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Abstract

We develop a discrete-time tick–host–pathogen model to describe the spread of a disease in 

a hard-bodied tick species. This model incorporates the developmental stages for a tick, the 

dependence of the tick life-cycle and disease transmission on host availability, and three sources 

of pathogen transmission. We first establish the global dynamics of the disease-free system. We 

then apply the model to two pathogens, Borellia burgdorferi and Anaplasma phagocytophila, 

using Ixodes ricinus as the tick species to study properties of the invasion and establishment of a 

disease numerically. In particular, we consider the basic reproduction number, which determines 

whether a disease can invade the tick-host system, as well as disease prevalence and time to 

establishment in the case of successful disease invasion. Using Monte Carlo simulations, we 

calculate the means of each of these disease metrics and their elasticities with respect to various 

model parameters. We find that increased tick survival may help enable disease invasion, decrease 

the time to disease establishment, and increase disease prevalence once established. In contrast, 

though disease invasion is sensitive to tick-to-host transmission and tick searching efficiencies, 

neither disease prevalence nor time to disease establishment is sensitive to these parameters. These 

differences emphasize the importance of developing approaches, such as the one highlighted here, 

that can be used to study disease dynamics beyond just pathogen invasion, including transitional 

and long-term dynamics.
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1. Introduction

Worldwide, ticks are one of the most important vectors of human diseases. In the 

United States, they account for 95% of vector-borne diseases reported annually (Rochlin 

and Toledo, 2020; Sonenshine, 2018; Troughton and Levin, 2007). In recent decades, 

geographical expansions of tick populations, as well as local abundances in both pre-

existing and newly established locations, have increased dramatically (Sonenshine, 2018). 

These increases have been attributed to reforestation and the coinciding expansions of 

deer populations, such as in northeastern United States, and to climate change (Ogden 

et al., 2014; Ostfeld and Brunner, 2015; Sonenshine, 2018; Troughton and Levin, 2007). 

Concurrent to this range expansion has been an increase in the incidence of tick-borne 

diseases including Lyme disease and human ehrlichiosis in the United States, and tick-borne 

encephalitis and haemorrhagic fever in Europe and Asia (Rochlin and Toledo, 2020). 

Understanding the complexities involved in the emergence and establishment of tick-borne 

diseases is crucial for mitigating the impacts of these emerging disease threats.

In epidemiological modeling, the next-generation-matrix approach is used to calculate the 

basic reproduction number R0 from an SIR-type compartmental model in which individuals 

are classified according to infection status, such as susceptible, infected, or recovered. The 

next generation matrix describes how much an individual of a particular infection status 

contributes to new infections and the basic reproduction number R0 is calculated as the 

dominant eigenvalue of this matrix. This quantity provides a single threshold value that 

determines whether the introduction of an infectious individual into an entirely susceptible 

population will result in an epidemic (Allen and Van den Driessche, 2008). Calculation of 

R0 relies on a system of equations that gives the densities over time of the various ecological 

and epidemiological states involved in the disease spread. Previously, this approach has been 

applied to calculate R0 for continuous-time, ordinary differential equation models of tick-

borne pathogens (Norman et al., 1999; Rosa et al., 2003; Rosa and Pugliese, 2007). A major 

emphasis of these models has been to understand how the presence of a non-competent host 

impacts disease invasion. More detailed models, which include features such as temperature 

and seasonal activity, have also been investigated numerically using the software program 

STELLA, see for instance (Ogden et al., 2005, 2007, 2013, 2014). These models have been 

used to explore how seasonal asynchrony in immature questing and climate change may 

affect tick and disease dynamics.

Modeling of tick-borne diseases can be quite complicated since it involves multiple 

species, multiple transmission routes, and dependence on life-stage specific differences 

in transmission (Hartemink et al., 2008). To circumvent these difficulties, an alternative 

next-generation-matrix approach has been developed that computes the next generation 

matrix directly from biological principles and does not rely on developing a system of model 

equations to describe time series dynamics (Davis and Bent, 2011; Hartemink et al., 2008; 

Matser et al., 2009). This approach has the advantage of being easily modified to account for 

additional factors, such as including additional host types. It also provides a threshold value 

R0 that is more biologically meaningful than the quantity obtained via a modeling approach 

(Hartemink et al., 2008). However, while this approach provides information about disease 

invasion, it cannot be used to understand what happens after a disease has invaded.
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In this paper, relying on fundamental biological principles of the disease, we develop 

an explicit, discrete-time tick–host–pathogen model to study the spread of a tick-borne 

infection in a hard-bodied tick population. This model incorporates the developmental 

stages for a tick – egg, larva, nymph, and adult – as well as the dependence on 

obtaining a blood meal for transitions between these stages to occur. It also includes three 

sources of transmission: systemic transmission, non-systemic (co-feeding) transmission, and 

transovarial transmission. Unlike many of the previously developed models (e.g., Norman et 

al., 1999; Rosa et al., 2003; Rosa and Pugliese, 2007), here we use a discrete time step to 

model the tick–host–pathogen interaction and include an egg stage. Though the egg stage 

does not contribute to the pathogen dynamics, since the time to hatching can take weeks or 

months (Padgett and Lane, 2001; Randolph, 2004), the inclusion of the egg stage helps to 

better capture the tick developmental dynamics.

The model developed here presents some advantages in contrast with the alternative 

next-generation-matrix approach and continuous-time models. Unlike the alternative next-

generation-matrix approach, the model is described by a discrete-time dynamical system 

that can be used to generate disease dynamics in the form of time-series. This allows for 

the understanding of specific pre-disease dynamics and post-invasion disease dynamics, and 

thus presents a tool to examine different disease metrics and study control strategies and 

scenarios. In comparison with continuous-time models in the form of differential equations, 

it is much easier and faster to solve computationally a discrete-time system to generate 

time-series dynamics and does not require efficient numerical solvers. This is important 

when it comes to studying sensitivity and elasticity analysis, parameter estimation, and 

control problems associated with such diseases which usually involve solving the model 

many times until an optimal control or parameter is found.

We use this model to examine three disease metrics: pathogen invasion, prevalence, and time 

to establishment. Given the uncertainty surrounding tick ecology and pathogens, as well as 

the dependence of both the tick life-cycle and disease prevalence on environmental factors 

(Halos et al., 2010; Sonenshine, 2018), rather then working with point estimates for model 

parameters here we follow Matser et al. (2009) and instead consider ranges for parameter 

values. Specifically, we apply Monte Carlo simulations in which parameters are chosen 

uniformly from specified intervals. We apply this approach to two tick pathogens Borellia 
burgdorferi and Anaplasma phagocytophila using Ixodes Ricinus, a major vector of these 

diseases in Europe, as the tick species. We calculate means of the three disease metrics as 

well as the elasticity of these metrics to various model parameters.

In order to test whether the established model produces biologically reasonable predictions, 

we compare estimates for R0 and its elasticities to those obtained in Matser et al. 

(2009) using the alternative next-generation-matrix approach. We find that, though not all 

assumptions used in these two fundamentally different modeling approaches are the same, 

they produce similar results. All together, these calculations help identify which biological 

processes may be driving disease invasion and establishment.
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2. Model development

In this section we provide a detailed derivation of the tick–host–pathogen model. We first 

present a discrete-time, stage-structured tick model in which biological processes depend 

on obtaining a blood meal from a host. We then derive expressions for systemic and 

non-systemic pathogen transmission before giving the full model.

2.1. Baseline tick model without disease

We describe a female hard-tick population using a discrete-time, stage-structured model 

consisting of fours developmental stages: egg E, larva L, nymph N, and adult A. A female 

tick that survives to reproduce will consume three blood meals in its lifetime. We assume 

that the tick species is a three-host species meaning that each of these blood meals will 

occur on a different host individual. The three host-seeking developmental stages (larva, 

nymph, and adult) often have different host preferences, with the immature stages feeding on 

smaller hosts such as lizards, birds and small to medium-sized mammals and the adult stage 

feeding on a larger hosts such as hedgehogs, hares, deer and domestic livestock (Gray et al., 

2016). Here we assume two distinct host classes with the larvae and nymphs feeding on a 

small host h and the adults feeding on a large host H. These assumptions are appropriate for 

some species of hard tick from the genera Amblyomma spp., Dermacentor spp., Ixodes spp., 
Ornithodoros spp., and Rhipicephalus spp..

