leads to a decrease in the density of the outer fluid,
which is assumed to be negligible here.
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The reaction thus leads to the incorporation of silicate ions
into the precipitate system, which will be limited by the
number of cobalt ions, because sodium silicate is in excess.
Assuming an instantaneous, complete, and irreversible
reaction, the mass flow of silicate ions into the solid is

π̇ = ·−M C M Hr
r
t

2
d
drSi Co SiO3

2
(10)

Combining all these contributions, we obtain the following
differential equation for the rate of change of mass of the solid:

ρ π ρ π
μ

= + · − · · ΔΠ−
M
t

Q C M Lr
r
t

L
kd

d
2

d
d

2rCo Co Co SiO H O3
2

2

(11)

where ρCo is the density of cobalt chloride solution, QCo the
injection flow rate of cobalt chloride solution, −MrSiO3

2 the
molar mass of SiO3

2− ions, and ρH O2
is the density of water.

The solid structure formed during each experiment is
composed of the precipitate cobalt silicate membrane as well
as a liquid component flowing through it. The whole system is
thus assigned an effective density ρeff, and the total rate of
change of mass is

ρ π= ·M
t

Hr
r
t

d
d

2
d
deff (12)

If we combine eqs 11 and 12, we obtain

ρ π ρ π

ρ π
μ

· = + ·

− · · ΔΠ

−Hr
r
t

Q C M Hr
r
t

H
k

2
d
d

2
d
d

2

reff Co Co Co SiO

H O

3
2

2 (13)

which can be solved to give
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This gives the radius of the precipitate structure as a function
of time, considering the contributions of injection, osmosis,
reaction, and density change. If reaction and osmosis are
neglected, then ρeff ≈ ρCo, reducing eq 13 to

π =Hr
r
t

Q2
d
d Co (15)

which would simplify the temporal evolution of r to

π
=r

Q t

H
Co

1/2Ä

Ç

ÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑ (16)

This equation describes the evolution of the system
considering only volume conservation, where the injected
solution fills the cell gap entirely, as a cylinder of radius r and
height H. Reaction and osmosis are thus corrections to this
expression.
4.2. Archimedean Spiral Dynamics. The Archimedean

spiral pattern is a novel chemical garden regime observed in
this work. The thin spiral segments appear to grow from their
tip, by rotating around the expanding candy floss structure.
Filaments were observed to grow directly out of the spiralling
segments; these exhibit the same color and width as the
filaments, as shown in Figure 6. The spirals evolve together
with the candy floss growth; this process is reminiscent of

filaments leaking inner fluid.27 Indeed, once filaments start
leaking from their side walls the flow rate reaching the tip
decreases, and eventually their growth stops (a minimum flow
rate is required to form a filament, which varies slightly with
the chemical system27). A similar behavior is found in the
spirals: their growth eventually stops as the leaking/candy floss
dominates, and no spirals are even observed at lower flow rates.
Additionally, it often happens that the final segment of the
spiral is further away from the other curves of the spiral than
expected, such as the example of Figure 2. This indicates that
the spiral tip is advancing more slowly and is thus pushed away
further as the candy floss area inflates. This behavior would be
analogous to regular filaments slowing down and eventually
stopping as all the inner fluid escapes through leaking. Such
observations strongly suggest that the spirals consist of
filaments wrapping around spreading precipitate through a
self-hugging mechanism. Indeed, chemical garden filaments
have been observed to follow the path of a pre-existing one
when approaching and colliding with it. Therefore, it is
possible that the dynamics of these chemical garden
Archimedean spirals are similar to those of regular filaments.
In essence, if we consider that a filament hugging itself to
advance at a roughly constant rate and that it is approximately
following a circle of ever increasing radius r, then r will increase
with the square root of time.
Filaments consist of thin tubes where unreacted inner fluid

flows, encased by precipitate walls on the sides. A thin
membrane exists at the tip of the active advancing filament.
Previous research on these structures considers the variation of
concentration of precipitate product at the tip, c, affected by
the accumulation due to reaction and the spreading due to
outflow, as well as the internal pressure at the tip, p, which
changes with the variation of volume of fluid in the filament
and the deformation of the membrane. Modeling suggests that
these parameters oscillate during the evolution of the filament,
leading to its characteristic zigzag motion. The model can be
derived to its non-dimensional form,27,28 presented here:

