
Calibration of an Adaptive Genetic Algorithm for Modeling
Opinion Diffusion

Kara Layne Johnson*, Nicole Bohme Carnegie
Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA

Abstract

Genetic algorithms mimic the process of natural selection in order to solve optimization problems

with minimal assumptions and perform well when the objective function has local optima on

the search space. These algorithms treat potential solutions to the optimization problem as

chromosomes, consisting of genes which undergo biologically-inspired operators to identify a

better solution. Hyperparameters or control parameters determine the way these operators are

implemented. We created a genetic algorithm in order to fit a DeGroot opinion diffusion model

using limited data, making use of selection, blending, crossover, mutation, and survival operators.

We adapted the algorithm from a genetic algorithm for design of mixture experiments, but the

new algorithm required substantial changes due to model assumptions and the large parameter

space relative to the design space. In addition to introducing new hyperparameters, these changes

mean the hyperparameter values suggested for the original algorithm cannot be expected to result

in optimal performance. To make the algorithm for modeling opinion diffusion more accessible

to researchers, we conduct a simulation study investigating hyperparameter values. We find the

algorithm is robust to the values selected for most hyperparameters and provide suggestions for

initial, if not default, values and recommendations for adjustments based on algorithm output.

Keywords

genetic algorithm; hyperparameters; control parameters; opinion diffusion; parameter estimation;
social networks

1. Introduction

Genetic algorithms, developed by John Holland in the 1970s, mimic the process of natural

selection to solve optimization or search problems and are particularly useful when the

objective function lacks continuity, differentiability, or convexity or has local optima on

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).
*Correspondence: kara.johnson4@montana.edu.
Author Contributions: Conceptualization, K.L.J. and N.B.C.; methodology, K.L.J.; software, K.L.J.; validation, K.L.J.; formal
analysis, K.L.J.; investigation, K.L.J.; data curation, K.L.J.; writing—original draft preparation, K.L.J.; writing—review and editing,
K.L.J. and N.B.C.; visualization, K.L.J.; supervision, N.B.C.; project administration, N.B.C.; funding acquisition, N.B.C. All authors
have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

HHS Public Access
Author manuscript
Algorithms. Author manuscript; available in PMC 2022 June 02.

Published in final edited form as:
Algorithms. 2022 February ; 15(2): . doi:10.3390/a15020045.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/

the search space [1-6]. These algorithms represent a solution to the optimization problem

as a chromosome consisting of genes. The chromosomes undergo biologically-inspired

operators, modifying the genes to identify progressively better solutions. Hyperparameters

or control parameters govern the behavior of these operators; however, specifying these

hyperparameters is a barrier to use of genetic algorithms, particularly for researchers outside

of the field of machine learning who are applying genetic algorithms in their research [7,8].

We developed a genetic algorithm to fit DeGroot opinion diffusion models using limited

data on small social networks specifically for use in network and social science research [9].

While there were existing algorithms for the closely-related Stochastic Opinion Dynamics

Model (SODM), both the maximum-likelihood-based algorithm and the particle learning

algorithm were developed for online social networks and require far more data than are

practical to obtain in the public health and social science applications for which we

developed our method [10,11]. Though other bio-inspired algorithms may be viable options

for fitting the DeGroot model–for example, bacterial foraging optimization (BFO) or particle

swarm optimization (PSO)–these algorithms have a tendency to identify local as opposed

to global optima: a concern motivating our choice of a genetic algorithm [12-14]. Using

adaptive modifications of these algorithms, such as the self-adaptive chemotaxis strategy

for bacterial foraging optimization (SCBFO), is a potential solution, but the performance

of a genetic algorithm has already been demonstrated on the related problem of design

of constrained mixture experiments with the structure of the design matrix and the matrix

of parameters for the DeGroot model having a similar structure and the same sum-to-one

constraint across rows [2,14]. Further, we demonstrated the performance of the genetic

algorithm under the conditions expected in the intended application of this method [15].

While we adapted the operators from the genetic algorithm for design of mixture

experiments, substantial changes to the operators were necessary due to model assumptions

and the large parameter space relative to the design space. As such, the suggested

hyperparameter values for the original algorithm cannot be expected to result in optimal

performance. While research exists on either optimizing or removing hyperparameters from

genetic algorithms in general, the algorithms and objective functions used bear even less

resemblance to our algorithm because of the features specific to the opinion diffusion

application [7,16]. To make the algorithm for modeling opinion diffusion more accessible

to applied researchers, we conduct a simulation study investigating hyperparameter values,

removing a barrier for researchers applying this methodological development to their applied

research.

We begin by providing an overview of the model for opinion diffusion, detailing the genetic

algorithm, and describing our approach and procedures for calibrating the algorithm in

Section 2. We then present the results of the simulation study, addressing the performance of

the algorithm in terms of parameter recovery and efficiency for the different hyperparameter

values considered in Section 3. Finally, we conclude by tying the results back to the

hyperparameters considered, providing specific suggestions for hyperparameter values and

paying particular attention to hyperparameters that can negatively affect performance if

poorly calibrated in Section 4.