With the exception of the egg stage, in order for a tick individual to transition to the next 

developmental stage or reproduce, it must both reach developmental maturity and obtain a 

blood meal. Let γj denote the probability of a stage j tick reaching developmental maturity 

conditioned it has obtained a blood meal. We assume that this quantity, which accounts for 

the delay between feeding in one developmental stage and actively questing in the next, is 

equivalent to the probability of a stage j individual feeding from a host conditioned it has 

encountered a host. Define e−ajk to be the probability a stage j tick does not encounter a 

host of type K, where the proportionality constant aj may be interpreted as representing 

the searching efficiency of stage j. Then the probability of a tick transitioning to the 

next developmental stage (or an adult reproducing) is the probability of the tick reaching 

developmental maturation and having at least one host encounter γj 1 − e−ajk . Meanwhile, 

if both of these events do not occur, 1 − γj 1 − e−ajk , then the tick does not mature to the 

next developmental stage and may remain in its current stage. In either case, in order for a 

tick to be present in the next time unit, it must also survive the current time interval, as is 

determined by the survival probability sj. We note that the nonlinearity e−ajk may arise if, 

for instance, it is assumed that encounters follow a Poisson distribution.

The model equations are given by
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E t + 1 = β γA 1 − e−aAH t A t sAγA 1 − e−aAH t A t
+ sE 1 − γE E t ,

L t + 1 = sEγEE t + sL 1 − γL 1 − e−aLℎ t L t ,
N t + 1 = sLγL 1 − e−aLℎ t L t + sN 1 − γN 1 − e−aNℎ t N t ,
A t + 1 = sNγN 1 − e−aNℎ t N t + sA 1 − γA 1 − e−aAH t A t ,

ℎ t + 1 = βℎℎ t
1 + cℎℎ t + sℎℎ t ,

H t + 1 = βHH t
1 + cHH t + sHH t ,

(1)

where we take the unit of time to be one month. We define the tick fecundity β as the 

Beverton–Holt nonlinearity

β x =
β0

1 + cx,

where β0 is the inherent (density-independent) fecundity and c > 0 is an intraspecific 

competition coefficient. This is the equivalent of logistic growth for discrete-time models. 

Since reproduction occurs on hosts and after a blood meal, we have assumed that the 

density effect is a function of feeding adults rather than all adults. Notice that a female tick 

will only reproduce once in its lifetime, with death following. We assume that fecundity 

for each of the host species is defined in an equivalent manner and that each host has a 

density-independent survival probability sk.

2.2. The disease model

To incorporate the pathogen, we assume that individuals in each developmental stage may 

be in one of two disease states, either susceptible S or infectious I, where the disease state 

is indicated by a subscript. Thus LS and LI denote the densities of susceptible and infectious 

larvae, respectively. Similarly, both hosts types are assumed to be competent hosts and are 

also assigned disease states S or I. Once infected, ticks are assumed to remain infected with 

100% transstadial transmission. Thus, once a tick is infected it remains infected until death. 

The hosts, meanwhile, recover from infection with recovery determined by the average 

length of infection.

For the tick population, we consider three types of infection: systemic infection from 

a susceptible tick feeding on an infected host, non-systemic co-feeding infection from 

susceptible and infectious ticks feeding on a host at the same time, and transovarial 

transmission (i.e., infected adults laying infected eggs). For hosts, the only type of infection 

considered is systemic infection arising from an infected tick feeding on a susceptible host.

Before giving the complete model, we first provide a detailed description of how each of 

these sources of infection are derived for the model. To simplify the discussion, we describe 

infection in the larva stage, with equivalent terms for the other stages defined in a similar 

manner.
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2.2.1. Systemic infection: host to tick—Consider the larva stage. A mature larva 

individual has two options: to feed on a susceptible small host hS or an infected small 

host hI. Since a larva individual will only feed once, we assume that a fraction ϕh of the 

mature larvae will to feed on hI hosts and the remaining fraction (1 – ϕh) will to feed on hs 

hosts. A similar formulation was used in van den Driessche and Yakubu (2020) to define a 

situation in which only one type of infectious encounter, either with an infected juvenile or 

an infected adult, was allowed per unit time. Unlike van den Driessche and Yakubu (2020), 

rather than assuming ϕh is constant, we define ϕh as

ϕℎ = ϕℎ
0 + 1 − ϕℎ

0 ℎI
ℎC

,

where ϕℎ
0 ≈ 0 and hc is the small host carrying capacity. Thus, ϕℎ ≈ 0 when infected hosts are 

rare and ϕℎ ≈ 1 when they dominate the host population.

We note that a more natural definition for ϕh might be

ϕℎ =
ℎI

ℎS + ℎI
.

However, defining ϕh in this manner creates a technical issue when applying the basic 

reproduction number theory. Specifically, we require that the Jacobian matrix formed from 

the disease states evaluated at the disease-free equilibrium is irreducible (Allen and Van den 

Driessche, 2008). Since this does not hold in this case, the basic reproduction number R0, 

at least as calculated using the next-generation-matrix approach, does not correctly predict 

the invasion of a disease. Heuristically, the issue that arises is that evaluation of the Jacobian 

matrix at zero disease density should represent what happens at ‘‘low disease density’’ but, 

by defining ϕh in this manner, the first derivative of the infection terms describing infection 

in ticks by hosts in model (2) when evaluated at zero disease density vanishes. See for 

instance the first term in the equation NI of model (2).

Following the same assumptions as the disease-free model, the probability that a 

mature susceptible larva successfully encounters a susceptible host is 1 − e−aLℎS  and 

the probability a mature susceptible larva successfully encounters an infectious host is 

1 − e−aLℎI . All together we have 1 − e−aLℎS 1 − ϕℎ γLLS susceptible larvae feed on hs 

and 1 − e−aLℎI ϕℎγLLS feed on hI. Defining pL to be the probability that a meal on an 

infected host results in infection, we have that feeding results in pL 1 − e−aLℎI γLϕℎLS

infections. Each of the transition terms (either maturation, or maturation and infection) 

is multiplied by a probability sL that a larva survives a unit of time. Here we make the 

simplifying assumption that survival is not impacted by infection state.

Alternatively, a larva may remain in the larva stage if it does not obtain a blood meal. The 

number of susceptible larvae that do not feed but survive to the next time unit is given by
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sL 1 − ϕℎ 1 − γL 1 − e−aLℎS + ϕℎ 1 − γL 1 − e−aLℎI LS

and an equivalent term may be defined for the infectious larvae. Since we assume 100% 

transstadial transmission, an infectious larva may become an infectious nymph if it feeds and 

survives molting, which is given by

sL 1 − ϕℎ γL 1 − e−aLℎS + ϕℎγL 1 − e−aLℎI LI .

Equivalent terms may be defined for the nymph and adult stages, where adults are assumed 

to feed on the larger hosts H.

2.2.2. Systemic infection: tick to host—Define vj to be the probability a bite from 

an infectious tick of stage j results in an infection in a host individual. Assuming an 

individual small host has on average aLLI encounters with infectious larvae per time unit, 

the probability that a host does not become infected from encounters with LI is 1 − vL
aLLI. 

Similarly, the probability a host does not become infected from encounters with NI is 

1 − vN
aNNI. Thus overall, the probability a small host does not become infected is

1 − vL aLLI 1 − vN aNNI = exp − aLωLLI + aNωNNI ,

where ωj = ln 1 − vj . A similar term may be defined for large hosts H, where infection is 

assumed to occur due to encounters with infected adults ticks.

Infection was defined in this manner in Lewis et al. (2006), which considered a single 

infectious state. Alternatively, to define infection from multiple infectious states, in Allen 

and Van den Driessche (2008) it was assumed that the probability of infection follows a 

Poisson distribution with the weights ωi defining the impacts of the different stages. This 

leads to the probability of no infection for an individual hs being the same form as we 

have here, e−aLωLLI − aNωNNI. However, the above derivation allows for a direct biological 

interpretation of weights ωi. Notice that systemic infections in hosts are assumed to follow 

from density-dependent (mass action) incidence rates, motivated by the assumption that 

higher tick densities will lead to higher tick burdens.

