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Abstract
Nowadays organizations outsource transportation of goods or services to reduce cost which 
leads to a particular type of problem called open location-routing. Also, each logistic 
organization possesses a limited number of specific vehicles that may not be enough in cer-
tain circumstances. This issue indicates the importance of simultaneously considering both 
open and closed routs. On the other hand, the growing concerns about the detrimental envi-
ronmental impacts of human activities reveal the necessity of paying attention to environ-
mental issues in logistics. In this study, a bi-objective mathematical programming model is 
proposed for two-echelon close and open location-routing problem (2E-COLRP) including 
two echelons of factories, depots and customers to minimize costs and CO2 emissions. The 
proposed model finds the optimal routs, optimal number of vehicles and facilities as well 
as the locations of facilities. The augmented epsilon constraint method is used as an exact 
method to solve the small-sized problems. Due to complexity of model, two metaheuristic 
algorithms named MOGWO and NSGA-II are utilized to tackle the problems. The effi-
ciency of two aforementioned algorithms is evaluated in terms of several indices consid-
ering 22 problem instances with various sizes. The results show that MOGWO performs 
better than NSGA-II.
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1  Introduction

Nowadays, supply chain networks that traditionally operate without considering environ-
mental issues such as greenhouse gas emissions are not able to survive in these competitive 
markets (Diabat & Al-Salem, 2015). Hence, manufacturing industries must pay attention 
to these environmental issues in their supply chain. Supply chain management association 
defines supply chain management as follows: supply chain management involves the plan-
ning and management of supply chain activities, the conversion of goods from the raw 
material phase (extraction)to the end user, logistics activities and all coordination activities 
among suppliers, brokers, retailors and final users (Dawei et al., 2015).

According to the definition provided by Srivastava in 2007, green supply chain manage-
ment is "the integration of environmental thinking in supply chain management including 
product design, material sourcing and selection, production processes, product delivery to 
consumers, and so on" (Srivastava, 2007).

One of the most important problems in the green supply chain design is the routing 
problem which aims to find the shortest path between origin and destination to reduce 
emissions effectively. Several optimization models have been provided to find the optimal 
locations for building facilities such as factory, distribution centers and paths among them 
(Soleimani et al., 2017).

Establishing new facilities (warehouses or depots) requires a great deal of investment 
and is expected to be used over a long period of time (Melo et al., 2009). The location of 
establishing these centers has a long-term impact on the overall performance of the supply 
chain and is one of the most important strategic decisions in the process of designing the 
supply chain network.

The vehicle routing problem (VRP) has numerous applications in real life. It clarifies 
in a wide area of transportation and distribution such as transportation of individuals and 
items, conveyance service and garbage collection. Thus, an appropriate selecting of vehicle 
routing has an extensive influence role to improve the economic interests and appropriate-
ness of logistics planning (Mohammed et al., 2017). So, routing decision is a significant 
decision in addition to location and allocation decisions.

In LRP problem, decisions on the location of all types of facilities (example: factories, 
distribution centers, depots, hubs, transit warehouses) are merged with the decision-mak-
ing problem on the route of the vehicles. It is well accepted that deciding on either of the 
above issues independently of the other can have a great impact on the optimal response 
(Salhi & Rand, 1989).

The two-echelon distribution systems are of the multi-echelon systems that are formed 
from three echelons, which have been considered in the last few years due to the applicabil-
ity of these systems. The product flow from the origin to the destination is made at least 
through one or more of the intermediate facilities. Each category can be defined as a trans-
portation interface between two adjacent surfaces. The level can be each type of facilities 
such as factory, warehouse, distribution centers or customers.

A distribution network consisting of three separate sets of principals that are, respec-
tively, corresponding to: potential locations of factories (i.e., sources), potential locations 
of secondary facilities (i.e., intermediate echelon facilities or depots) and customers (i.e., 
destinations) is called a two-echelon distribution network. Customer location in this dis-
tribution network is predetermined and fixed. In other words, the location of the factories 
and the secondary facilities required in this type of distribution network are not predeter-
mined (this is a general case and facilities of one of these echelons can be assumed fixed 



Green two‑echelon closed and open location‑routing problem:…

1 3

and adopt location decisions at least at one echelon). Figure 1 provides a general view of a 
2E-LRP problem.

Outsourcing is one of the ways for decreasing the transportation costs in one or two 
levels of the distribution system. The open routing problem is defined corresponding with 
the situation in which the products cannot be returned to depot after delivery to customers. 
This condition happens when the company does not have enough vehicles or the capacity 
to supply the customers demand. Consequently, another transportation company is handled 
the problem under certain conditions (Repoussis et al., 2010). On the other hand, the det-
rimental effects of the transportation activities should be reduced. Environmental issues of 
the transportation sector are generally classified into four main categories including waste 
generation, energy usage, material recycling and the reduction of the greenhouse gas emis-
sions (Soleimani et al., 2017). The VRP considering the reduction of carbon gas emissions 
in the transportation sector has been highly paid attention in recent years.

In this paper, a bi-objective optimization model for two-echelon routing problem con-
sisting of three levels: factories, distribution center and customers is investigated. In this 
problem, we attempt to find a trade-off between the minimization of the total cost of the 
entire supply chain and the minimization of carbon dioxide emissions of the transporta-
tion sector in the first level (factory to the distribution center) as well as the second level 
(distribution center to customer). It should be noted that the distribution centers have to be 
located and the routing must be done in both levels. In addition, both possible scenarios 
including the availability of vehicles for supplying demand and lack or unavailability of 
vehicles are considered in the proposed mathematical programming model. In other words, 
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Fig. 1   Two-echelon location-routing problem (LRP)
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the combination of closed routing (vehicles belonging to the company) and open routing 
(rented vehicles) is considered in this problem. The model is called two-echelon closed and 
open location-routing problem (2E-COLRP), which seeks to find the optimal location of 
distribution centers or depots, routes and transportation rates in both levels together with 
the optimal allocation of customers and depots.

The remainder of this paper is structured as follows. The related literature is briefly 
reviewed in Sect. 2. In Sect. 3, the problem is defined and the proposed mathematical pro-
gramming model is presented. Section 4 explains the solution methods for the problem. In 
Sect. 5, model validation and sensitivity analysis are conducted. Finally, conclusions are 
expressed in Sect. 5.

2 � Literature review

The relevant studies are presented in this section.

2.1 � Two‑echelon location‑routing problem (2E‑LRP)

In this particular type of LRP problem, first echelon routes are set up for transferring com-
modities from primary facilities to depots and created routes from established depots are 
also created to send goods to customers (second echelon) (Prodhon & Prins, 2014).

Among the earliest studies in the field of 2E-LRP, the paper by Jacobson et al. is con-
siderable (Jacobsen & Madsen, 1980), in which the real problem of the newspaper distribu-
tion system in the western part of Denmark was examined.