Johnson and Carnegie Page 2

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Materials and Methods

In this section, first, we explain our model for opinion diffusion, focusing on the features

that inform our decisions regarding the genetic algorithm. Then, we detail the genetic

algorithm, highlighting the purposes of the operators and how the hyperparameters govern

their behavior. Lastly, we describe the hyperparameters, procedures, and measures used in

the simulation study.

2.1. Opinion Diffusion Modeling

In this section we provide an overview of the approach we take to opinion diffusion

modeling. We focus on the details of the model to be fit and the modifications necessary to

work with ordinal opinion data. Finally, we detail the objective function, highlighting why

a new method was appropriate for optimization and why suggestions on hyperparameter

values from the algorithm we adapted are not expected to be informative.

2.1.1. DeGroot Model—The DeGroot model for opinion diffusion is a deterministic

model that describes the process through which individuals or agents update their opinions

from time t, through the influence of their social network contacts, to their opinions at time t
+ 1 using

X(t + 1) = W X(t), (1)

where X(t) is an N × 1 vector of opinions and W is an N × N weight matrix. Each element

in X(t), xi(t) ∈ [0, 1], represents the opinion of agent i at time t and each element of W, wij

∈ [0, 1], represents the weight that agent i places on the opinion of agent j when updating

their current opinion. The elements in W are restricted by ∑j = 1
N wij = 1 so that wij can be

interpreted as the proportion of the total influence on agent i exerted by agent j. The model

also incorporates the structure of the social network through an adjacency matrix A, where

aij = aji = 1 if agents i and j can directly influence each other and aij = aji = 0 otherwise,

with a link between i and j in the social network being the simplest definition of “ability to

influence”. The adjacency matrix constrains the weight matrix by forcing wij ≤ aij, so the

absence of influence implies zero weight. Though atypical for social network analysis, we

include a self-link (aii = 1) so that agents update their opinions based on their own current

opinions.

2.1.2. Transformations—The purpose of our method is to fit the above model,

producing estimates for the parameters in the weight matrix W, using observed opinions

across T time steps on a network of N agents. Ideally, we would be able to observe the

continuous opinions, on the interval [0, 1], of all agents across T time steps (X(0), X(1),…,

X(T – 1)). In practice, opinions are typically measured using a Likert or other ordinal scale

in behavioral and social science research. As such, we assume the continuous opinions are

shared with network contacts without error according to the DeGroot model, but researchers

are only able to measure these opinions on an n-point ordinal scale (Y(0), Y(1),…, Y(T
– 1)). To be consistent with the model, we assume these ordinal data possess interval

properties. A common approach when using ordinal data, this is necessary to perform any

Johnson and Carnegie Page 3

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

mathematical operations and is implicit in the use of a composite scale. We convert between

ordinal and continuous opinions using the following process:

Forward Transformation

1. Begin with data on an n-point ordinal scale, converting to a 1 to n scale if

necessary.

2. Divide the interval [0, 1] into n sub-intervals of equal width.

3. An opinion of y on the ordinal scale takes on the middle value, x, in the yth

sub-interval on the continuous scale.

Back Transformation

1. Begin with data on a continuous [0, 1] interval to be converted to an n-point

ordinal scale.

2. Multiply the continuous opinion x by n.

3. Round the multiplied continuous opinion up to an integer (ceiling function) to

produce an opinion on the ordinal scale. (This final step does not work for the

edge case where x = 0, so any such values are automatically converted to an

ordinal value of 1.)

This process is also presented graphically in Figure 1 using a 5-point ordinal scale. For

example, an ordinal opinion of 4 is converted to a continuous opinion of 0.7, the center of

the 4th sub-interval or bin from 0.6 to 0.8, and any continuous opinion on that sub-interval

are converted back to an ordinal opinion of 4.

2.1.3. Objective Function—Our selected objective function incorporates opinions on

both the continuous and ordinal scales, accounting for an important feature of the back-

transformation process: a range of continuous opinions map back to a single ordinal opinion.

We use

f(X, X) = ∑
i = 1

N
∑
t = 0

T − 1
B xi(t), xi(t) ∣ xi(t) − xi(t) ∣ , (2a)

where N is the number of agents in the network and B(xi(t), xi(t)) measures the absolute

deviation between the observed and predicted opinions on the ordinal scale, measured in

bins. This allows us to penalize deviation from the center of the correct interval on the

continuous scale only if the observed and predicted opinions also differ on the ordinal scale

(B(xi(t), xi(t)) ≠ 0). Though this objective function is well-suited for our goal of fitting a

model based on observed ordinal opinions, the inclusion of B(xi(t), xi(t)) presents problems

for any optimization method requiring continuity or differentiability. We also expect many

perfect solutions (f(X, X) = 0) will fail to recover the parameters, particularly for less precise

ordinal scales (ones with fewer points) and fewer time steps. This objective function can also

be assessed on a chromosome or agent level by excluding the sum across agents:

Johnson and Carnegie Page 4

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

f(xi, xi) = ∑
t = 0

T − 1
B xi(t), xi(t) ∣ xi(t) − xi(t) ∣ , (2b)

which we leverage as part of the gene-swapping procedure in Section 2.2.1.