2.2.3. Non-systemic infection: Co-feeding transmission—Define ηji to be the 

probability that a susceptible stage j tick is infected from co-feeding on a host with an 

infected tick of stage i. Then the probability a stage LS tick is not infected due to co-feeding 

with infectious individuals on a small infected host is given by

1 − ηLL
ϕℎ 1 − e−aLℎI LI

kLℎI 1 − ηLN
ϕℎ 1 − e−aNℎI NI

kLℎI
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where ϕℎ 1 − e−aLℎI LI and ϕℎ 1 − e−aLℎI NI are the number of infectious larvae and 

nymph ticks, respectively, that feed on infected hosts in the given time period. This quantity 

is divided by kLhI to account for individuals feeding on different hosts and at different days 

during the time interval. Here kL is the average number of larval feedings that can occur in 

one unit time and is obtained by dividing 30 days by the average number of days that larvae 

feed. This may be rewritten in the equivalent form

e− 1
kLℎI

λLLϕℎ 1 − e−aLℎI LI + λLNϕℎ 1 − e−aNℎI NI ,

where λik = ln 1 − ηik . Meanwhile, the probability a stage LS tick is not infected due to 

co-feeding with infectious individuals on a small susceptible host is given by

1 − ηLL
1 − ϕℎ 1 − e−aLℎS LI

kLℎS 1 − ηLN
1 − ϕℎ 1 − e−aNℎS NI

kLℎS .

Similar terms may be defined for co-feeding infection in nymphs and adults, where nymphs 

may be infected through co-feeding with infected larvae or nymphs but adults may be 

infected only through co-feeding with infected adults since we have assumed that the adults 

do not feed on the same hosts as the immature stages.

2.2.4. The full model—The full tick–host–pathogen model is defined as follows:
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ES′ = β γAΦAA sAγA 1 − ϕH 1 − e−aAHS ΨASAS

+ 1 − rA 1 − ϕH 1 − e−aAHS 1 − ΨAS AS + 1 − pA

× ϕH 1 − e−aAHI ΨAIAS

+ 1 − rA 1 − pA ϕH 1 − e−aAHI 1 − ΨAI AS

+ 1 − rA pAϕH 1 − e−aAHI AS + 1 − rA ΦAAI
+ sE 1 − γE ES,

LS′ = sEγEES + sLΓLLS,
NS′ = sL 1 − ϕℎ γL 1 − e−aLℎS ΨLSLS + sL 1 − pL ϕℎγL 1 − e−aLℎI

× ΨLILS
+ sNΓNNS,

AS′ = sN 1 − ϕℎ γN 1 − e−aNℎS ΨNSNS + sN 1 − pN ϕℎγN 1 − e−aNℎI

× ΨNINS
+ sAΓAAS,

ℎS′ = βℎℎ
1 + cℎℎ + sℎe−aLωLLI − aNωNNIℎs + sℎγℎℎI,

HS′ = βHH
1 + cHH + sHe−aAωAAIHs + sHγHHI,

EI′ = β γAΦAA sAγA rA 1 − ϕH 1 − e−aAHS 1 − ΨAS AS

+ rA 1 − pA ϕH 1 − e−aAHI 1 − ΨAI AS

+ rApAϕH 1 − e−aAHI AS + rAsAΦAAI + sE 1 − γE EI,
LI′ = sEγEEI + sLΓLLI,
NI′ = sLpLϕℎγL 1 − e−aLℎI LS + sL 1 − pL ϕℎγL 1 − e−aLℎI 1 − ΨLI LS

+ sLγLΦLLI + sL 1 − ϕℎ γL 1 − e−aLℎS 1 − ΨLS LS + sNΓNNI,
AI′ = sNpNϕℎγN 1 − e−aNℎI NS + sN 1 − pN ϕℎγN 1 − e−aNℎI

× 1 − ΨNI NS
+ sNγNΦNNI + sN 1 − ϕℎ γN 1 − e−aNℎS 1 − ΨNS NS + sAΓAAI,

ℎI′ = sℎ 1 − e−aLωLLI − aNωNNI ℎs + sℎ 1 − γℎ ℎI,
HI′ = sH 1 − e−aAωAAI Hs + sH 1 − γH HI,

(2)

where A = AI + AS, ℎ = ℎS + hI, and H = HS + HI. To reduce notation we use prime ′ to 

denote the next iterate and take the unit of time to be one month. The terms Φj and Γj are 

defined as

Φj = 1 − ϕℎ 1 − e−ajℎS + ϕℎ 1 − e−ajℎI , j = L, N,

Γj = 1 − ϕℎ 1 − γi 1 − e−ajℎS + ϕℎ 1 − γj 1 − e−ajℎI , j = L, N,

ΦA = 1 − ϕH 1 − e−aAHS + ϕH 1 − e−aAHI ,
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ΓA = 1 − ϕH 1 − γA 1 − e−aAHS + ϕH 1 − γA 1 − e−aAHI ,

and the co-feeding infection terms are defined using the quantities

ΨjS = e− 1
kjℎS

λjL 1 − ϕℎ 1 − e−aLℎS LI + λjN 1 − ϕℎ 1 − e−aNℎS NI , j = L, N,

ΨjI = e− 1
kjℎI

λjLϕℎ 1 − e−aLℎI LI + λjNϕℎ 1 − e−aNℎI NI , j = L, N,

ΨAS = e− 1
kAHS

λAA 1 − ϕH 1 − e−aAHS AI ,

ΨAI = e− 1
kAHI

λAAϕH 1 − e−aAHI AI .

Here the tick parameters sj, γj, and aj and the nonlinearity β are defined the same as in 

the baseline model (1), as are the host parameters βk, sk, and ck. Parameter rA gives the 

probability of transovarial transmission, that is, it is the fraction of infected eggs produced 

by an infected adult. Notice that a susceptible adult that becomes infected during its third 

and last blood meal (either by systemic or non-systemic infection) may pass on the infection 

to her eggs. The meanings of the remaining parameters are provided in Tables 1 and 2. A 

schematic of model (2) is given in Fig. 1.

3. Persistence and global dynamics of the tick-host model

In this section we present a complete characterization of the global dynamics of the tick-host 

model, including the existence, uniqueness and global stability of the interior equilibrium of 

model (1). An understanding of the dynamics of model (1) is essential for studying the full 

tick–host–pathogen model as these describe the dynamics of model (2) in the absence of the 

disease. Omitted proofs of the statements below are provided in the Appendix.

First note that the difference equation system (1) can be written in the matrix form

x t + 1 = P x t x t , (3)

where x t = E t , L t , N t , A t , ℎ t , H t ⊺ is a column vector containing the densities of 

the different stages and the projection matrix P has the form

P x =
P1 x 0

0 P2 x ,
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where P1(x) is given in Box I and

P2 x =

βℎ
1 + cℎℎ + sℎ 0

0
βH

1 + cHH + sH
.

Next, observe that the equation for host h is decoupled from the rest of the system and the 

same is true for the equation for host H. It is not hard to show that for k = h, H if βk + sk > 1 

and k(0) > 0, then each host population converges to its carrying capacity,

lim
t ∞

k t = kC = βk − 1 − sk
ck 1 − sk

. (4)

Thus, for the rest of this section we focus on establishing a global stability result for the 

interior equilibrium of the model

x1 t + 1 = P1 x1 t , ℎC, HC x1 t (5)

where x1 t = E t , L t , N t , A t ⊺. Then, we lift up the global stability to the model (1) by 

utilizing results on asymptotically autonomous systems and (4). To this end, first note that it 

is not difficult to verify that

x1 ≤ y1, implies P1 y1, ℎC, HC ≤ P1 x1, ℎC, HC , (6)

where x ≤ y denotes the usual, component-wise partial order on ℝn. Next, following Caswell 

(2000) and Cushing (1998) define T  as given in Box II and

F =

0 0 0 β0sAγA 1 − e−aAHC

0 0 0 0
0 0 0 0
0 0 0 0

.

Note that the inherent projection matrix of the nonlinear system for the tick sub-model (5) is

P1 0 = F + T .

Thus, the inherent net reproductive number R0, Which gives the expected number 

of offspring produced by a female throughout its life-time in the absence of density 

dependence, is the positive, simple and strictly dominant eigenvalue of F I − T −1, where I 

denotes the identity matrix. A simple calculation shows that
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R0 =
β0sEsLsNsAγEγLγNγA 1 − e−aLℎC 1 − e−aNℎC 1 − e−aAHC

1 − sE 1 − γE Πj = L, N 1 − sj 1 − γj 1 − e−ajℎC 1 − sA 1 − γA 1 − e−aAHC
.

By Theorem 1.1.3 in Cushing (1998) the inherent net reproductive number is on the same 

side of one as the spectral radius of P1(0). Thus, we make use of R0 in establishing the local 

and global dynamics of model (1). We now have the following result:

Lemma 3.1. Suppose R0 < 1. Then the origin E0 = (0, 0, 0, 0) is a globally asymptotically 

stable fixed point of system (5).

Next, we establish the existence, uniqueness and local stability of an interior fixed point.

Theorem 3.2. Suppose R0 > 1. Then (5) has a unique interior fixed point x1 = E, L, N, A
which is locally asymptotically stable.