̂
̂ = − − ̂ ̂ ̂ [ − ]̂c

t
M c pc c

d
d

( (1 ) ) 1
(17a)

̂
̂ = − + − ̂ ̂ [ − ]̂

p
t

N W c p c
d
d

(1 )(1 ) 1
(17b)

where is the Heaviside function.
This system is defined by three dimensionless groups:

μ γ= *M D L c k A L c/( )m m ms out out r
2

is a nondimensional rate of accumulation of solid;

μ κ γ=N L Q k A/( )m i out out
2

is a nondimensional volumetric injection rate of metal ion;

α γ=W Q A/( )i out

measures the pressure drop along the filament. c,̂ p̂, and t ̂ are
the nondimensionalized variables for the concentration of
product, internal pressure and time, obtained from the
nondimensionalizing scales cs = c*, ps = γAout/κ, and ts =
μLm/(γAoutkout). Dm is the diffusion coefficient, Lm the
membrane thickness, Lr the length scale of reaction, kout the
membrane permeability, μ the fluid viscosity, Aout the cross-
sectional area of the filament, γ the membrane deformation, κ
the curvature of the membrane [defined as κ = 1/(H/2)], α
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the pressure drop along the filament, c* the critical product
concentration, cms the inner fluid concentration, and Qi the
flow rate inside the filament. For filaments grown with cobalt
chloride and sodium silicate, the values of Lm, kout, and Lr

2c*
have been estimated as 4.8 × 10−6 m, 1.6 × 10−10 m2, and 3.4
× 10−8 mol m−1, respectively.27 The tortuous motion of the
filament tip, periodically changing direction, is associated with
a frequency of oscillation, f. This variable can be derived from
the model as

π
= −

f
F

t
( /4)

2

1/2

s (18)
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For regular filaments, this frequency of oscillation can be
estimated experimentally from the speed of the filament tip, ut,

and the typical distance between turns, δ, as f = ut/δ. This
allows the comparison of the theory with experiments. In the
spirals, however, no turns exist because these hug the candy
floss growth and thus follow the direction of its outline. This
hugging motion may be due to the local concentration of ions:
as the candy floss spreads, it consumes the silicate ions in the
area in front of it; as the spiral loops around and arrives at that
region, its inner side will face a relatively depleted area of ions,
compared to the outer side. This asymmetry makes it more
likely for a deformation to occur on the inner side of the
filament because the precipitate membrane is bound to be
weaker on that side. As a result, the segments will remain “tied”
to the candy floss structure because they are unlikely to turn
toward the outside bulk silicate solution. In spite of this, the
dynamics of the spiral segments should not be fundamentally
different from that of a regular filament: a thin precipitate
membrane will exist at the tip, and the parameters c and p will
continuously oscillate. Because the path of the spiral is fixed,
these dynamics should then just affect their width in a periodic
manner: the precipitation reaction concentrates the product in
the membrane, narrowing the segment; outflow spreads the
precipitate and expands the width of the spiral channel. Indeed,
the spiral segments do not have a constant width, with slight
bumps on their outline, as shown in Figure 8a. We assume that
these are due to the oscillatory dynamics of chemical garden
filaments and that the average gap between these bumps is
analogous to the typical distance between turns in a filament, δ.
In a similar fashion to the study of the traditional filaments,