2.2. Genetic Algorithm

We use the genetic algorithm to identify the parameters of the DeGroot model, in the form

of the weight matrix W, that minimize the objective function. A chromosome is defined as

the weight matrix W and a gene as a row of W, denoted Wi and representing the sources

and strength of influence on agent i. We begin with a population consisting of an odd

number of chromosomes, consistent with any fixed values. These fixed values are usually

zeros resulting from zeros in the adjacency matrix (See Section 2.1.1) but can be other

known parameters. Though the user has the option to specify chromosomes, the default is

a population of randomly generated chromosomes and an identity matrix. This population

undergoes selection, blending, crossover, mutation, and survival operators, incorporating a

gene-swapping procedure, to identify an optimal solution.

2.2.1. Gene Swapping—Since the objective function can be assessed on the individual–

or gene–level, the fitness of a gene clearly does not directly depend on the other genes

within the chromosome. Instead, the fitness of a gene Wi depends on the predicted opinions

of the agents who influence agent i, as indicated by non-zero elements within Wi. Since

these predicted opinions are a function of the genes corresponding to the agents who

influence agent i, the fitness of a gene can be assessed independently of other genes within

the chromosome but does depend those other genes. We use this ability to assess fitness at

the gene level while accounting for dependencies in our gene-swapping process.

At any point in the algorithm where we identify the fittest chromosome, we assess the fitness

of each gene within that chromosome and for all other chromosomes. If the overall fittest

chromosome B contains a gene Bi which is less fit than the corresponding gene Ci in a less

fit chromosome C, we swap Bi and Ci between the two chromosomes to produce B* and

C*. We retain this change for both chromosomes if B* is fitter than B and revert to B and C
otherwise. In the case where the less fit population contains multiple chromosomes, we swap

all fitter genes at once, either retaining all swaps or reverting to the original chromosome B.

This helps prevent the loss of a fit gene in an otherwise unfit chromosome while ensuring the

best solution identified so far is retained.

2.2.2. Operators—We apply selection, blending, crossover, mutation, and survival

operators to our population of chromosomes. The application of all operators constitutes

a single iteration of the algorithm and produces a new generation of chromosomes. We

use “iteration” and “generation” interchangeably except where a distinction between the

process of producing a new generation (in this case referred to as an iteration) and the

generation itself is meaningful. We repeat the process until stopping criterion are met,

modifying the behavior of the operators as the generations progress to shift from exploration

of the parameter space to exploitation of existing solutions, making this an adaptive genetic

Johnson and Carnegie Page 5

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

algorithm as suggested by the literature [2,17-19]. Descriptions of the operators that include

examples are available in Johnson et al. and the code is linked in the Data Availability

Statement [9].

Selection: In order to preserve the best solution identified in any previous generation, we

use selection with elitism: identifying the fittest chromosome (the chromosome producing

the lowest value of the objective function), and exempting it from the remaining operators

until the next generation. After identifying the elite chromosome, we attempt gene swapping

between that chromosome and the remaining population of non-elite chromosomes. We

exempt either the original elite chromosome or row-swapped elite chromosome, depending

on the fitness of each, and proceed with either the original remaining population or the

row-swapped remaining population as appropriate.

Blending: Using the even number of chromosomes remaining after the selection operator,

we randomly pair all chromosomes. For each pair of chromosomes, blending occurs

independently for each gene with probability pb. For a pair of chromosomes B and C, if

blending occurs for row i, a blending factor β is drawn from a Unif(0,1) distribution. The

new genes (Bi
∗ and Ci

∗) are the weighted averages of the current genes and corresponding

genes from the paired chromosome according to:

Bi
∗ = βBi + (1 − β)Ci and Ci

∗ = (1 − β) Bi + βCi . (3)

While this can result in substantial changes to genes Bi and Ci when these genes are very

different, we use the blending operator primarily to make slight changes to a population

of similar chromosomes for later generations in order to refine a solution as we shift from

exploration to exploitation, meaning we begin with a lower value of pb and increase the

probability over time.

Crossover: The within-parent crossover operator defined by Limmun, Borkowski, and

Chomtee uses a crossover point after the decimal point, resulting in small changes to the

genes [2]. Since both the blending and mutation operator either already accomplish this goal

or can easily be modified in later generations to do so, we use a more drastic version of

this operator to explore our much larger parameter space. Crossover occurs independently

for each gene within each chromosome with probability pc, with all values not fixed at zero

randomly reshuffled within the gene, preserving the sum-to-one constraint and any fixed

values. Since exploring the parameter space is desirable during early generations, but drastic

changes to chromosomes are not helpful in later generations, we begin with a higher value of

pc which decreases over time.