Lemma 3.3 establishes boundedness of solutions uniformly in the parameters.

Lemma 3.3. Let ξ ≈> 0. Define K = 0, Ε × 0, L × 0, N × 0, A , where

Ε =
β0sA

c 1 − sE 1 − γE
1 + ξ ,

L =
sEγE

1 − sL 1 − γL 1 − e−aLℎC
Ε 1 + ξ ,

N =
sLγL 1 − eaLℎC

1 − sN 1 − γN 1 − e−aNℎC
L 1 + ξ ,

A =
sNγN 1 − eaNℎC

1 − sA 1 − γA 1 − e−aAHC
N 1 + ξ .

Then every forward solution of (5) enters K in finite time and remains in K forever after.

Next we show that if the net reproductive number is greater than one, then the origin is 

unstable and system (5) is uniformly persistent.

Theorem 3.4. Suppose R0 > 1, then (5) is uniformly persistent.
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Finally, we establish the global stability of the interior fixed point. The proof of this 

result relies on the following lemma from Ackleh and DeLeenheer (2008). Consider a map 

G:ℝn ℝn. We say that G is monotone if x ≤ y implies that G(x) ≤ G(y).

Lemma 3.5 (Ackleh and DeLeenheer, 2008). Let G:ℝn ℝn be a continuous, monotone 

map and a ≤ b be points in ℝn. If a ≤ G(a) and G(b) ≤ b, and if G has a unique fixed point 

x∗in the ordered interval a, b : = x ∈ ℝn | a ≤ x ≤ b , then every solution sequence of the 

discrete system

x t + 1 = G x t , (7)

starting in [a, b], converges to x∗.

Theorem 3.6. Suppose that R0 > 1. Then every solution of (5) starting in ℝ+
4 \ 0, 0, 0, 0

converges to the unique interior equilibrium. This equilibrium is globally asymptotically 

stable.

Proof. First observe that every solution starting on the boundary of ℝ+
4 , but not in (0, 0, 0, 

0), enters the positively invariant set int ℝ+
4 . Therefore, it is enough to establish the theorem 

for solutions in int ℝ+
4 . To this end, pick x1 0 = E 0 , L 0 , N 0 , A 0 ∈ int ℝ+

4 . In fact, by 

Lemma 3.3 it suffices to consider x1 0 ∈ int ℝ+
4 ∩ K. The unique positive fixed point clearly 

belongs to K. Define b = Ε, L, N, A  (the maximal element in K). Then, by Lemma 3.3 we 

have that G(b) ≤ b (where G(x) denotes the right hand side of (5)). Clearly, G is monotone 

since the Jacobian of G, Gʹ(x), is a nonnegative matrix for all x. Since P1(0) is an irreducible 

non-negative matrix, its spectral radius r (which we know is larger than 1 because R0 > 1) is 

an eigenvalue with a corresponding positive eigenvector υ:

P1 0 υ = rυ .

In addition, for all ϵ > 0 sufficiently small, it holds that

G ϵυ = rϵυ + o ϵ ≥ ϵυ,

since r > 1. Now for a given x1 0 ∈ int ℝ+
4 ∩ K, we can pick a sufficiently small ϵ > 0 such 

that

a = ϵυ ≤ x1 0 and ≤ G a .

It follows from an application of Lemma 3.5 that every solution of (5) starting in 

ℝ+
4 \ 0, 0, 0, 0  converges to the unique interior equilibrium.

The global asymptotic stability of the unique interior fixed point now follows from the local 

asymptotic stability in Theorem 3.2 together with the global attractivity established above. □
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Next we establish the global stability of the interior equilibrium for the full model (1). To 

prove this theorem we rely on theory for asymptotically autonomous discrete dynamical 

systems in D’Aniello and Elaydi (2020) and Mokni et al. (2020).

Theorem 3.7. Suppose that R0 > 1 and sk + βk > 1 for k = h, H. Then every solution of (1) 

with initial condition int ℝ+
4 \ 0, 0, 0, 0 , ℎ 0 > 0 and H(0) > 0 converges to the unique interior 

equilibrium E, L, N, A, ℎC, HC .

Proof. By Theorem 3.2 in Mokni et al. (2020) it is sufficient to show that assumptions (A1) 

and (A2) in that paper are satisfied. Since, H(t) → HC and h(t) → hC exponentially due to 

the global asymptotic stability, then Gt defined by the right hand side mapping of the first 

four equation of (1) converge uniformly to G the map defined by the right-hand side of (5). 

Hence, (A1) is satisfied. As for (A2), this is clearly satisfied as it is easily seen that Gt maps 

int ℝ+
4 int ℝ+

4 . □

4. Case study: Borellia burgdorferi and Anaplasma phagocytophila in 

Ixodes ricinus

In this section, we apply model (2) to study two tick-borne pathogens: Borellia burgdorferi 
and Anaplasma phagocytophila. We use the hard-bodied tick species Ixodes Ricinus which 

is one of the primary vectors of these pathogens in Europe. I. ricinus is a three-host tick 

with immature stages preferring small hosts such as lizards, birds and small to medium-sized 

mammals and adult ticks preferring larger hosts such as hedgehogs, hares, deer and domestic 

livestock (Gray et al., 2016).

Estimates for life-history parameters and pathogen-specific parameters are provided in 

Tables 1 and 2. Tick and pathogen estimates primarily come from Matser et al. (2009). 

Since we model female ticks only, fecundity is estimated as half of the values provided 

in Matser et al. (2009). Survival probabilities in model (2) are estimated using sj = sj
1/Tj

where sj is the stage-to-stage survival probability provided in Matser et al. (2009) and Tj is 

the average length of stage j. Meanwhile, we estimate the probability a stage j tick reaches 

maturation as the inverse of the average length of stage j, γi = 1
Tj

 (Caswell, 2000). Following 

Matser et al. (2009), we assume the same co-feeding transmission η for all tick stage. We 

base parameter estimates for small and large hosts on mice and deer, respectively. Note that, 

while deer are not competent reservoir for B. burgdorferi, they may be competent reservoirs 

for A. phagocytophila (Svitálková et al., 2015).

4.1. The basic reproduction number: Disease invasion

We first apply the next-generation-matrix approach to calculate the basic reproduction 

number R0 which gives the expected number of secondary infections produced by a 

primary infection in a totally susceptible population (Allen and Van den Driessche, 2008). 

This quantity determines whether a pathogen will be able to invade the tick-host system. 
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Specifically, a pathogen is able to invade the system if and only if R0 > 1. Note that, in 

comparison, R0 determines whether a tick population can invade a given location.

To calculate R0 we follow Allen and Van den Driessche (2008). Namely, we first 

linearize the projection matrix of system (2) around the disease-free equilibrium 

E, L, N, A, ℎC, HC, 0, 0, 0, 0, 0, 0  of model (2) which is equivalent to the positive equilibrium 

of model (1) when ϕℎ
0 = ϕH

0 = 0 Recall that, in order for a non-trivial disease-free 

equilibrium exist we must have the inherent net reproductive number greater than one. This 

results in a block triangular matrix with the 6 × 6 lower right block corresponding to the 

Jacobian matrix for the disease states. We then decompose this 6 × 6 block matrix into a 

matrix F describing new infections and a matrix T containing all other types of transitions. 

The basic net reproduction number is calculated as the dominant eigenvalue of the next 

generation matrix defined as F (I −T )−1, where I is the identity matrix. In many disease 

models, F is a low rank matrix which makes it possible to obtain an exact expression for 

the dominant eigenvalue of the matrix F (I − T )−1. However, for model (2), since there 

are many sources of new infections, this is not the case and R0 is a zero of a high degree 

polynomial for which solutions are not generally tractable. Therefore, we instead calculate 

R0 numerically in MATLAB, using the built-in eig() function to calculate the dominant 

eigenvalue.

In addition to calculating R0, we also consider the elasticity of R0 with respect to changes in 

model parameters. The elasticity of R0 with respect to parameter ξ is defined as

ζ
R0

∂R0
∂ζ , (8)

and gives the proportional change in R0 given a proportional change in the input ξ (Caswell, 

2000). Elasticity calculations indicate which processes may be key drivers of disease 

invasion and can help identify important information gaps in parameter estimates.

Given both the variability and uncertainty surrounding tick ecology and pathogens, we 

choose to work with interval estimates rather than point estimates for the model parameters. 