experimental measurements of the frequency of oscillation f

Figure 10. Plots of experimental radius as a function of time compared with a theoretical model for a compact system and conservation of volume
for Q = 1.7−6.7 μL s−1 (Q = 0.1−0.4 mL min−1). An effective density ρeff = 1.19 × 103 kg m−3 was used for all. For each experiment, r = 0.3 cm at t
= 0 s, which corresponds to the radius of the nozzle.
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can then be compared with theoretical predictions calculated
with eq 18. The main challenge in this analysis lies with the
fact that the exact flow rate inside the spiral segments is
unknown (it is a fraction of the flow rate pumped into the
cell). The low flow rates involved are also at the limit of
applicability of the model.27 Furthermore, candy floss generally
spreads as an irregular circular shape; because the spiral follows
the outline of the candy floss structure, some turns and bumps
may be not be due to the oscillatory dynamics. Nevertheless,
an attempt is made to estimate the characteristics of the
Archimedean spirals in order to investigate the possibility the
model may be applicable. Assuming a flow rate inside the spiral
segments in the range of 4.2−5.8 μL s−1 (0.25−0.35 mL
min−1) for the higher flow rate experiments, and a segment
width of 0.9 mm, eq 18 yields frequencies of oscillation ranging
from 8.7 to 4.6 Hz. These values of f are just slightly higher
than those of filaments generated with the same chemical
system, which is consistent with the similar speed of the active
tip in both cases and the fact that the bumps in the spirals are
more closely spaced than the turns in the filaments. This
supports the possibility that the spirals are indeed filaments
self-hugging the candy floss area.
Confirmation of this hypothesis will require more accurate

measurements and data from the spirals. A high speed camera
may be used to record the development of the structure;
modeling predicts the bumps along their outline are due to a
periodical variation of the width of the moving tip of the spiral,
independent from irregularities in the edge of the expanding
candy floss. Additionally, direct and accurate measurements of
the dimensions and properties of the precipitate membranes
could allow for further information on the similarities or
differences between spirals and regular filaments, as well as
confined chemical gardens as a whole.

5. RESULTS AND DISCUSSION

The precipitate growth model can be compared with the
experimental results obtained with the image analysis method
described in section 2 and the literature.26,27 The two initially
unknown parameters are the effective density of the
precipitate, ρeff, and the membrane’s permeability, k. The
effective density was assumed constant across the entire area of
solid and was estimated experimentally as presented in section
3.3. This leaves the permeability as the fitting parameter of the
model to the experimental data. The experimental results for
the growth of precipitate are shown in Figure 10 for all injected
flow rates tested. The data are shown together with the
respective model prediction. The data are presented only for
the Archimedean spiral and candy floss regimes and show a
good agreement between experiments and model. During the
lichen/worms regimes, the model underestimates the growth
of precipitate likely because of the formation of unreacted
pockets of sodium silicate within the structure, which are
unaccounted for by the image analysis method.
Despite the good performance of the model, it must be

noted that in all cases the model initially overestimates the
growth of solid and then underestimates it. This suggests that
ρeff and k are not constant as the chemical garden evolves. This
trend implies that the effective density decreases with time, the
permeability increases, or both at the same time. This
possibility is consistent with the appearance of inclusions of
sodium silicate in later stages of growth, as shown in Figure 8b.
These are difficult to measure accurately and not taken into

account by the image analysis method, leading to the area of
precipitate being overestimated.
The model also considers the simplest assumption that the

product occupies the whole gap of the cell, essentially as a
cylinder of radius r and height H. However, given the larger
density of the precipitate compared to the solutions, it may
sink to the bottom of the cell, leading to a decrease in the
actual value of H as the structure expands. This effect is likely
to be more important in the regions with visible silicate
entrapments. The model may be expanded accordingly with
accurate measurements of this sinking effect on the effective
value of H.
The transition from candy floss to lichen/moss then