Mutation: While the mutation operator is also used to make slight changes to genes for

later generations, the primary purpose of this operator is to explore the boundaries of the

parameter space: solutions where a gene contains a weight where wij = 1 and all others

are zero (or with wij = 1 – wfixed where wfixed is the sum of all fixed weights within

the row). Since our method for generating the initial population of chromosomes–drawing

each weight from a Unif(0, 1) distribution and scaling the rows to sum to one–will not

Johnson and Carnegie Page 6

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

result in any edge cases other than the identity matrix included in the initial population,

this is necessary in order to consider edge cases as potential solutions. Mutation occurs

independently for all genes within each chromosome with probability pm. If mutation

occurs, ε is drawn from a N(0, σ2) distribution and added to a randomly selected weight

within the gene to produce w* = w + ε, and all other non-fixed weights are scaled by
1

1 − wfixied − w∗ to preserve the sum-to-one constraint. We handle edge cases as follows:

• If w* < 0, w* is set to 0, with scaling of other non-fixed weights as above.

• If w* > 1 – wfixed, w* is set to 1 – wfixed. All other non-fixed weights in the row

are set to 0.

• If the selected weight w = 1 – wfixed, the excess weight of 1 – wfixed – w* is

evenly distributed between all other non-fixed weights within the row.

Survival: After the preceding operators, our population of chromosomes includes the elite

chromosome, the parent chromosomes (the chromosomes from the previous generation),

and the offspring chromosomes (the chromosomes from the current generation, having

undergone the selection, crossover, and mutation operators). For each pair of parent and

offspring chromosomes, we identify the fittest chromosome and attempt gene swapping with

the other chromosome. The fittest chromosome from each pair after the attempted gene

swapping along with the elite chromosome constitute the current generation and become the

parent chromosomes for the next generation.

2.2.3. Other Features—As discussed in the descriptions of the operators, we use an

adaptive genetic algorithm where each operator becomes more or less important as the

generations progress, and the mutation operator in particular can be modified to serve a

different purpose. This allows us to begin with a focus on exploration of the parameter

space and progressively move to refining existing solutions (exploitation). For the sake

of clarity, we will refer to the values controlling behavior of the individual operators,

the operator probabilities (pb,pc,pm) and σ, as control parameters and reserve the term

hyperparameters for the user-specified values that govern the overall behavior of the

algorithm, including the way the control parameters are modified within the algorithm.

We modify the control parameters by applying a multiplicative adjustment whenever a

specified number of generations without improvement is reached. For example, pb
∗ = cpb for

the specified constant c where pb
∗ is the new value of the probability of blending.

We apply a similar process with chromosome reintroduction: reintroducing either a clone of

the elite chromosome or an identity matrix after a specified number of generations without

improvement. Reintroducing a clone of the elite chromosome allows slight changes to the

current best solution—facilitating exploitation—while still preserving this solution in the

selection operator. Reintroducing an identity matrix reinforces a prior belief that agents

place high weight on their own opinions. In either case, the reintroduced chromosome

replaces the least fit chromosome in the population.

Johnson and Carnegie Page 7

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.3. Algorithm Calibration

In this section, we explain all aspects of the simulation study to calibrate the algorithm,

detailing the hyperparameters and our approach for condensing them into groups, describing

the procedure for the simulation study, and presenting the measure used to assess algorithm

performance. Though tuning approaches such as the Chess Rating System (CRS-tuning),

Relevance Estimation and Value Calibration (REVAC), and F-race are available, the

simulation study approach, overviewed in Figure 2, better suits our objectives [8,20]. The

simulation study facilitates investigating the relationship between hyperparameter values and

performance and providing accessible suggestions to algorithm users based on the results

while acknowledging that both the relationship and suggestions may depend on network or

dataset characteristics.

F-race identifies a set or sets of hyperparameters that are statistically significantly better

than others; however, our goal is not to identify an ideal set of hyperparameters based

on an arbitrary threshold but to characterize the behavior of the algorithm under various

hyperparameter combinations [21]. While CRS-tuning does address the concerns of the

binary include or exclude through the use of a ranking system, this raking does not

contain the information necessary for users to develop intuition about how the different

hyperparameters affect algorithm behavior [22]. Since REVAC identifies a marginal

distribution of high-performing values for each hyperparameter that approximates the

maximum Shannon entropy distribution, this approach produces a distribution of values

instead of a single value, and the relevance of each parameter can be measured [23,24].

While these are both appealing, the simulation study allows for an assessment of relevance

through the relationship between the values used and algorithm performance while also

presenting this overall relationship in an accessible manner that incorporates network and

dataset features.