Therefore, we compute R0 for 20,000 sets of parameters chosen randomly from uniform 

distributions defined on the intervals given in Tables 1 and 2. For each simulation, R0 

is calculated as well as its elasticity with respect to proportional changes in the disease 

transmission parameters. All derivatives are calculated numerically using the standard 

forward difference approximation with step size 0.01. Approximately 1% of the simulations 

(238 and 239 for B. burgdorferi and A. phagocytophila, respectively) resulted in R0 values 

less than one. Since this means the tick population dies out, these simulations were removed.

A histogram of the obtained R0 estimates is provided in Fig. 2(a) for B. burgdorferi. 
Since the distribution is skewed, we applied a logarithmic transformation, shown in Fig. 

2(b), to obtain the 95% confidence interval. In Figs. 2(c)–2(d), we also provide normal 

probability plots for this logarithmic transformation. We observe that, after dropping 500 of 

the largest and smallest R0 estimates, R0 appears to follow a log-normal distribution. Similar 

results (not shown) were also obtained for A. phagocytophila. The estimated mean basic 
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reproduction number R0 and the 95% confidence intervals for both diseases are given in 

Table 3. When compared to the estimates obtained in Matser et al. (2009), also provided 

in Table 3, we observe that for B. burgdorferi the R0 estimate obtained from model (2) 

is larger, as is the confidence interval, while the opposite is true for A. phagocytophila. 

However, relative to the length of the confidence intervals from Matser et al. (2009), these 

R0 estimates are within 14.3% and 8.9%, respectively, of the estimates provided in Matser 

et al. (2009). We find the level of agreement between these two complementary approaches 

promising given the complicated nature of tick–host–pathogen systems, as well as the 

existing uncertainty surrounding the many tick species and their pathogens.

The elasticities of R0 for B. burgdorferi with respect to the six disease transmission 

parameters from each of the 20,000 simulations (minus the 500 largest and 500 smallest 

values and those simulations resulting in R0 < 1) are provided in Fig. 3. We observe that 

R0 is most sensitive to changes in parameters describing systemic transmission. Meanwhile, 

it is less sensitive to changes in transovarial transmission. The elasticities of R0 for A. 
phagocytophila (not shown) follow similar trends. These results are in agreement with the 

results from Matser et al. (2009) which also found that R0 for both diseases was most 

sensitive to changes in systemic infection parameters. Mean elasticities for both diseases are 

provided in Table 4.

In Table 4, we also provide the coefficient of determination when these elasticities are fit 

to a linear regression in order to observe which parameters are correlated with R0. Since 

each of the 20,000 simulations are obtained by first choosing model parameters uniformly 

from their respective intervals, and thus each simulation is based a different set of parameter 

values, in general we should not expect to see a significant correlation between changes in 

a single model parameter and changes in R0. In this case, the only correlation we observe 

is with vN in B. burgdorferi which is quadratically correlated. This correlation is also in 

agreement with what is known about the transmission of these pathogens. Specifically, 

for B. burgdorferi, since the likelihood of transovarial transmission is small resulting few 

infected larvae, nymphs are the primary drivers of this pathogen (Van Duijvendijk et al., 

2015). Hence, the strong correlation of R0 with the infection of hosts from infected nymphs 

vN. We hypothesize that the nonlinear relationship with vN is likely due to the fact that an 

infection in a host may lead to multiple tick infections.

Though host abundance is an important factor in the establishment and survival of tick 

populations, Ixodes ticks spend a majority of their life-cycle off hosts (Cheng et al., 2017). 

Therefore, abiotic environmental factors play a crucial role in tick survival and development 

(Cheng et al., 2017; Sonenshine, 2018). In fact, recent studies on the effect of climate 

change on tick population expansion have found that increasing temperature, leading to 

increased survival rates, can help enable tick invasion into new environments (Cheng et al., 

2017; Hamer et al., 2010). In order to understand how these parameters may contribute to 

disease invasion, in Table 5 we provide the elasticity of R0 with respect to tick life-cycle 

parameters and host carrying capacities. We observe that R0 tends to be more sensitive to 

changes in life-history parameters, such as survival probabilities, than to changes in the 

pathogen parameters. These elasticity results suggest that increased temperatures may also 

help enable disease invasion. With respect to the survival of the different tick stages, we 
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observe that R0 is most sensitive to the survival of the larva stage. This is in agreement with 

previous studies which found survival from the larva to the nymph stage is critical for R0 in 

both tick-borne encephalitis and Lyme borreliosis (Ostfeld and Brunner, 2015).

For both diseases, we observe in Table 5 that the tick competition coefficient c is correlated 

with R0. Notice that larger c values result in smaller tick populations, thus R0 is positively 

correlated with larger tick densities. The correlation of R0 with the competition coefficient 

highlights an important data gap as intraspecific density-dependent effects in ticks are 

difficult to estimate. For example, though estimates of questing ticks obtained through 

blanket dragging or flagging methods can be used to measure epidemiological risk, they 

cannot yield information on absolute tick population sizes unless host assemblages and 

densities are also known (Randolph, 2004). In addition, these methods only capture a 

minority of active ticks and, thus, tick abundance estimates may be biased downward 

(Nyrhilä et al., 2020).

4.2. Beyond R0: Disease establishment

While R0 is a useful quantity for determining whether a pathogen can invade a tick-host 

system, it does not provide any information about what happens after invasion occurs. 

This fact is highlighted in Fig. 4 which gives the disease prevalence in the tick population 

against R0 for cases when invasion occurs (i.e. R0 > 1). Specifically, we define disease 

prevalence to be the proportion of ticks in host-seeking tick stages (larva, nymph, and 

adult) that are infected. As can be seen in this figure, the same disease prevalence may 

be obtained for a wide range of R0 values. In this section, we use model (2) to examine 

two important disease metrics once invasion has occurred: disease prevalence and time to 

disease establishment. We define the establishment time to be the amount of time it takes 

the number of host-seeking infected ticks to reach some proportion of the total disease 

equilibrium density. For simulation purposes, here we choose the proportion to be 50%.

For all numerical simulations of model (2) generated with parameter values selected 

from Tables 1 and 2, we observed the system converge to a stationary equilibrium. This 

was confirmed numerically by verifying that the final-time densities for each of the tick 

stages was sufficiently close (here we used 10−8) to the nine previous values. Thus, the 

infection prevalence in the long run is essentially constant and may be found by numerically 

simulating model (2) for sufficiently long time.

Histograms for the disease prevalence and time to disease establishment for B. burgdorferi 
generated from 20,000 Monte Carlo simulations are provided in Fig. 5. Table 6 provides 

the means and confidence intervals for the two disease metrics for both diseases. Both 

a logarithmic and square root transformation of the calculated histograms result in 

distributions that are approximately normal, thus we provide confidence intervals obtained 

from each of these transformations. Meanwhile, Tables 7 and 8 give elasticities of these 

two metrics with respect to changes in the model parameters. Reported values in Tables 6–8 

were calculated from 20,000 Monte Carlo simulations after removing all cases where R0 < 1 

and then removing the 500 largest and 500 smallest values. Simulations for time to disease 

establishment were initialized with a single individual in each of the infected states.
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The mean disease prevalence was found to be 11.85% for B. burgdorferi and 9.00% for A. 
phagocytophila. Though previous studies have shown that disease prevalence may be highly 

variable in different habitat types, these estimates fall within prevalence ranges reported in 

the literature, see for example (Ogden et al., 2013; Reye et al., 2010; Schorn et al., 2011). 

A metaanalysis of 154 European studies found that 13.7% of I. ricinus were infected with 

Borrelia spp., but prevalence varied from 2% to 49% depending on the region (Reye et 

al., 2010). In Luxembourg, the mean prevalence was found to be 11.3% for B. burgdorferi 
with highest and lowest observed prevalences of 21.9% and 2.8%, respectively (Reye et al., 

2010). A study of the prevalence of B. burgdorferi in I. scapularis for different locations in 

Canada found similar prevalences which ranged from 9.8% to 14.1% (Ogden et al., 2013). 

In Luxembourg, the mean prevalence for A. phagocytophilum in I. ricinus was 1.9% with 

highest and lowest observed prevalences of 4.5% and 0.8%, respectively (Reye et al., 2010). 

However, in Bavarian public parks in Germany higher prevalences of A. phagocytophilum 
were found with a mean prevalence of 11.6%, and ranges from 8.1% to 20.1% (Schorn 

et al., 2011). Notably, it is remarked in Schorn et al. (2011) that the prevalence of A. 
phagocytophilum appears to be lower in woodland areas.

With respect to the elasticity calculations, we continue to observe that, as with disease 

invasion, disease prevalence is also sensitive to the tick survival probabilities. However, 

infection of hosts and tick searching efficiency have no impact on infection prevalence. In 

addition, there are no significant correlations.