Lin and Lei (2009) proposed a model for the 2E-LRP problem including two types of 
customers and a number of depots. They located the distribution centers and designed 
routes in two echelons. A genetic algorithm-based solving approach was also proposed for 
this model, in which results in small sizes were equal to the exact problem solving (Lin & 
Lei, 2009). Crainic et  al. (2011) proposed a heuristic algorithm for solving the 2E-LRP 
problem assuming a facility at a zero-echelon and a limited -capacity facilities at one-eche-
lon (Crainic et al., 2011). Nguyen et al. (2012) proposed a 2E-LRP model assuming a cen-
tral depot and several candidate locations for other depots; in this model, the cost of estab-
lishing depots was different considering limited capacity (Nguyen et al., 2012). Martinez 
et  al. (2014) proposed a bi-objective model for the 2E-LRP problem assuming multiple 
capacities at zero and one echelon and considering the fixed cost of establishing facilities at 
both echelons, direct transportation in first echelon and routing decisions with uniform fleet 
in second echelon. They applied two meta-heuristic methods to solve the model (Martínez-
Salazar et al., 2014). Rahmani et al. (2016) proposed a MIP model for the 2E-LRP prob-
lem and used two meta-heuristic methods to tackle the problem (Rahmani et  al., 2016). 
Vidović et  al. (2016) presented a MIP model for the 2E-LRP in their paper to design a 
system for the collection and recycling of non-hazardous recyclable waste with a meta-
heuristic method for its solution (Vidović et al., 2016). Zhao et al. (2018) applied a model 
for the 2E-LRP to the post sector with a heterogeneous transportation fleet and suggested 
a meta-heuristic method for solving the problem (Zhao et al., 2018). Pichka et al (2018) 
developed a model called two-echelon-open-location-routing-problem (2E-OLRP), assum-
ing that vehicles do not return to depots. The researchers also used a meta-heuristic hybrid 
algorithm for their proposed model (Pichka et al., 2018). Darvish et al. (2019) developed 
a new type of 2E-LRP problem called the flexible locating-routing problem. Two types of 
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flexibility were considered in this model: flexibility in delivery deadline and flexibility in 
designing distribution network. In order to solve this problem, an exact branch-and-bound 
method was proposed (Darvish et al., 2019). Amiri et al. (2019) presented a mixed integer 
nonlinear programming (MINLP) model of the 2E-LRP problem considering time win-
dows and solved the problem with Lagrangian relaxation method (Amiri et al., 2019).

Abbassi et al. (2021) addressed the two-echelon location distribution problem for non-
medical products and developed a multi-objective mathematical formulation considering 
the two objective functions of minimizing the total distribution cost and minimizing the 
total time of the distribution horizon. They used particle swarm optimization (PSO) and 
genetic algorithms to solve a real case of the distribution of non-medical products and then 
evaluated the efficiency and validation of the algorithms. Gao et  al. (2020) investigated 
the two-echelon location-routing problem of biomass resources (2E-BRLRP). They devel-
oped a mixed integer programming model for the problem taking the predetermined supply 
of biomass resources into account to determine the best locations for biomass collection 
facilities and related vehicle routes. They also employed a hybrid heuristic algorithm for 
solving the problem using several computational examples. Fallahtafti et al. (2021) devel-
oped a two-echelon location-routing framework for cash transfer, in which a dynamic risk 
factor was considered to reduce the risk of theft in cash transfer. Then, they implemented 
exact and metaheuristic methods to solve the problem considering several small to medium 
examples. In addition, Gao and Institute (2020) reviewed the literature on two-echelon 
problems. In two-echelon mathematical models, as mentioned earlier, routing is consid-
ered in the first or second echelon or both. In this regard, Lu et al. (2019) assumed closed 
routing in both echelons. Rabbani et al. (2018) proposed a transportation-location-routing 
problem (TLRP) with the objective functions of reducing the distribution cost, fuel con-
sumption, and carbon dioxide emissions along with balancing the workload for city driv-
ers, taking the capacity of vehicles and the time window of customers into consideration. 
They exploited the NSGA-II and MOPSO algorithms to solve the problem and found out 
that MOPSO performed better for solving this problem. Ouhader and El kyal (2017) pre-
sented a two-echelon model taking the economic, environmental and social responsibility 
goals into account to deliver products from suppliers to customers and solved it using the 
epsilon constraint method.

2.2 � Open‑close vehicle routing problem

Open vehicle routing problem (OVRP) assumes that vehicles are not needed to go back to 
the central depot after visiting the final customer. If vehicles are to be returned, they must 
go back the opposite way and visit the same customers. In addition, the OVRP seeks to 
minimize two objectives including the total number of vehicles, and the whole distance 
(or duration) (Fleszar et al., 2009; MirHassani & Abolghasemi, 2011; Subramanian et al., 
2013).

Liu and Jiang (2012) in their research proposed a new problem called closed–open-
mixed-vehicle-routing-problem (COMVRP). The distinction of this model is to consider 
both the open and closed routes compared to the classic model of the vehicle routing prob-
lem. The researchers presented a MIP model and a meta- heuristic solution procedure for 
their problem (Liu & Jiang, 2012). One of the most recent research in this area by Vincent 
and Lin (2015) presented a heuristic algorithm based on simulated annealing heuristic (SA) 
to solve the problem of open vehicle routing. The computational results of applying this 
algorithm on four sets of standard problems indicate the high effectiveness of this method 
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(Vincent & Lin, 2015). Rahmani Hosseinabadi et  al. (2021) developed a meta-heuristic 
algorithm called OVRP_SAICA to solve OVRP. They compared the algorithm with several 
other algorithms and found that OVRP_SAICA performs better than all of them in solving 
the OVRP. Lalla-Ruiz and Mes (2021) proposed a two-index-based mathematical formula-
tion for the MDOVRP. Also, they presented a memetic algorithm (MA) for solving the 
model. Sun et  al. (2021) demonstrated the effectiveness of the heuristic-based initializa-
tion mechanism by a simulation experiment based on the 320 benchmark instances. Zhen 
et al. (2021) introduced a nonlinear mixed-integer programming model for OVRP that is 
a shared mobility based last mile delivery mode. Their proposed model was beneficial in 
terms of reducing the last mile delivery cost as well as advancing the modern transporta-
tion paradigm.