2.3.1. Hyperparameters—Table 1 contains all of the hyperparameters used in the

algorithm. Since most are considered in the simulation study, we highlight the ones that

are not: max_iter, min_improve, min_dev, and reintroduce. In all simulations, we

run the algorithm until we either reach 100,000 iterations (max_iter=100,000) or identify

a perfect solution on the ordinal scale (min_dev=0). Note that this check is only applied

every thousand generations. We do not specify a minimum change in the objective function

that is considered an improvement (min_improve=0) and reintroduce the elite chromosome

(reintroduce=“elite”).

To reduce the simulation study to a manageable size, we condense some of these

hyperparameters to a single value or otherwise group them. We consider 200, 1000,

and 5000 generations without improvement before modifying control parameters or

reintroducing a chromosome, using the same value for all relevant hyperparameters (iterb,

iterc, iterm, iters, and iterr) within a run of the algorithm. The remaining

hyperparameters are grouped into ProbSigma (probb, probc, probm, and sigma),

MinMax (maxb, minc, minm, and mins), and MultFactor (factorb, factorc,

factorm, factors). These groupings represent the starting values of the control

parameters, the minimum or maximum values for the control parameters, and the factors for

Johnson and Carnegie Page 8

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

multiplicative adjustment to the control parameters, respectively. Since the hyperparameters

within a group cannot reasonably be set to the same value, we instead define three levels for

each group with differing values of each hyperparameter but consistent goals or concepts.

For ProbSigma, we use low, medium, and high to indicate whether we use low, medium,

or high initial values for the control parameters. Table 2 shows the specific hyperparameter

values corresponding to each level for ProbSigma. For MinMax, we use minimal, moderate,

and extreme to specify whether we applied minimal, moderate, or extreme restrictions on the

minimum or maximum value of each control parameter. The specific values corresponding

to each level for MinMax are in Table 3. Note that the minimal level imposes no restrictions

on the probabilities beyond those either implied as probabilities or possible through a

multiplicative adjustment. Finally, we use slow, moderate, and rapid levels for MultFactor,

indicating whether the multiplicitive factors used will result in slow, moderate, or rapid

changes to the control parameters, with specific values for each level in Table 4.

2.3.2. Procedure—The hyperparameters and features of the social network and opinion

diffusion process considered in the simulation study are in Table 5. We use each

combination for ten runs of the algorithm, generating a new network, weight matrix, and

dataset each time. First, we generate an Erdős-Rényi network, to represent a cluster within a

larger network, of the specified size and target degree, rejecting any disconnected networks

(networks that do not include a path between every pair of agents). We generate a weight

matrix using a target self-weight of wii = 0.5, drawn from a beta distribution with κ =

α + β = 4, and draw all other weights from a Unif(0, 1) distribution, scaling all weights

other than the self-weight to maintain the sum-to-one constraint. Note that this approach

results in a ground truth that is biased against edge cases, as is the population of initial

chromosomes other than the identity matrix. Then, we draw initial opinions (X(0)) from

a Unif(0,1) distribution, using these and the weight matrix to generate “true” opinions

across the specified number of time steps (X(1),…, X(T – 1)). Finally, we convert the

latent, continuous opinions to the appropriate ordinal scale to produce observed opinions

(Y(0),…, Y(T – 1)), using the back-transformation process (See Section 2.1.2). We provide

the adjacency matrix representing the generated network and the observed opinions to the

algorithm, using the specified hyperparameter values.

2.3.3. Measures—Optimal hyperparameters would quickly identify a perfect solution

in terms of the objective function. Ideally, this perfect solution would also result in good

parameter recovery. Since how quickly the algorithm identifies a solution can be measured

in both number of generations and time, we record the amount of time and the number

of generations to reach a solution, both measured in thousand-generation increments.

Simulations were run on a custom desktop with a Ryzen 9 3950X CPU with 64 GB of

3000 MHz RAM on Ubuntu Server 21.10 and Julia 1.5—using a single thread per run of

the algorithm—and use @elapsed to time in thousand-generation increments [25]. We assess

parameter recovery using root-mean-square-error (RMSE) according to

Johnson and Carnegie Page 9

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RMSErec =
∑i = 1

N ∑j = 1
N (wij − wij)2

∑i = 1
N ∑j = 1

N aij
=

∑i = 1
P (wp − wp)2

P , (4)

where P is the number of elements not fixed at zero in the weight matrix (the number of

parameters to be estimated) and wp is the pth non-structurally-zero element, with wp and

wp representing the true and estimated weights, respectively. Though we also assessed the

ability of the algorithm to model the latent opinions on the observed time steps and predict

future latent opinions in Johnson et al., parameter recovery implies the other outcomes and

is not possible to measure in practical applications [15]. As such, selecting hyperparameters

that improve parameter recovery is our priority.

3. Results

To provide context for this section, note that the existence of a perfect solution is guaranteed

(the ground truth used to generate the data) but many “perfect” solutions that fail to recover

the parameters are expected, particularly for runs with imprecise ordinal scales (i.e., few

bins) and few time steps. Overall, the algorithm identified a perfect solution very quickly

regardless of the hyperparameters used, with 67.7% of runs finding a solution within the

first 1000 generations. Only 4.5% of runs failed to identify a perfect solution within 100,000

generations, though the largest value of the objective function for these runs was 0.02,

representing a good—but imperfect—solution. Since we prioritize recovery over either

measure of speed, we begin by assessing the hyperparameters that produce the best recovery.