The mean time to disease establishment was found to be 21.77 months for B. burgdorferi, 
and 20.84 months for A. phagocytophila. For comparison, it was found that it takes the 

pathogen B. burgdorferi three to five years to invade following the invasion of the tick I. 
scapularis in central and eastern Canada, respectively (Ogden et al., 2013). However, these 

estimates are based on the time since the tick, rather than the pathogen, first invades a 

region and disease establishment is defined as the first time that the disease prevalence 

increases. In Table 8, we observe that there are a number of model parameters that the time 

to disease establishment is not sensitive to. However, as with the previous metrics, it is 

sensitive to the tick survival probabilities. We also observe that the transovarial transmission 

probability rA and egg survival probability sE are correlated with disease establishment time. 

Since increases in the parameter c decreases tick density and, thus, may make it possible 

that the infection never reaches establishment as defined here, we do not include elasticity 

calculations for c in Table 8.

5. Discussion

The tick–host–pathogen system involves many complex interactions that depend on both 

abiotic conditions, such as temperature and humidity, and biotic factors, such as availability 

of hosts (Gray et al., 2016; Randolph, 2004). Clearly, not all of these factors have been 

included in model (2). In this section, we briefly discuss how the model framework 

developed here may be extended to incorporate some of these elements.

Since tick development and questing is temperature-dependent, variation in seasonal tick 

dynamics may occur in different geographic regions which may have significant impacts 
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on pathogen transmission (Randolph, 2004). For example, maintenance of B. burgdorferi 
in I. scapularis depends heavily on the timing of seasonal activity in the immature stages 

since efficient infection of the larva stage from reservoir hosts requires that larvae feed after 

infected nymphs (Gatewood et al., 2009). Though model (2) does not include seasonality, 

this may be easily incorporated by making the search efficiencies aj a function of time. 

Given the one-month time unit, this would mean that, rather than a disease-free equilibrium, 

the model would possess a disease-free p-cycle for some 1 < p ≤ 12. In this case, R0 is 

calculated as the dominant eigenvalue of

∏
i = 1

p
F1 I − Ti

−1,

where matrices Fi and Ti describe new infections and other transitions, respectively, 

evaluated at each point of the p-cycle (Cushing and Ackleh, 2012; van den Driessche 

and Yakubu, 2019). Similarly, it is also possible to define the survival probabilities to be 

functions of temperature, as is commonly done in STELLA models.

Model (2) also does not account for all of the possible complicated interactions between 

ticks and host species. For example, ticks often feed on multiple host types, with only 

a portion of these hosts being reservoirs for the pathogen. Depending on the specific 

biological population under consideration, it may be appropriate to incorporate additional 

host types into model (2), such as a non-competent host for the immature stages. In addition, 

it has been observed that ticks have a tendency to aggregate on hosts. For example, a study 

of I. ricinus on rodents in Slovakia found that 20% of hosts fed 74% of nymphs and 61% of 

larvae (Randolph et al., 1999). Accounting for this aggregation can be particularly important 

for pathogens such as tick-borne encephalitis where short infection durations in reservoir 

hosts mean that co-feeding is a major source of transmission. This aggregation tendency 

may be incorporated into model (2) following the arguments developed in Rosa et al. (2003). 

Specifically, suppose the distribution of stage j ticks on hosts follows a negative binomial 

distribution with the shape parameter σj determining the degree of aggregation. Then the 

average numbers of infected larvae and nymphs feeding with a susceptible larva individual 

on a susceptible host become

ϕℎ 1 − e−aLℎS LI
kLℎS

1 + 1
σL

, and

ϕℎ 1 − e−aNℎS LINI
kLℎS

1 +
ρLN
σLσN

,

respectively, where pLN is a correlation coefficient for larvae and nymphs. Thus, the 

probability that a susceptible larva feeding on a susceptible host does not become infected 

through co-feeding is now given by

ΨLS = e− 1
kLℎS

λLLϕℎ 1 − e−aLℎS 1 + 1
σL

L1 + λLNϕℎ 1 − e−aNℎS 1 +
ρLN
σLσN

NI ,
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with the other co-feeding terms defined similarly.

Finally we note that the two pathogens considered in this paper were chosen because of the 

long durations of infection in competent hosts. For other diseases in which host infection 

lasts for only a matter of days, such as tick-borne encephalitis, the one-month time unit 

used in model (2) means that the contribution of infected hosts to disease transmission 

becomes exaggerated. However, this one-month time unit allows us to take a more coarse-

grain approach to modeling the tick population by only distinguishing between different 

developmental stages and not different tick activity states (e.g., questing larvae versus 

feeding larvae), as has been done in other models such as (Norman et al., 1999; Rosa et 

al., 2003; Rosa and Pugliese, 2007). Since questing and feeding may last for weeks or days, 

respectively, reducing the unit of time to a week or a day to account for shorter durations 

of infection would mean that these different activity states should also be included. An 

extension of model (2) that includes these states is currently being developed by the authors 

and, in future work, we intend to examine how these differences in scales may affect model 

predictions.

6. Conclusion

In this paper, we developed a tick–host–pathogen system to study the invasion and 

establishment of tick-borne diseases. This discrete-time model incorporates different 

developmental stages of the tick, variable host preference based on developmental stage, 

and three forms of pathogen transmission. Since model (2) describes changes in densities 

over time, it is possible to study disease metrics beyond the basic reproduction number 

R0, such as disease prevalence and time to establishment. A consistent pattern we observed 

for all three disease metrics considered here is that the tick survival probabilities play an 

important role in both disease invasion and establishment. Since increased temperatures have 

been shown to result in increased tick survival rates, this supports previous findings that 

climate change may facilitate the expansion of both tick populations and their associated 

pathogens (Cheng et al., 2017; Hamer et al., 2010). In contrast, though disease invasion 

is sensitive to tick-to-host transmission vj and tick searching efficiency aj, neither disease 

prevalence nor time to disease establishment are sensitive to these parameters.

Though model (2) does not include some biological features of the tick–host–pathogen 

system, as described above, we find that the model is still able to produce results similar to 

those found using the alternative next-generation-matrix approach applied in Matser et al. 

(2009), as well as results obtained from field studies. In future work we aim to incorporate 

at least some of these additional aspects into our model framework. Model (2) will serve 

as a benchmark for understanding the effects of these added factors since comparisons 

of the two model outputs may help to identify which characteristics cause fundamental 

changes in the predictions of disease transmission and, thus, are important to include when 

studying tick-borne pathogens. Understanding what enables the successful invasion of ticks 

into new geographic locations and coinciding pathogen invasions is essential for controlling 

the expansion of tick-borne diseases. Variations of models (1) and (2) will also be used 

to gain further insights into this issue. In these studies, invasion and time to extinction for 

ticks and their pathogens will be studied by extending the models developed here to include 
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demographic stochasticity and Allee effects, both of which are be particularly important for 

small populations, as well as spatial structure and host movement.
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Appendix

We first establish the global dynamics for the two host equations and show that, if either host 

population converges to zero, then the tick population dies out.

Lemma A.1. Consider the host equation

k t + 1 = βkk t
1 + ckk t + skk t = f k t . (9)

i. If βk + sk < 1, then the extinction equilibrium k = 0 is globally asymptotically 

stable.

ii. If βk + sk > 1, then there exists a unique positive equilibrium k = kC that is 

globally asymptotically stable.

Proof. Eq. (9) has two equilibria, 0 and kC, as defined by Eq. (4). Clearly, the positive 

equilibrium exists if and only if βk + sk > 1. Moreover, we have 0 < x < f (x) when βk + 

sk < 1. Thus, the extinction equilibrium is globally asymptotically stable when βk + sk < 1 

(Theorem 2.5, Allen (2007)). When βk + sk > 1, we have x < f (x) < kC for 0 < x < kC and kC 

< f (x) < x for x > k. It follows that the positive equilibrium is globally asymptotically stable 

when it exists (Theorem 2.8, Allen (2007)). □

Lemma A.2. If either hC = 0 or HC = 0, then the origin E0 = (0, 0, 0, 0) is a globally 

asymptotically stable fixed point of system (5).

Proof. If hC = 0 or HC = 0, then P1(0) is triangular and its spectral radius r, 0 < r < 1, is the 

largest diagonal entry. By relationship (6), it follows that for any x(0) ≥ 0 we have

0 ≤ x t = ∏i = 0
t − 1 P1 x i x 0 ≤ P1

t 0 x 0 0 as t ∞ . □

For all remaining results, we assume that βk + sk > 1 for k = h, H so that k = kC.