Ruiz y Ruiz et al. (2020) presented a method for improving the performance of OVRP. 
Their method is able to save the economic costs up to 20%. Yuchi et al. (2021) proposed 
a location-inventory-routing problem in a closed-loop supply chain (LIRP-CL). They also 
employed a novel hybrid heuristic algorithm based on tabu search (TS) and simulated 
annealing (SA). Purnawan et al. (2018) compared the results of two different algorithms, 
namely local solver (LS) algorithm and simulated annealing (SA) algorithm, for solving 
the gallon water closed-loop supply chain problem. Soto-Mendoza et al. (2020) presented 
a hybrid Grasshopper Optimization algorithm using a novel decoder to solve the OVRP. 
They conducted several experiments to minimize the total number of vehicles as well as 
the total distance. Ruiz et  al. (2019) utilized a biased random-key genetic algorithm to 
solve the OVRP with capacity and distance constraints. Xia and Fu (2019) designed an 
OVRP with soft time windows and satisfaction rate to reduce the logistics distribution cost. 
They applied adaptive penalty mechanism, multi-neighborhood structure and re-initiali-
zation rule embedded in the Tabu Search (TS) algorithm, resulting in an improved TSA 
(ITSA). Atefi et al. (2018) addressed an OVRP with decoupling points (OVRP-DP); then, 
they applied a tailored iterated local search (ILS) algorithm to solve the problem. Rahmani 
(2021) developed a multi-cross-docking vehicle routing problem (MCVRP) which was a 
combination with close–open mixed VRP (COMVRP). Also, the problem was solved using 
the genetic algorithm (GA). Guo et al. (2018) proposed a location-inventory-routing prob-
lem for a closed loop supply chain. They also used the genetic algorithm (GA) to tackle the 
problem. Niu et al. (2018) presented a mathematical model for the green open vehicle rout-
ing problem considering time windows (GOVRPTW) and employed a hybrid Tabu Search 
(TS) algorithm to deal with the problem.

2.3 � Routing problem considering pollutant emissions

Much of the greenhouse gas emissions and in particular carbon dioxide emissions are 
related to the road transportation sector. Emissions from these gases have direct and indi-
rect harmful effects on humans and the entire ecosystem. This growing concern about the 
negative impacts of transportation on the environment necessitates the need to redesign 
the road transport network and the transient load flow, taking into account greenhouse gas 
emissions (Bektaş & Laporte, 2011).

Different approaches can be applied to the problem of vehicle routing in order to reduce 
emissions, including setting targets with the nature of environmental costs. The purpose 
of the PRP is to select a program for routs of vehicles with the lowest emissions and espe-
cially with the lowest carbon dioxide emissions. Studies in the area of PRP can be exam-
ined since 2007. By extending the goals of the classic VRP models and taking into account 
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the social and environmental impacts of the transportation process, reducing carbon diox-
ide emissions is achievable (Bektaş & Laporte, 2011; Maden et  al., 2010; McKinnon, 
2007; Sbihi & Eglese, 2007).

Traditional VRP that aims to minimize the total travelled distance are also inherently 
aimed at reducing fuel consumption and minimizing the emission of environmental pollut-
ants; however, this relationship must be measured directly by careful formulation. Pronello 
and Andre (2000) proposed models to measure the amount of pollution produced by vehi-
cles. These models also included factors such as elapsed time with engine cooling con-
ditions (Pronello & André, 2000). Sbihi and Eglese (2007) raised a TDVRP problem in 
the area of traffic control issues. In this case, when vehicles travel at optimum speed, they 
produce less pollution. In addition, distancing vehicles from the traffic congestion also 
reduces the harmful effects of the environment, although this will make the route longer 
(Sbihi & Eglese, 2007). In another study, Maden et al. (2010) developed a TDVRP model 
that, according to computational results, leads to 7% reduction in carbon dioxide emissions 
assuming different speeds of vehicles. However, the goal of the VRP model proposed by 
them was to minimize total costs rather than reduce emissions (Maden, et al., 2010). Bauer 
et al (2010) examined the impact of multi-state transportation systems on greenhouse gas 
emissions. They showed the potential impact of a multi-state transportation system on 
reducing emissions (Bauer et al., 2010). Fagerholt et al. (2010) reduced fuel consumption 
and emissions by optimizing speed in a transportation scenario (Fagerholt et  al., 2010). 
Kumar et  al. (2016) proposed the multiple objectives optimization model for the PRP 
with considering both carbon generation and emission and solved it with two meta-heu-
ristic approaches (Kumar et al., 2016). Navazi et al. (2021) proposed closed-loop location 
routing-inventory problem with three objectives of cost, environmental effects and social 
responsibilities. They applied the genetic algorithm (GA) to solve the large-sized problem. 
Dewi and Utama (2021) developed a hybrid whale optimization algorithm (HWOA) which 
is based on the whale optimization algorithm (WOA) combined with the Tabu Search (TS) 
algorithm and local search procedures to minimize the distribution cost of the green vehi-
cle routing problem (GVRP) considering fuel consumption, carbon emissions and vehicle 
usage cost.

Liu et al. (2021) developed a sustainable location-routing-inventory model for the sup-
ply chain of perishable products considering costs, CO2 emissions, and social responsibility 
(fresh and high-quality products for customer satisfaction). Babaee et al. (2020) proposed 
a location-routing model for hospital waste management to prevent the spread of Corona-
virus. Masoudipour et al. (2020) developed a closed-loop supply chain model and solved it 
by the Lexicographic augmented ε-constraint method using CPLEX optimization software. 
Zandkarimkhani et al. (2020) presented a model for open-loop supply chain network design 
considering the location-routing problem. Biuki et  al. (2020) presented a mathematical 
model for the location-routing-inventory problem of perishable products and exploited the 
GA and PSO metaheuristic algorithms to tackle the problem. Navazi et al. (2019) presented 
a sustainable location-routing model to collect expired products with forward and reverse 
routes. Zhang et  al. (2018) developed a sustainable mathematical model for multi-depot 
location multi- routing problem in emergency situations considering the minimization of 
relief costs, travel time, and CO2 emissions. They also used a genetic algorithm (GA) to 
solve the problem. Ebrahimi (2018) suggested a multi-objective random allocation-routing 
problem for the tire supply chain considering sustainability and discount. The objectives 
of minimizing costs and pollution were introduced as economic and environmental goals, 
respectively, and maximizing customer responsiveness was considered as social responsi-
bility aspect, and the epsilon constraint method was used to solve the model.
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The following table summarizes recent research works on VRP (Table 1).
As mentioned before, some organizations for reducing the cost of transportations out-

source this unit of supply chain system. So, this subject leads to create a concept that is 
called open vehicle routing problem. In this study, both open and closed routs are used in 
routes in two-echelon location-routing problem.

The contributions of this study as compared to similar works can be stated as follows: 
considering both open and closed routes in two-echelon location-routing problem, Apply-
ing two objective functions aiming to minimize cost and CO2 gas emissions in two-echelon 
closed and open location routing problem, Utilizing efficient meta-heuristic algorithms for 
solving the proposed problem.