Informed by the results on recovery, we assess speed in number of iterations, the measure

independent of the computer used. Finally, we present results on computation time to

provide context on the trade-off between time per generation and number of generations.

3.1. Parameter Recovery

Figure 3 shows parameter recovery RMSE by number of generations without improvement

before the control parameters are modified and the elite chromosome reintroduced, the only

set of hyperparameters that produces a notable difference in parameter recovery. This plot

includes only the subset of the data where a perfect solution was identified within the

first 1000 generations to illustrate our next point, but the features seen in this plot hold

for the full dataset. Clearly, using 200 generations without improvement results in the best

parameter recovery. Nothing that the populations of chromosomes requiring either 1000

or 5000 generations without improvement could not possibly have begun the exploitation

phase within 1000 generations, this initially seems intuitive since we would expect solutions

resulting from the exploitation phase to be better. Unfortunately, this does not explain the

results since all the solutions presented here are perfect in terms of the value of the objective

function. Instead, we must explain why perfect solutions identified during the exploration

phase have worse recovery that perfect solutions identified during the exploitation phase.

To do so, we revisit the intended purpose of the exploration process. During early iterations

of the algorithm, we use control parameter values that result in drastic changes to the

chromosomes and force—to varying degrees depending on the ProbSigma hyperparameters

Johnson and Carnegie Page 10

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

—the exploration of edge cases. As noted in our description of the procedures, our process

for generating the true parameters is biased against edge cases. Consequently, populations

forced to search the boundaries of the parameter space will identify solutions with poor

recovery. Figure 4 supports this assertion by showing parameter recovery for 200, 1000, or

5000 generations without improvement by level of ProbSigma and number of time steps.

For the purpose of transparency, this plot uses the full dataset. We use the number of time

steps as a proxy for the prevalence of perfect solutions in the parameter space and include

ProbSigma as it governs the extent to which early generations are forced to explore edge

cases (The precision of the ordinal scale is also indicative of the ease of finding a perfect

solution and demonstrates the same phenomenon seen in Figure 4. We selected number of

time steps because the fewer levels of that factor improve readability of the plot).

Comparing across number of time steps, we see the difference in parameter recovery

between different numbers of generations without improvement decreases as the number

of time steps increases (decreasing the number of potential perfect solutions). This supports

our assertion that the poor parameter recovery is the result of forcing the algorithm to

search the boundaries, where any solutions identified will inherently result in poor recovery.

When an increased number of time steps makes it more difficult to identify an edge-case

solution, the threshold for number of generations without improvement can then be reached,

starting the transition away from the exploration phase and pulling the chromosomes away

from the boundary. As expected, high values for the hyperparameters in the ProbSigma

group—corresponding to the high level—appear to exacerbate this difference since larger

values of the control parameter σ apply stronger pressure to search the boundaries. It is

much more difficult to assess any differences between the low and medium levels, but the

level of ProbSigma also controls the values of pb, pc, and pm, any of which could have a

moderating effect on the value of σ.

3.2. Generations

While the poor parameter recovery with 1000 or 5000 generations without improvement

when the ground truth is biased against edge cases does not necessarily imply they will

perform poorly in practical applications, having 2
3 of our runs identify a solution within

1000 generations does suggest lower values may be a better choice. Figure 5, showing

the log-transformed number of generations to a solution by number of generations without

improvement, further supports that 200 generations is a better choice. 200 generations

consistently requires the fewest generations necessary to find a solution, though it also has

the highest density of runs requiring 100,000 generations, suggesting a slight tendency to

transition from the exploration phase too quickly and become stuck near a local minima that

is not a perfect solution. We will consider only 200 generations without improvement for the

remainder of these results.

Figure 6 shows the log-transformed number of generations to a solution by number of

chromosomes. Unsurprisingly, five chromosomes typically requires more generations to

identify a solution and also has the most runs reaching 100,000 generations. Though each

iteration would be completed more quickly with only five chromosomes, the iterations are

much less efficient. Five chromosomes also resulted in slightly worse recovery overall,

Johnson and Carnegie Page 11

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

though this difference is barely discernible in a plot, so we remove five chromosomes

from consideration. ProbSigma, MinMax, and MultFactor all showed minimal difference in

number of iterations to find a solution across the varying levels.

3.3. Time

Figure 7 shows the time to identify a solution on the log scale by number of chromosomes,

with median times to identify a solution of 4.7 s, 11.0 s, and 19.3 s for 21, 51, and

99 chromosomes, respectively. This demonstrates that, for the computer used to conduct

the simulation study, the efficiency of using fewer chromosomes outweighs any potential

reduction in number of generations from using more chromosomes. Since the number

of chromosomes used—after excluding 5—had little effect on the number of generations

required to identify a solution, we expect this to be true for most users. It should also be

noted that, while the magnitude of the differences in time are substantial on the scale used,

these differences are fairly negligible in practice. The exception to this is for conditions

that are known to increase computation time, such as large and high-degree networks.