Proof of Lemma 3.1. Since P1(0) is non-negative and irreducible, it has a positive, simple, 

strictly dominant eigenvalue r. By Theorem 1.1.3 in Cushing (1998), we have r < 1 if 

and only if R0 < 1. Thus, the extinction equilibrium E0 is locally asymptotically stable if 

Ackleh and Veprauskas Page 21

Ecol Modell. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



R0 < 1. Moreover, following the same argument as in Lemma A.2, we have that, for any 

x(0) ≥ 0, x(t) → 0 as t → ∞ whenever R0 < 1. Thus, the extinction equilibrium is globally 

asymptotically stable for R0 < 1. □

Proof of Theorem 3.2. An interior equilibrium is a positive solution to equilibrium 

equations

E = β γA 1 − e−aAHC A sAγA 1 − e−aAHC A + sE 1 − γE E, (10a)

L = sEγEE + sL 1 − γL 1 − e−aLℎC L, (10b)

N = sLγL 1 − e−aLℎC L + sN 1 − γN 1 − e−aNℎC N, (10c)

A = sNγN 1 − e−aNℎC N + sA 1 − 1 − γAe−aAHC A . (10d)

We solve these equations by first reducing the system down to a single equation in terms 

of A. Solve Eq. (10a) for E, Eq. (10b) for L, and Eq. (10c) for N, and then substitute these 

into (10d) to get an equation that only depends on A. This equation has exactly one non-zero 

solution A. Substituting this solution back into the remaining equations, we find a unique 

interior fixed point x1 E, L, N, A  defined by

A
R0 − 1

cγA 1 − e−aAHC
,

E
sAγA 1 − e−aAHC

1 − sE 1 − γE
Aβ γA 1 − e−aAHC A ,

L
sEγE

1 − sL 1 − γL 1 − e−aLℎC
E,

N
sLγL 1 − e−aLℎC

1 − sN 1 − γN 1 − e−aNℎC
L .

Clearly this fixed point is positive for R0 > 1.
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Next, to establish local stability, note that the Jacobian of system (5) evaluated at the interior 

fixed point is given by

J = T + F,

where T  is the same matrix as defined for P1(0) and

F = 1

1 + cγA 1 − e−aAHC A 2F ≥ 0.

Since F  satisfies the conditions of Theorem 1.1.3 in Cushing (1998), it follows that the 

interior fixed point is locally asymptotically stable if and only if R0 < 1 where R0 is the 

spectral radius of F I − T −1. Calculation shows that

R0 =
R0

1 + cγA 1 − e−aAHC A 2 = 1
R0

.

Since the fixed point exists for R0 > 1, we conclude that it is locally asymptotically stable. □

Proof of Lemma 3.3. It is clear that ℝ+
4  is forward invariant. Moreover, any non-

negative initial condition in ℝ+
4 \ 0, 0, 0, 0  enters int ℝ+

4  in at most three time units. Let 

x1 0 = E 0 , L 0 , N 0 , A 0 > 0. Then for

t ≥ t1 = ln
β0sA

c 1 − sE 1 − γE E 0 ξ / ln sE 1 − γE

we have

E t ≤
β0sA

c + sE 1 − γE E t − 1

≤
β0sA

c 1 − sE 1 − γE
+ sE 1 − γE tE 0

≤
β0sA

c 1 − sE 1 − γE
1 + ξ .

It follows that

L t ≤ sEγEE + sL 1 − γL 1 − e−aLℎC L t − 1

≤
sEγEE

1 − sL 1 − γL 1 − e−aLℎC
+ sL 1 − γL 1 − e−aLℎC tL 0 ,

≤
sEγEE

1 − sL 1 − γL 1 − e−aLℎC
1 + ξ ,
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for t ≥ t1 + t2 where

t2 = ln
sEγEE

1 − sL 1 − γL 1 − e−aLℎC L 0
ξ

/ ln sL 1 − γL 1 − e−aLℎC .

Following similar arguments, we may also bound N (t) and A(t). It follows that the solution 

x1(t) enters the set K in at most t = t1+t2+t3+t4 time steps where

t3 = ln
sLγL 1 − e−aLℎC L

1 − sN 1 − γN 1 − e−aNℎC N 0
ξ

/ ln sN 1 − γN 1 − e−aNℎC ,

t4 = ln
sNγN 1 − e−aNℎC N

1 − sA 1 − γA 1 − e−aAHC A 0
ξ

/ ln sA 1 − γA 1 − e−aAHC .

Next we show that the set K is invariant. Let x1 t ∈ K. Then we have

E t + 1 ≤
β0sA

c + sE 1 − γE Et ≤
β0sA

c + sE 1 − γE E

=
β0sA

c 1 − sE 1 − γE
1 + sE 1 − γE ξ < E,

L t + 1 ≤ sEγEE + sL 1 − γL 1 − e−aLℎC L

=
sEγE

1 − sL 1 − γL 1 − e−aLℎC
E 1 + sL 1 − γL 1 − e−aLℎC ξ

< L,

N t + 1 ≤ sL 1 − γL 1 − e−aLℎC L + sN 1 − γN 1 − e−aNℎC N

=
sL 1 − γL 1 − e−aLℎC

1 − sN 1 − γN 1 − e−aNℎC
L 1 + sN 1 − γN 1 − e−aNℎC ξ

< N,
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A t + 1 ≤ sN 1 − γN 1 − e−aNℎC N + sA 1 − γA 1 − e−aAHC A

=
sN 1 − γN 1 − e−aNℎC

1 − sA 1 − γA 1 − e−aAHC
N 1 + sA 1 − γA 1 − e−aAHC ξ

< A . □

Proof of Theorem 3.4. To establish uniform persistence we follow similar arguments to 

those in Ackleh and DeLeenheer (2008) that rely on an application of Theorem 4.1 in 

Hofbauer and So (1989). First note that, since R0 > 1, it follows from Theorem 1.1.3 in 

Cushing (1998) that P1(0) has a positive strictly dominant eigenvalue r > 1. Hence, (0, 0, 0, 

0) is unstable. Now, using similar notation as in Hofbauer and So (1989), we let ℋ = ℝ+
4 , 

Y = bd ℝ+
4 , and f denote the map on the right hand side of (5). Then clearly f ℋ\Y ⊂ ℋ\Y

since int ℝ+
4  is positively invariant for the system (5). By Theorem 2.1 in Hale and Waltman 

(1989) and using Lemma 3.3, it follows that there exists a global attractor X in ℋ. Let M 
be the maximal compact invariant set in Y. Here, M = {(0, 0, 0, 0)}. Uniform persistence 

follows if we can prove that (1) M is isolated in X and (2) W s M ⊂ Y(here, W S(M), the 

stable set of M, denotes the set of points whose solution sequence for (5) converges to M). In 

fact, next we prove a stronger result that M is a repeller which by Theorem 2.1 in Hofbauer 

and So (1989) is equivalent to showing (1) M is isolated in ℋ and (2) W s M ⊂ M.

Utilizing Corollary 2.2 in Hofbauer and So (1989), we can prove that M is a repeller by 

constructing a continuous function Q:ℝ+
4 ℝ+ which satisfies (1) Q(x) = 0 for x ∈ M and 

(2) there is a neighborhood U of M such that for all x ∈ U\M, there exists a t > 0 where 

Q(f t(x)) > P1(x)x. To this end, since P1(0) is non-negative and irreducible, its dominant 

eigenvalue r > 1 has a corresponding left eigenvector p > 0, i.e., p⊺P1 0 = rp⊺. Pick r∗ ∈ 1, r

such that p⊺P1 0 − r∗p⊺ > 0. Then by continuity of P1(x), there exists a neighborhood U of 

M in ℋ such that

p⊺P1 x − r∗p⊺ > 0.

Now, define Q:ℝ+
4 ℝ+ as follows:

Q x = p⊺x .

Then, Q(x) = 0 for x ∈ U iff x ∈ M, and is positive everywhere else in U. Moreover,

Q f x = p⊺P1 x x > r∗p⊺x > Q x , ∀x ∈ U \M .

This proves that the system (5) uniformly persistent, i.e. there is some η > 0, such that,
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liminf
t ∞

  E t , L t , N t , A t ≥ η

for any solutions with nonzero initial conditions in ℝ+
4 . □
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Box I.

P1 x =

sE 1 − γE 0 0 β γA 1 − e−aAH A sAγA 1 − e−aAH

sEγE sL 1 − γL 1 − e−aLℎ 0 0

0 sL 1 − γL 1 − e−aLℎ sN 1 − γN 1 − e−aNℎ 0

0 0 sN 1 − γN 1 − e−aNℎ sA 1 − 1 − γA 1 − e−aAH
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Box II.