3 � Problem definition

In this section, a bi-objective mixed-integer programming mathematical model is presented 
for two-echelon closed and open location-routing problem (2ECOLRP) by purpose of min-
imizing cost and CO2 gas emission throughout the supply network. Many researchers over 
the last few decades have established numerous researches and used many methods with 
different techniques to handle it. But, for all research, finding the lowest cost is very com-
plex. However, they have managed to come up with approximate solutions that differ in 
efficiencies depending on the search space (Mohammed et al., 2017). In proposed model, 
the first echelon routes are closed and commence from a given factory, serve some depots 
and return to the first factory. However, the second echelon routes are open and begin from 
a given depot, serve some customers and do not go back to the first depot (Dai et al., 2019). 
Considering these assumptions for the proposed model, in addition to approaching the 
problem to real-world constraints, it will optimize the problem in terms of environmental 
impacts. A schematic of feasible solution of proposed problem is presented in Fig. 2.

As can be seen in Fig. 2, the location decisions are performed only in second echelon, 
and all factories are pre-deployed on the first echelon and it is only the allocation decisions 
related to depots and customers, while the routing decisions should be adopted in both 
echelons.

The assumptions, indices, parameters and decision variables are presented as follows:

3.1 � Assumptions, indices, parameters and decision variables of proposed model

1.	 Each customer demand is deterministic and known and each vehicle has a defined capac-
ity.

2.	 Each depot must be served by one factory and one vehicle only.
3.	 The proposed model is single period and single product.
4.	 The number of vehicles is limited.
5.	 There are different types of vehicles that have different capacities and have different CO2 

gas emission coefficient in first echelon.
6.	 The production capacity of each factory and the storage capacity of each depot are 

limited

Let G = (V ,E) be a complete directed graph where V = Vf ∪ Vd ∪ Vc denotes the set 
of all nodes of desired network. Vf  , Vd and Vc indicate the factories in first echelon, the 
depots in second echelons and the customers in third echelons, respectively. And also, 
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E = {(i, j) ∶ i, j ∈ V , i ≠ j} denotes the set of arcs between i and j and each arc has a dis-
tance equal to distanceij . Each of customer has a demand equal to di that 0 ≤ di ≤ CVn . The 
other indices, parameters and decision variables are presented in Table 2.

3.2 � Mathematical model

The objective functions and constraints of the proposed mathematical model are presented 
as follows:

•	 Objective functions

(1)

Minimize Z1 =
∑
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Fig. 2   A schematic of feasible solution of proposed problem
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(2)

Minimize Z2 =
∑

i∈Vf ∪Vd

∑

j∈Vf ∪Vd

∑

n∈N

distanceij.

[(

(Co2ef − Co2esn)
bijn

CN1n

)

+ Co2ef .zijn

]

+
∑

i∈Nd∪Nc

∑

j∈Nc

∑

n∈N

distanceij.

[(

(Co2f1n − Co2fs2n)
Pijn

CN2n

)

+ Co2f1n.yijn

]

Table 2   Indices, parameters and 
decision variables of proposed 
mathematical model

Sets
V : set of all nodes V = Vf ∪ Vd ∪ Vc

Vf  : set of factories in first echelon
Vd : set of facilities in second echelon (depots)
Vc : set of customers in third echelon
E : set of all arcs between nodes
n: set of available vehicles in first echelon (factories)
Indices
i , j , k: index for the nodes of all corresponding to all echelons
n: index for the vehicles
Parameters
FCDk : the fixed cost of establishing intermediate facilities (depots) 
k ∈ Vd

CFk : the capacity of factories k ∈ Vp

CDk : the capacity of intermediate facilities (depots)k ∈ Vd

di : the demand of customers i ∈ Vc

��������ij : the distance from i to j                                                                    
i, j ∈ V

tcij : the travelling cost from i to j                                                                     
i, j ∈ V

TN : maximum number of available vehicles in depot
FC1n : the fixed cost of using vehicle n in the first echelon
CN1n : the capacity of vehicle n in the first echelon
CN2n : the capacity of vehicle n in the second echelon
FC2n : the fixed cost of using vehicle n in the second echelon
Co2efn : CO2 gas emission coefficient of vehicle n in empty condition 

in the first echelon
Co2esn : CO2 gas emission coefficient of vehicle n in empty condition 

in the second echelon
Co2f1n : CO2 gas emission coefficient of vehicle n in full load condi-

tion in the first echelon
Co2f s2n : CO2 gas emission coefficient of vehicle n in full load condi-

tion in the second echelon
Decision variables
xk : binary variable for establishing depot; equal to 1 if depot k is 

established and otherwise 0. k ∈ Vd

zijn : binary variable for routing in first echelon; equal to 1 if vehicle n 
travel from i to j in first echelon

i ∈ Vf ∪ V
d
 , j ∈ Vf ∪ V

d
yijn : binary variable for routing in second echelon; equal to 1 if vehicle 

n travel from i to j in second echelon
i ∈ Vd ∪ Vc , j ∈ Vc

bijn : decision variable indicates remaining cargo in vehicle n corre-
sponding to arc i to j in first echelon;

i ∈ Vf ∪ V
d
 , j ∈ Vf ∪ V

d
Pijn : decision variable indicates remaining cargo in vehicle n cor-

responding to arc i to j in second echelon;
i ∈ Vd ∪ Vc, j ∈ Vc
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•	 Constraints
	   Subject to:

(3)
∑

k∈Vf

xk =
|

|

|

Vf
|

|

|

,

(4)
∑

j∈Vd

zijn ≤ 1∀i ∈ Vf , ∀n ∈ N,

(5)

∑

j ∈ Vf ∪ V
d

(i ≠ j)

zijn =
∑

j ∈ Vf ∪ V
d

(j ≠ i)

zjin ∀i ∈ Vf ∪ V
d
, ∀n ∈ N,

(6)

∑

j ∈ Vf ∪ V
d

(j ≠ k)

∑

n∈N

zkjn = xk ∀k ∈ Vd,

(7)

∑

j ∈ Vf ∪ V
d

(j ≠ k)

∑

n∈N

zjkn = xk ∀k ∈ Vd,

(8)
∑

n∈N

zikn ≤ xk ∀i ∈ Vf , ∀k ∈ Vd,

(9)
∑

j∈Vd

∑

n∈N

bijn ≤ CFi ∀i ∈ Vf ,

(10)zijn = 0∀i, j ∈ Vf , ∀n ∈ N,

(11)
∑

j∈Vf∪Vd

∑

n∈N

bjin −
∑

j∈Vf∪Vd

∑

n∈N

bijn =
∑

k∈V

dk.wki ∀i∈ Vd,

(12)bijn ≤ CN1n.zijn ∀i, j ∈ Vf , (i ≠ j), ∀n ∈ N,

(13)
∑

i∈Vd

∑

j∈Vf

bijn = 0∀n ∈ N,

(14)ykjn ≤ xk ∀j ∈ Vc, ∀k ∈ Vd,

(15)
∑

j∈Vc

∑

n∈N

yijn = 1∀i ∈ Vc∪Vd,



Green two‑echelon closed and open location‑routing problem:…

1 3

(16)