Since computational time scales roughly linearly with the number of chromosomes (O(n)

complexity), using a high number of chromosomes can substantially increase computation

time under these conditions.

4. Discussion

While we discuss the following specifically in the context of the opinion diffusion

application, the hyperparameters of concern are the result of a parameter space with many

perfect solutions other than the parameters used to generate the data. The behavior and

suggestions for mitigation, along with the associated operator modifications, are relevant

to other applications of genetic algorithms under similar conditions. Overall, the algorithm

is fairly robust to the hyperparameter values selected, with number of generations without

improvement (iterb, iterc, iterm, iters, and iterr) and number of chromosomes

(chromosomes) being notable exceptions. We recommend using at least 21 chromosomes,

though using more should have minimal practical impact on computation time, except in

cases where the networks are large—increasing the size of the chromosomes—or more

dense—making the chromosomes less sparse. For the hyperparameters in the ProbSigma,

MinMax, and MultFactor groupings, we suggest values close to those in the medium
and moderate levels simply because they fall roughly in the center of ranges of values

demonstrated to perform well. The exception to this suggestion is when users may seek to

use these hyperparameters to mitigate undesirable effects from the number of generations

without improvement.

The results suggest using 200 generations without improvement is a good starting point

for all relevant hyperparameters because of both the performance in recovering parameters

and the low number of generations typically needed to find a solution. While the number

of generations to identify a solution may increase in practical applications—without a

guaranteed solution and with agents missing from the network—the user will receive this

feedback and can adjust accordingly. We identified the bias against edge cases inherent in

our weight matrix generation process as an explanation for the poor parameter recovery

Johnson and Carnegie Page 12

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for runs using either 1000 or 5000 generations without improvement, pointing to iters—

which triggers the change to the control parameter σ within the mutation operator—as the

hyperparameter of concern. The choice of itetrs is the one decision where we encourage

caution and careful consideration, particularly because the consequences are not just poor

efficiency but also poor recovery.

While the bias against edge cases is clear in the networks used in this simulation study,

the extent to which this is a concern for real-world opinion diffusion processes is unknown.

Networks of stubborn individuals would be biased toward the boundary, while networks

of highly receptive individuals could be biased either toward or away from the boundary,

depending on whether they have preexisting opinions on the topic. Unfortunately, it is

not possible to distinguish between these cases using the opinion data since consistent

opinions across time could indicate either stubborn individuals or receptive individuals only

connected to those with similar opinions. As such, it would be irresponsible to intentionally

direct the algorithm toward or away from the boundaries using the hyperparameter. Instead,

the user must find a balance between forcing the algorithm to search only the boundaries

or beginning the exploitation phase without first exploring the boundaries. Recall that, since

the method for generating the initial chromosomes is also biased against edge cases, setting

the initial probability of mutation (probm) to zero or making the initial value of the control

parameter σ (sigma) very small is not a viable solution, avoiding concerns about becoming

stuck at the boundary by preventing the algorithm from exploring them at all.

As with the other hyperparameters controlling the number of generations without

improvement before the control parameters are modified and the elite chromosome

reintroduced, our recommendation for finding this balance for iters is to test different

values and make modifications based on the feedback. Users can decrease the value

of iters if the algorithm consistently identifies solutions at the boundary or increase

iters to ensure they are being searched. A value closer to one for factors can also be

used to control how quickly the algorithm moves away from the boundaries, mitigating

the choice of an inappropriately low value of iters. Since the number of generations

without improvement must be reached for factors to be relevant, this is not an option

for correcting inappropriately high values of iters. Though not directly tied to the

hyperparameters, using more time steps or a more precise scale can minimize the effect

of iters by decreasing the prevalence of perfect solutions with poor recovery, which we

already suggest as they improve overall performance of the method.

In summary, we suggest at least 21 chromosomes, values close to the medium and moderate
levels for the ProbSigma, MinMax, and MultFactor groupings, and setting iterb, iterc,

iterm, iters, and iterr to 200 as initial values. Users should assess performance with

these values and make modifications as necessary. Since inappropriate values of iters

inhibit a proper search of the parameter space, especially when used with a high value

of sigma, we strongly recommend paying close attention to this hyperparameter. In cases

where forcing a search of only the boundaries is of particular concern, such as datasets

with limited time steps and imprecise ordinal scales, users can use a conservative (low)

value of iters, mitigating concerns about failing to explore the edge cases by using

Johnson and Carnegie Page 13

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

values of factors closer to one. While all the discussion surrounding iters may seem

intimidating, we want to highlight that the algorithm is robust to the choices of all but a few

hyperparameter values, all of which are discussed here and for which initial, if not default,

values are suggested.