T =

sE 1 − γE 0 0 0

sEγE sL 1 − γL 1 − e−aLℎC 0 0

0 sLγL 1 − e−aLℎC sN 1 − γN 1 − e−aNℎC 0

0 0 sNγN 1 − eaNℎC sA 1 − γA 1 − e−aAHC
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Fig. 1. 
A schematic of model (2). Solid black lines denote developmental and disease-state 

transitions, dotted black lines denote transovarial transmission, dashed blue lines denote 

potential sources of systemic infection, and dashed–dotted red lines denote sources of 

co-feeding transmission. For example, after obtaining a blood meal a susceptible larva 

individual LS may either mature to NS if it escapes infection or mature to NI if it becomes 

infected. Here there are two ways that infection may occur: either systemic infection from 

feeding on an infected host hI, as indicated by a blue dashed line, or non-systemic infection 

by co-feeding with other infected larvae or nymphs, as indicated by the red dashed–dotted 

lines.
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Fig. 2. 
(a) A histogram of the R0 estimates for B. burgdorferi obtained from 20,000 sets of 

parameters chosen randomly from uniform distributions after removing all cases where 

R0 < 1. (b) The natural logarithmic transformation of the R0 estimates. Graphs (c) and (d) 

give the normal probability plot for ln(R0), with (d) obtained after removing the 500 largest 

and 500 smallest R0 values.
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Fig. 3. 
The elasticity of R0 with respect to the disease transmission parameters for B. burgdorferi. 
Elasticities are obtained from 20,000 sets of parameters chosen randomly from uniform 

distributions after first removing all sets that result in R0 < 1, and then removing the 500 

largest and 500 smallest values.
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Fig. 4. 
Disease prevalence in ticks against R0 for (a) B. burgdorferi and (b) A. phagocytophila.
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Fig. 5. 
Histogram of disease prevalence and time to disease establishment for B. burgdorferi. The 

histograms were generated using 20,000 Monte Carlo simulations and then removing all 

cases where R0 < 1.
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Table 4

Mean elasticity of R0 with respect to pathogen parameters and coefficients of determination when data is fit to 

a linear regression.

Parameter Borellia burgdorferi Anaplasma phagocytophila

Elasticity R 2 Elasticity R 2

pL 0.4502 0.1612 0.4699 0.0507

pN 0.0139 0.0716 0.0038 0.0962

pA – – 0.0016 0.0391

rA 0.0278 0.1731 0.0226 0.1768

η 0.0935 0.2307 0.0292 0.1893

vL 0.0910 0.2308 0.0216 0.0522

vN 1.5374 0.8030
a 0.4799 0.3563

vA – – 0.0015 0.0210

a
Denotes a fit to a quadratic regression.
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Table 5

Mean elasticity of R0 with respect to tick life-history parameters and coefficients of determination when data 

is fit to a linear regression.

Parameter Borellia burgdorferi Anaplasma phagocytophila

Elasticity R 2 Elasticity R 2

sE 0.9537 0.0007 0.9160 0.2189

sL 3.3186 0.0420 3.1846 0.0404

sN 1.9047 0.1269 1.8271 0.1269

sA 1.5827 0.0232 1.4837 0.0130

γE 0.7075 0.2032 0.6786 0.1924

γL 0.5520 0.0024 0.5343 0.0019

γN 0.1115 0.0056 0.0907 0.0070

γA 0.1933 0.0011 0.1885 0.0016

β 0 0.8431 0.0316 0.8092 0.0403

c −0.3744 0.7550 −0.3628 0.7785

aL 0.4737 0.2266 0.4904 0.3275

aN 0.4557 0.2387 0.4572 0.2459

aA 0.0001 0.1446 0.0026 0.0436

kL −0.0245 0.0166 −0.0121 0.0059

kN 0.0010 0.0002 0.0016 0.0001

kA −0.0213 0.0130 −0.0064 0.0070

hc 0.6758 0.0007 0.6824 0.0000

Hc −0.0036 0.0001 0.0136 0.0008
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Table 6

Estimated mean and 95% confidence intervals (CI) for disease prevalence and time to disease establishment 

obtained from Monte Carlo simulation.

Borellia burgdorferi Anaplasma phagocytophila

Disease prevalence

Mean 11.85% 9.00%

95% CI (logarithmic) (4.65%, 25.34%) (4.11%, 16.83%)

95% CI (square root) (3.39%, 24.02%) (3.68%, 15.55%)

Disease establishment time

Mean 21.77 months 20.84 months

95% CI (logarithmic) (13.49, 33.24) (13.49, 30.76)

95% CI (square root) (12.57, 32.72) (12.75, 30.31)
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Table 7

Mean elasticity of the tick infection prevalence with respect to pathogen and tick parameters and coefficients 

of determination when data is fit to a linear regression.

Parameter Borellia burgdorferi Anaplasma phagocytophila

Elasticity R 2 Elasticity R 2

pL 0.5221 0.0170 0.8662 0.0125

pN 0.0751 0.0909 0.0270 0.2860

pA – – 0.0053 0.1511

rA 0.0502 0.4474 0.0427 0.6326

η 0.3444 0.1842 0.0912 0.1590

vL 0.0000 0.0001 0.0000 0.0001

vN 0.0000 0.0000 0.0000 0.0037

vA – – 0.0000 0.0213

sE 0.3743 0.0590 0.1443 0.0543

sL 2.0476 0.0311 1.2489 0.0217

sN 2.4788 0.3790 1.9980 0.6052

sA 1.1744 0.1733 0.7007 0.3565

γE 0.2640 0.0019 0.0980 0.0043

γL 0.9726 0.0021 0.8289 0.0070

γN 0.0816 0.0668 0.0125 0.1593

γA −0.0130 0.0293 −0.0393 0.0750

β 0 0.3200 0.0021 0.1201 0.0056

c −0.1462 0.0059 −0.0454 0.0867

aL 0.0000 0.0219 0.0000 0.0002

aN 0.0000 0.0253 0.0000 0.0194

aA 0.0000 0.0384 −0.0004 0.3096

kL −0.1862 0.0095 −0.0632 0.0139

kN −0.0212 0.0139 −0.0154 0.0164

kA −0.0045 0.0009 −0.0044 0.0088

hc −0.2083 0.0022 −0.0792 0.0042

Hc −0.0045 0.0001 −0.0050 0.0070
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Table 8

Mean elasticity of time to disease establishment with respect to pathogen and tick parameters and coefficients 

of determination when data is fit to a linear regression.

Parameter Borellia burgdorfer Anaplasma phagocytophila

Elasticity R 2 Elasticity R 2

pL −0.3723 0.0743 −0.4396 0.0905

pN −0.0658 0.0215 −0.0159 0.0456

pA – – −0.0298 0.0170

rA −0.0149 0.8080 −0.0238 0.7836

η −0.2708 0.3239 −0.0706 0.2983

vL 0.0000 – −0.0026 0.0221

vN 0.0000 – −0.0038 0.0232

vA – – −0.0004 0.0175

sE −0.9545 0.7426 −0.8774 0.6636

sL −2.8468 0.0268 −2.5091 0.0181

sN −2.0950 0.0753 −1.8238 0.0791

sA −2.2779 0.0732 −1.9902 0.0714

γE −1.0628 0.3737 −0.9063 0.3560

γL −0.4445 0.1898 −0.3866 0.1239

γN −0.3475 0.1202 −0.3065 0.0861

γA −0.3689 0.0672 −0.3170 0.0382

β 0 0.0000 – 0.0000 –

aL 0.0000 – 0.0000 –

aN 0.0000 – −0.0008 0.0295

aA 0.0000 – 0.0000 0.0045

kL 0.0167 0.0038 0.0000 –

kN 0.0000 – 0.0000 –

kA 0.0000 – 0.0000 –

hc 0.0000 – 0.0000 –

Hc 0.0000 – 0.0000 –

Ecol Modell. Author manuscript; available in PMC 2022 June 02.


	Abstract
	Introduction
	Model development
	Baseline tick model without disease
	The disease model
	Systemic infection: host to tick
	Systemic infection: tick to host
	Non-systemic infection: Co-feeding transmission
	The full model


	Persistence and global dynamics of the tick-host model
	Case study: Borellia burgdorferi and Anaplasma phagocytophila in Ixodes ricinus
	The basic reproduction number: Disease invasion
	Beyond R0: Disease establishment

	Discussion
	Conclusion
	Appendix
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