∑

j ∈ Vc

(i ≠ j)

yijn =
∑

j ∈ Vd ∪ Vc

(j ≠ i)

yjin ∀i ∈ Vd ∪ Vc, ∀n ∈ N,

(17)

∑

j ∈ Vd ∪ Vc

(j ≠ i)

Pjin −
∑

j ∈ Vd ∪ Vc

(i ≠ j)

Pijn = di ∀i ∈ Vc, ∀n ∈ N,

(18)Pijn ≤ CN2n.yijn ∀i,∈ Vd ∪ Vc, j ∈ Vc, ∀n ∈ N,

(19)
∑

j∈Vc

Pkjn =
∑

k∈Vc

dj.wjk ∀i∈ Vd, ∀n ∈ N,

(20)Pijn ≤
(

CN2n − di
)

.yijn ∀i∈ Vc, ∀j ∈ Vc, ∀n ∈ N,

(21)Pijn ≥ di.yijn ∀i∈ Vc∪Vd, ∀j ∈ Vc, ∀n ∈ N,

(22)
∑

k∈Vd

wik = 1∀i ∈ Vc,

(23)
∑

i∈Vc

di.wik ≤ CDk.xk ∀k ∈ Vd,

(24)yikn ≤ wik ∀i ∈ Vd, ∀k ∈ Vc, ∀n ∈ N,

(25)

∑

n∈N

yijn + wik +
∑

m ∈ Vd

(m ≠ k)

wjm ≤ 2∀i, j ∈ Vc, ∀k ∈ Vd, (i ≠ j),

(26)
∑

i∈Vc

∑

n∈N

ykin ≤ TN ∀k ∈ Vd,

(27)xk ∈ {0, 1} ∀k ∈ Vd,

(28)zijn ∈ {0, 1} ∀i ∈ Vf ∪ V
d
, j ∈ Vp ∪ V

d
, ∀n ∈ N,

(29)yijn ∈ {0, 1} ∀i ∈ Vd ∪ Vc, j ∈ Vc, ∀n ∈ N,

(30)wik ∈ {0, 1} ∀i ∈ Vc, ∀k ∈ Vd,

(31)bijn ≥ 0∀i ∈ Vp ∪ V
d
, j ∈ Vp ∪ V

d
, ∀n ∈ N,
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Equation (1) is cost objective function and minimizes the costs of supply chain network 
and also consists of five terms: (1) traveling cost in first echelon, (2) traveling cost in sec-
ond echelon, (3) fixed cost of opening depots, (4) fixed cost of using the vehicles in first 
echelon and (5) fixed cost of using the vehicles in second echelon.

Equation  (2) is environmental objective function and minimizes CO2 gas emission 
related to traveling of vehicles in first and second echelon.

Equations  (3) to (13) are related to constraint of first echelon in supply chain net-
work, and Eqs. (14) to Eq. (26) are related to constraints of second echelon. Also, Eqs. 
(27) to (32) show the domain of decision variables.

Equation (3) ensures all of considered factories should be pre-deployed. Equation (4) 
ensures the existing vehicles of each factories can travel only one routs. Equation  (5) 
ensures if a vehicle enters in one node of opened depot in first echelon, should exit from 
it. Equations  (6), (7) and (8) guarantee that for entering a node of depot and exiting 
from it, the depot should be opened. Equation  (9) shows the capacity of each factory 
for satisfying the total demand of depots corresponding to it. Equation  (10) prevents 
the creation of route between factories in the first echelon. Equation  (11) satisfies the 
balance of products flow and is the constraint of sub tours elimination. Equation  (12) 
indicates the capacity of vehicles in first echelon. Equation  (13) shows that the vehi-
cles should be empty loaded when returning to factories. Equation (14) guarantees the 
vehicles can start the tour only from depots that was opened. Equation (15) emphasizes 
each customer is served only once. Equation (16) similar to Eq. (5) ensures if a vehicle 
enters in one node of customer in second echelon, should exit from it. Equation  (17) 
indicates the balance of products flow in second echelon. Equation (18) shows the vehi-
cle load should not exceed to its capacity. Equations (19) to (21) indicate the capacity of 
a vehicle in a depot should be greater than the total customer demands assigned to the 
depot. Equation  (22) guarantees each customer should be assigned to only one depot. 
Equation  (23) ensures total demands of customers that are assigned to a depot should 
not exceed to depot capacity. Equations (24) and (25) show the need of creating a routes 
consist of one or more customer, is assigning the customer(s) to corresponding depot. 
Equation  (26) indicates the number of available vehicles in each depot in second ech-
elon. Equations (27) to (32) show the range of the model decision variables.

4 � Methodology

4.1 � Solution representation

A continuous solution representation is used for this problem. The solution repre-
sentation is a string of decimal numbers between zero and one with the length of 
Vc + Vd − 1 + V + Vd + N − 1 . N denotes the set of available vehicles in each facility, 
Vd represents the facility at the second echelon, and Vc denotes the total number of cus-
tomers at the second echelon. For an instance problem with Vd = 5 , N = 3 and Vc = 7 , a 
solution representation can be displayed as the following figure.

(32)Pijn ≥ 0∀i ∈ Vd ∪ Vc, j ∈ Vc, ∀v ∈ V .
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Fig. 3   Distribution-customer 
route
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The first part of the solution representation with Vc + Vd − 1 dimension is related to 
routing from facility to customer.

Distribution → customer

0.33 0.36 0.51 0.39 0.35 0.04 0.52 0.55 0.56 0.67 0.62

Routing from distribution center (depot) to customers

The numbers in this section are in the descending order to reach a permutation of 
these numbers (Figs. 3, 4, 5).

6 1 5 2 4 3 7 8 9 11 10

Route Separators

In this permutation, numbers greater than Vc are considered as separators, so that 
any series of numbers less than Vc , which are placed in sequence, corresponding with 
a route starting from a facility and ending at the last point of that group. In this exam-
ple, the created route starts from the first facility and ends with passing the route of 
{6 − 1 − 5 − 2 − 4 − 3 − 7} , represented as follows:

6 1 5 2 8 4 3 7 9 11 10

Route 1 Separator Route 2 Separators

The solution includes two routes, the first one starting with the first facility and 
ending with {6-1-5-2}. The second one starts with the second facility and ends with 
{4-3-7}.

The second part of the N-length solution is associated with allocating the vehicles to 
the factories.

Vehicle

0.56 0.2 0.43

Vehicle section

The decimal numbers in this section are assigned to one of the factories:

Vf  denotes the number of factories.

2 2 2

The third part of the solution with the length of Vd + N − 1 is corresponding with 
routing from factories to depots.