corresponds to the change from a compact system, which
naturally grows with the square root of time, to a noncompact
system with elongated fingers and entrapments, which
approaches linear growth. The model considers only the
evolution of a compact system, hence the discrepancy at longer
times. Further experiments to determine the actual density of
chemical garden membranes and their permeability can clarify
this question.
The values of the fitting parameter of the model, the

permeability k, are presented in Table 1 as a function of flow

rate. Permeability increases in a seemingly linear way with
injection flow rate into the cell; a linear regression of the data
yields the relationship k = 15.9Q + 0.4 (R2 = 0.99), where k has
units of 10−16 m2 and Q has units of mL min−1.
As the flow rate is reduced, the system is expected to

become more similar to chemical gardens grown from pellets.
In these experiments, there is no injection and the precipitate
growth is driven by osmotic pressure only. Permeabilities of
such membranes have been reported to lie in the range k =
(4.6−27) × 10−19 m2.40 The upper range of these values is just
1 order of magnitude below the expected permeability for zero
flow rate, which supports the validity of these results; it is likely
the permeability will not always vary linearly with flow rate. At
higher flow rates filaments are formed, which exhibit a much
higher local velocity. In the filament regime, the combination
of reaction and flow lead to a continuous “opening and
closing” of the membrane, maintaining it at a low width and
much higher permeability. Indeed, in the filament regime,
permeability of the membrane has been estimated to be of the
order of 10−10 m2, several orders of magnitude higher than the
permeabilities estimated here.

6. CONCLUSIONS
The growth of confined chemical gardens created with low
injection flow rates was investigated and modeled mathemati-
cally. In accordance with the literature, new patterns are
formed as the local velocity decreases, starting with
Archimedean spirals, then candy floss, and finally lichen/
worms. The candy floss and Archimedean spiral patterns are

Table 1. Chemical Garden Permeability (k) for Each Flow
Rate Studied, Obtained from Fitting the Model to the
Experimental Results

Q (mL min−1) k (×10−16 m2)

0.1 1.82 ± 0.07
0.2 3.87 ± 0.15
0.3 5.05 ± 0.27
0.4 6.73 ± 0.35
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novel regimes identified in this work, with the latter possibly
the result of a filament traveling along the edge of the
precipitate with a self-hugging motion. Further study of this
regime may involve obtaining more accurate data of the speed
of the spirals and the frequency of formation of the bumps
along their outline.
The effective density of the solid system was estimated

experimentally to be ρeff = (1.19 ± 0.07) × 103 kg m−3, and the
fitting of a model to the experimental results for growth yielded
membrane permeabilities in the range k = (1.8−6.7) × 10−16

m2, found to increase linearly with increasing injection flow
rate. Despite good agreement between theory and experiment,
discrepancies suggest that ρeff and k vary during the expansion
of the solid, thus requiring further study to be accurately
measured.
Spirals have previously been noted in the growth of confined

chemical gardens.18 But those are logarithmic spirals and form
by a completely different mechanism of the curvature of a
growing membrane under pressure in a part of the parameter
space far from that which we have considered in this work.
Archimedean spirals, or the near identical curve, the involute of
the circle, that tends very fast to an Archimedean spiral,32−34

appear in natural growth processes like the formation of bees
combs41 and nacre (mother of pearl).42,43 In particular, they
appear in the growth of many crystals through the Burton−
Cabrera−Frank mechanism44 of growth at a screw dislocation
in a crystal lattice. Likewise, they appear as spiral waves in
chemical oscillators like the Belousov−Zhabotinsky reac-
tion.45,46 However, the growth mechanism we have identified
here, at the mesoscale, although it also leads to an
Archimedean spiral, differs from that one. The crystal growth
mechanism produces spiral terraces that may have equal width,
from much smaller growth unitsatoms or moleculesthat
come together in a fashion that may be described as a type of
excitable system.47 Our mechanism here, on the other hand, is
that of coiling rope, rolls of paper, and so on, in which the
Archimedean spiral forms through the advance of a constant
width filament, rope, or sheet that hugs itself.
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