⌊x ∗ Vf + 1⌋



	 A. Heidari et al.

1 3

Factory → distribution

0.32 0.19 0.73 0.25 0.3 0.35 0.62

Routing from factory to (depot)

In this section, after sorting in descending order, the routes between the factories and 
depots are detected using the separators.

6 1 5 2 4 3 7

Separator Route Separator

In this example, a route can start from the second factory and pass {1-5-2-4-3}. In 
this section, it should be noted that any unused facilities, which were determined as 
useless facilities in the first section of the solution representation, will be removed from 
this route. Since only the first facility is used, the route links the second factory to the 
first facility and vice versa. After specifying the routes and factories, the amount of 
goods loaded at the beginning of the route, the amount of goods unloaded at each point 
and the distance between nodes (that has been passed by vehicles) can be distinguished. 
Finally, the fitness of each solution is determined.

4.2 � Solution methods

The augmented epsilon constraint (AEC) method is employed to solve the proposed multi-
ple objectives model using the GAMS software. In addition, two well-known metaheuristic 
MOGWO and NSGA-II algorithms are exploited to deal with the large-sized optimization 
problems.

4.3 � The augmented epsilon constraint (AEC) METHOD

Numerous solutions, which are either poorly efficient or inconsistently efficient, are obtained 
through different ei values using the epsilon constraint (EC) method. The efficient solutions 
can be obtained through improving EC (Mavrotas, 2009). Initially, the proper intervals are 
found for every ei (Aghaei et al., 2011). The first objective function (f1) is the primary objec-
tive function. However, the second objective (f2) is confined to various amounts of ɛ, repre-
sented as follows:

4.4 � The NSGA‑II algorithm

NSGA-II as a population-based algorithm inspired by the natures of genes has been utilized 
in numerous applications by many scholars because of its high performance and efficiency 
in solving optimization problems with multiple objectives. The function of this algorithm is 

(33)

⎧

⎪

⎨

⎪

⎩

Min z = f1 − �2.S2
s.t.

x ∈ X

f2(x) + s2 = e2
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based on the sorting of non-dominated solutions together with crossover and mutation opera-
tors defined as follows:

4.5 � Crossover operator

Two parents are initially selected for reproduction. The parents are X1 and X2, respectively. 
Each parent is a string with a length of N. Then, a string with a length of N is randomly gener-
ated with numbers between zero and one called α.

Two children Y1 and Y2 are generated from these two parents, which have a share of each 
parent’s characteristics according to α. So, each gene of each child is created from as follows 
equation using parental genes.

Therefore, two children are generated inheriting from two parents.

4.6 � Mutation operator

The mutation operator applies to the percentage of society members according to the mutation 
rate, and a new member is created in the mutated population. These members may be better 
or worse than society members. The mutation gives a chance to the algorithm to escape from 
convergence to local optimality. In this operator, after selecting a member for the mutation, a 
number of the genes are selected and randomly changed according to the mutation steps.

4.7 � The MOGWO algorithm

MOGWO was introduced by Mirjalili et al. (2014); subsequently, it was modified to tackle 
multiple objectives optimization problems (Mirjalili et  al., 2016). MOGWO pursues gray 
wolves’ hierarchical leadership and hunting operations in nature. A tribe of gray wolves are 
grouped into four categories named alpha (α), beta (β), delta (δ) and omega (ω) to organize 
hierarchical leadership and assign duties.

The first category is known as alpha (α) corresponding with the leader wolves who make 
decisions for the whole community. The following group is known as beta (β) corresponding 
with the wolves advising and assisting the α wolves with decision-making. The β wolves com-
mand the subordinate wolves. The third category is known as delta (δ) wolves that follow the 
α and β wolves. The δ wolves do scouting, guarding and hunting as their tasks and duties. The 
lowest group is known as omega (ω) wolves that follow the upper groups.

4.8 � The mathematical programming model

The best candidate solutions of the single-objective model are known as alpha (α), likewise, 
the following suitable solution sets are known as beta (β), delta (δ), and omega (ω). However, 
for multiple objectives model, we need to define an archive set which keeps the non-domi-
nated solutions until the final iteration.

(34)Y1 = � × X1 + (1 − �) × X2

(35)Y2 = � × X2 + (1 − �) × X1
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4.9 � Searching, siege and hunting prey

It is assumed that α, β, and δ groups bear more appropriate information about the possibili-
ties of the prey positions. Therefore, the possible location is determined using the following 
equations considering the location of the α, β, and δ groups, and correspondingly the ω wolves 
update their positions, shown in Figs. 6 and 7. It should be noted that the random endpoint in 

Fig. 6   Factory-distribution route

Factory 2

Start

Distribution1

Fig. 7   Fitness-based crossover example

0/33 0/36 0/51 0/39 0/35 0/04 0/52 0/55 0/56 0/67 0/62 0/56 0/2 0/43 0/32 0/19 0/73 0/25 0/3 0/35 0/62

0/33 0/21 0/51 0/39 0/35 0/04 0/52 0/55 0/56 0/67 0/62 0/56 0/2 0/43 0/32 0/19 0/73 0/25 0/3 0/49 0/62

Fig. 8   Swap mutation

Fig. 9   The hierarchy of the gray 
wolf society
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a circle is determined by the α, β, and δ groups. In other words, the α, β, and δ groups approxi-
mate the prey’s location, and the other wolves update their positions correspondingly (Figs. 8, 
9, 10, 11).

����⃗D𝛼 =
|

|

|

���⃗C1 ⋅
���⃗X𝛼 −

�⃗X
|

|

|

����⃗D𝛽 =
|

|

|

���⃗C2 ⋅
���⃗X𝛽 −

�⃗X
|

|

|

Fig. 10   Hunting location and updating the location of the ω wolves

Fig. 11   Changing wolf location 
regarding various α values
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The A and C values are acquired using the below equations:

where a is linearly reduced from 2 to 0 throughout the algorithm iterations. r1 and r2 are 
also random vectors between 0 and 1. The prey location relies on the X1, X2, and X3 values 
that depend on the α, β, and δ positions. Exploration is ascertained by A values that are 
greater than 1 or lower than − 1. Exploration is also ensured by C values that are between 
0 and 2. Any C value greater than 1 indicates that the hunting location is accentuated to 
specify the required distance for the movement of the search agent. Any C value less than 
1 indicates that the hunting location is paid less attention. Unlike A, the domain of C is not 
decreased so that search carries on until the last iteration. Therefore, A and C guarantee 
that the algorithm is not trapped in the local optimal solutions (Mirjalili et al., 2016).

����⃗D𝛿 =
|

|

|

���⃗C2 ⋅
���⃗X𝛿 −

�⃗X
|

|

|

���⃗X1 =
���⃗X𝛼 −

���⃗A1 ⋅ (
����⃗D𝛼)

���⃗X2 =
���⃗X𝛽 −

���⃗A2 ⋅

(

����⃗D𝛽

)

���⃗X3 =
���⃗X𝛿 −

���⃗A3 ⋅ (
����⃗D𝛿)

(36)�⃗X(t + 1) =
���⃗X1 +

���⃗X2 +
���⃗X3

3

�⃗A = 2 �⃗a ⋅ ��⃗r1 − �⃗a,

(37)��⃗C = 2 ⋅ ��⃗r2,

Table 3   Parameters related to the 
echelon-one vehicles

Vehicle index (n) n1 n2 n3

Co2ef n (kg CO2/km) 0.51976 0.68395 1.09749
Co2f1n (kg CO2/km) 0.44276 0.53196 0.76266
Capacity CN1n 4000 8000 17,000
Fixed cost FC1n 10 20 30
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1  http://​claud​io.​conta​rdo.​org/​datas​ets-​source-​code/.

5 � Results and discussion

5.1 � Model validation

The proposed bi-objective mathematical programming model is implemented on a set of 
standard problems to compare its final solutions with the previous studies. These stand-
ard location-routing problems are known as the Sterle1 problem set. The details of the 
26-node (I2-15 × 8 × 3) Gaskell problem are presented as follows (with a slight change 

Table 4   Parameters related to the 
echelon-two vehicles

Vehicle index (n) n1 n2 n3

Co2esn (kg CO2/km) 0.44276 0.44276 0.44276
Co2fs2n (kg CO2/km) 0.51976 0.51976 0.51976
Capacity CN2n 2000 2000 2000
Fixed cost FC2n 40 40 40
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Fig. 12   Graph of the optimal value of the first objective function
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from the main parameters). In this problem, there are three factories with the same 
capacity of 7530 in the first echelon, shown with indices 1 to 3. In the second echelon, 
there are eight potential locations for depots, shown in indices 4 to 11. The capacities of 
the depots are 6000, 5600, 5700, 5600, 4700, 5400, 5000 and 4300 units, respectively, 
and the costs of establishing each depot are 75, 75, 75, 75, 65, 70, 55 and 55 units, 
respectively. The problem involves 15 customers with known amounts of demands. The 
spatial coordinates of all 26 network nodes are specified, and the Euclidean distances 
between nodes are determined. The echelon-one transport fleet is heterogeneous and 
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Fig. 13   Graph of the optimal value of the second objective function

Fig. 14   Pareto frontier cor-
responding with the trade-off 
between the objective functions 
of the problem



Green two‑echelon closed and open location‑routing problem:…

1 3

limited in number, and three different types of vehicles (one for each type) are available 
for each factory (the parameters are given in Table 3). The echelon-two transport fleet is 
identical with an unlimited number for each depot (the parameters are given in Table 4).

The model was coded in GAMS optimization software version 24.1.2 and solved by 
using the CPLEX optimizer on a laptop with Corei7 processor, 6 GB RAM, and 64-bit 
operating system. First, the problem was solved considering the single objective func-
tion of minimizing the total cost to find the optimal value of the first objective function 
(Z1

* = 595). Then, the problem was solved taking the second objective function of mini-
mizing the amount of CO2 emissions into consideration to obtain the optima value of 
the second objective function (Z2

* = 137.297).
Figures 12 and 13 depict the results obtained by solving the model in the form of the 

graphical representations of the routes in both levels corresponding with the optimal 
value of each objective function. Figure  14 shows the Pareto frontier considering the 
trade-off between objective functions.

Table 5   Parameters related to the 
first echelon vehicles

Vehicle index (n) n1 n2 n3

Co2ef n (kg CO2/km) 0.51219 0.63789 0.75783
Co2f1n (kg CO2/km) 0.60127 0.82015 1.09053
Capacity CN1n 5000 10,000 20,000
Fixed cost FC1n 40 50 60

Table 6   Parameters related to the 
second echelon vehicles

Vehicle index (n) n1 n2 n3

Co2esn (kg CO2/km) 0.51976 0.51976 0.51976
Co2fs2n (kg CO2/km) 0.60127 0.60127 0.60127
Capacity CN2n 4500 4500 4500
Fixed cost FC2n 100 100 100

Table 7   The obtained values of 
two objective functions through 
three applied solution methods

NSGA-II AEC MOGWO

679 115.8483 782 105.02 468 168.7304
699 112.1978 762 108.058 799 109.5695
512 116.6538 752 110.857 479 127.905
491 124.4934 699 112.811
480 128.8366 509 118.121

489 122.93
479 127.363
475 157.536
465 167.802
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5.2 � Comparison of AEC and two metaheuristic algorithms

A set of standard examples has been used to solve and test the proposed model as 
well as the comparability of the final model with other previous research. These stand-
ard problems relate to the location-routing problem known as the Gaskell problem set. 

Fig. 15   Pareto frontier of three 
solution methods

Fig. 16   The effect of changing 
depot capacity on the optimal 
amount of cost and correspond-
ing CO2 emission
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Fig. 17   The effect of changing 
depot capacity on the optimal 
amount of CO2 emission and cor-
responding amount of cost
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Full details of this set of problem are available on OR-Library website. The details of 
Gaskell’s problem with 29 customers are described in full as follows.

At the first echelon, there are two factories with capacities of 8000 and 11,000 
which are represented by node indices of 1 to 2. At the second echelon, there are also 
five potential locations for depot establishment shown by node indexes of 3 to 7. The 
capacity of all depots is 5000 units, and the cost of establishing each depot is 150 
monetary units. The problem consists of 29 customers with known demand values, 
along with the location specifications of all 36 specified network nodes and intervals 
are calculated based on Euclidean distance matrix. The transport fleet in the first ech-
elon is heterogeneous and limited in number, and each factory has three different types 
of vehicles (of each type). Details of these vehicles are shown in Table 5. The second 
echelon fleet is the same with an unlimited number of depots. Details of these vehicles 
are presented in Table 6.

The problem was solved by using AEC exact method, and the results were com-
pared to the results obtained by the MOGWO and NSGAII metaheuristic algorithms 
(shown in Table 7 and 8). As Fig. 15 displays, the metaheuristic algorithms achieved 
close to the optimal solutions using the appropriate solution representation (expressed 
in Sect. 4.2).

Fig. 18   The effect of changing 
the number of secondary vehicles 
on the optimal amount of cost 
and corresponding CO2 emission
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Fig. 19   The effect of changing 
the number of secondary vehicles 
on the optimal amount of CO2 
emission and corresponding 
amount of cost
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5.3 � Sensitivity analysis

Sensitivity analysis means finding the trend and amount of changes in the values of the 
objective functions with respect to the changes in the given parameters of the problem. 
It is logical that these analyzes are limited only to the parameters under the control of 
the decision maker. In this section, Figs. 16, 17, 18, 19 show the results of the sensitiv-
ity analysis conducted on the amount of parameters such as the capacity of depots and 
the number of secondary vehicles.

The analysis demonstrates that the more the capacity of the intermediate facilities 
increases, the less the amount of cost and pollution, because the need to build new dis-
tribution centers for providing customer service decreases and the smaller number of 
distribution centers would be built. On the other hand, when the capacity of distribu-
tion centers is low, vehicles have to travel more distances, and sometimes the optimal 
loading capacity cannot be used.

Also, if the number of available vehicles (TN) increases, in other words, the com-
pany is able to acquire more vehicles, this will be effective in reducing cost and pol-
lution, as optimal loading can be done with a reasonable tradeoff between cost and 
pollution.

5.4 � Evaluation indices

In this section, the outputs of the two MOGWO and NSGA-II algorithms presented in 
Table 5 are evaluated and compared. For a single objective (minimizing Z1 ) problem, 
any solution with lower Z1 value is more desirable. However, the following indices 
were defined to evaluate and compare the performance of solution methods for multi-
ple objectives optimization problems (Jolai et al., 2013).

5.4.1 � Diversification matrix (DM) index

This index is obtained using the below formula. Greater values are more desirable (Jolai 
et al., 2013).

5.4.2 � Mean ideal distance (MID) index

A desirable solution for the problem is initially presumed; subsequently, the mean of 
deviations of the Pareto solutions from the desirable solution is computed (Behnamian 
et al., 2009). This index is acquired using the following equation (Jolai et al., 2013):

where n indicates the number of solutions of the Pareto set and the ci value is calculated 
using the following formula (Jolai et al., 2013):

(38)DM =

√

(maxf 1i −minf1i)
2 + (maxf 2i −minf2i)

2

(39)MID =

∑n

i=1
ci

n
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5.4.3 � Spacing (S)

The S performance metric, which is calculated through following equation, gives an 
indication of the evenness of solutions obtained from an algorithm (Kaveh & Mahdavi, 
2019). A lower value of S shows a more uniform distribution of the obtained non-dom-
inated solutions.

5.4.4 � Spread of non‑dominance solutions (SNS)

The greater SNS value as the diversity index the superior the algorithm is. This index is 
determined using the below equation (Jolai et al., 2013):

5.4.5 � The rate of achievement to two objectives simultaneously (RAS)

The RAS index is defined by the following equation (Mirjalili et al., 2016):

(40)ci =

√

f 2
1i
+ f 2

2i

(41)S =

(

1

npf

∑npf

i=1
(di − d)

2
)

1

2

, where d =
1

npf

∑npf

i=1
di

(42)SNS =

�

∑n

i=1
(MID − ci)

2

n − 1

Fig. 20   Comparison of two algo-
rithms in terms of diversity index
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Fig. 21   Comparison of two algo-
rithms in terms of MID index

Fig. 22   Comparison of two algo-
rithms in terms of spacing index

Fig. 23   Comparison of two algo-
rithms in terms of SNS index
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5.5 � Analysis and discussion

After the evaluation indexes were defined in the previous section, 22 test problems were 
designed to measure the algorithms’ performance. Then, each problem is run 10 times 
for each algorithm and the average is reported as the final answer for the given algo-
rithm. The values of all parameters for the MOGWO and NSGA-II algorithm are shown 
in Table 7.

The outputs of two algorithms are subsequently analyzed regarding Table 8.

5.6 � The diversity index

The performance of two algorithms in terms of this index is displayed in Fig. 20 demon-
strating that MOGWO performs better than NSGA-II.

5.7 � The MID index

For the MID index (the less value the better performance) as shown in Fig. 21, some 
results of the MOGWO algorithm are better than the ones of NSGA-II.

(43)
RAS =

∑n

i=1

�

f1i−Fi

Fi

�

+

�

f2i−Fi

Fi

�

n
.

Fig. 24   Comparison of two algo-
rithms in terms of RAS index
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5.8 � The Spacing index

As shown in Fig.  22, the NSGA-II algorithm performs better than the MOGWO 
algorithm.

5.9 � The SNS index

The higher the SNS index, the better performance. As seen in Fig. 23, the MOGWO algo-
rithm outperforms the NSGA-II algorithm.

5.10 � The RAS index

The less the RAS index, the better performance. As shown in Fig. 24, the MOGWO algo-
rithm performs better.

According to the evaluation, Figs.  20, 21, 22, 23, 24 and the characteristics of the 
indicators, it can be concluded that the MOGWO algorithm is superior in terms of three 
indexes and there is no meaningful difference in terms of MID index. Also, in terms of one 
index, NSGAII has a better performance; therefore, it can be stated that the MOGWO algo-
rithm has a better performance than the NSGAII algorithm.

6 � Conclusions

In this paper, a bi-objective mixed integer linear programming (MILP) model was pre-
sented for hybrid two-echelon closed and open locating-routing problems (2E-COLRP) 
with the objectives of minimizing total cost and CO2 emission of the entire transportation. 
The contribution of this mathematical model is in combining closed and open routes in a 
two-echelon location-routing problem, such that the first echelon routes are closed type 
(each journey must end at its starting point, which is a factory) and second echelon routes 
are open routes (after satisfying the last customer’s demand, vehicle does not return to the 
first depot). In addition, in order to consider the real world conditions, the problem was 
modeled and solved with two objectives of minimizing the total cost and CO2 emission.

Due to the conflicting objectives of the problem, the problem was solved using EC 
method to obtain the Pareto front diagram. This graph shows the varying amount of both 
objective functions from the optimality of each one to the optimality of the other one. 
Decision-makers determine which goal has more priority, so that the appropriate value of 
one goal can be achieved by slightly ignoring the optimal value of the other goal. Hence, 
this facilitates the decision-making process in different situations.

According to the average of all outputs, the MOGWO algorithm outperformed in terms 
of four MID, diversity, RAS, and SNS indices. However, the NSGA-II algorithm per-
formed better in terms of the spacing index only.

The obtained results of sensitivity analysis related to the depot capacity and number of 
secondary vehicles generally indicate that by increasing the depot capacity and number 
of secondary vehicles, the values of both objective functions are reduced and the optimal 
state is obtained. The model was presented in this study without any time dependence and 
constraints such as time windows. Time windows for customers can be considered as a sug-
gestion for future research.
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Appendix 1: Symbol definition

Definition Abbreviation

2E-COLRP Two-echelon close and open location-routing problem
AEC Augmented epsilon constraint method
VRP The vehicle routing problem
2E-LRP Two-echelon location-routing problem
OVRP Open vehicle routing problem
COMVRP Closed–open-mixed-vehicle-routing-problem
DM Diversification matrix
MID Mean ideal distance
S Spacing
SNS Spread of non-dominance solutions
RAS The rate of achievement to two objectives simultaneously
NSGAII Non-dominated sorting genetic algorithm
MOGWO Multi-objective grey wolf optimizer
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