Funding:

This work was partially funded by NIH grants R01AI147441 and R01NR017574.

Data Availability Statement:

The data generated and analysed during the simulation study are available in the

file “hyper.csv.zip” in the corresponding author’s GitHub repository: https://github.com/

karajohnson4/DeGrootGeneticAlgorithm. The genetic algorithm code is also available

in the corresponding author’s GitHub repository under the name Algorithm-Code. The

Algorithms-archive branch will serve as an archived version. The code is written in Julia, is

platform independent, requires Julia 1.5 or higher, and uses the GNU GENERAL PUBLIC

LICENSE [25].

Abbreviations

The following abbreviations are used in this manuscript:

SODM stochastic opinion dynamics model

BFO bacterial foraging optimization

PSO particle swarm optimization

SCBFO self-adaptive chemotaxis strategy bacterial foraging optimization

CRS Chess Rating System

REVAC Relevance Estimation and Value Calibration

RMSE root-mean-square error

References

1. Haldurai L; Madhubala T; Rajalakshmi R A study on genetic algorithm and its applications. Int. J.
Comput. Sci. Eng 2016, 4, 139.

2. Limmun W; Borkowski JJ; Chomtee B Using a genetic algorithm to generate D-optimal designs for
mixture experiments. Qual. Reliab. Eng. Int 2013, 29, 1055–1068.

3. Whitley D A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85.

4. Kumar M; Husain M; Upreti N; Gupta D Genetic Algorithm: Review and Application. 2010.
Available online: https://ssrn.com/abstract=3529843 (accessed on 14 December 2021).

5. Holland JH Genetic algorithms and adaptation. In Adaptive Control of Ill-Defined Systems;
Springer: Berlin/Heidelberg, Germany, 1984; pp. 317–333.

6. Sampson JR Adaptation in natural and artificial systems (John H. Holland). SIAM Rev. 1976, 18,
529–530.

7. Harik GR; Lobo FG A parameter-less genetic algorithm. In Proceedings of the GECCO, Orlando
FL, USA, 13–17 July 1999; Volume 99, pp. 258–267.

Johnson and Carnegie Page 14

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/karajohnson4/DeGrootGeneticAlgorithm
https://github.com/karajohnson4/DeGrootGeneticAlgorithm
https://ssrn.com/abstract=3529843

8. Eiben AE; Smit SK Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm
Evol. Comput 2011, 1, 19–31.

9. Johnson KL; Walsh JL; Amirkhanian YA; Borkowski JJ; Carnegie NB Using a novel genetic
algorithm to assess peer influence on willingness to use pre-exposure prophylaxis in networks of
Black men who have sex with men. Appl. Netw. Sci 2021, 6, 1–40.

10. Castro LE; Shaikh NI Influence estimation and opinion-tracking over online social networks. Int. J.
Bus. Anal. (IJBAN) 2018, 5, 24–42.

11. Castro LE; Shaikh NI A particle-learning-based approach to estimate the influence matrix of online
social networks. Comput. Stat. Data Anal 2018, 126, 1–18.

12. Salem F; Azab M; Mosaad M PV parameters estimation using different evolutionary algorithms. J.
Electr. Eng 2013, 13, 9–9.

13. Rini DP; Shamsuddin SM; Yuhaniz S Particle Swarm Optimization: Technique, System and
Challenges. Int. J. Comput. Appl 2011, 1.

14. Chen H; Wang L; Di J; Ping S Bacterial foraging optimization based on self-adaptive chemotaxis
strategy. Comput. Intell. Neurosci 2020, 2020, 2630104. [PubMed: 32565769]

15. Johnson KL; Walsh JL; Amirkhanian YA; Carnegie NB Performance of a Genetic Algorithm for
Estimating DeGroot Opinion Diffusion Model Parameters for Health Behavior Interventions. Int.
J. Environ. Res. Public Health 2021, 18, 13394. [PubMed: 34949003]

16. Grefenstette JJ Optimization of control parameters for genetic algorithms. IEEE Trans. Syst. Man
Cybern 1986, 16, 122–128.

17. Tuson AL; Ross P Adapting operator probabilities in genetic algorithms. Master’s Thesis,
Department of Artificial Intelligence, Univeristy of Edinburgh, Edinburgh, UK, 1995.

18. Črepinšek M; Liu SH; Mernik M Exploration and exploitation in evolutionary algorithms: A
survey. ACM Comput. Surv. (CSUR) 2013, 45, 1–33.

19. Aleti A; Moser I A systematic literature review of adaptive parameter control methods for
evolutionary algorithms. ACM Comput. Surv. (CSUR) 2016, 49, 1–35.

20. Montero E; Riff MC; Neveu B A beginner’s guide to tuning methods. Appl. Soft Comput 2014, 17,
39–51.

21. Birattari M; Stützle T; Paquete L; Varrentrapp K A Racing Algorithm for Configuring
Metaheuristics. In Proceedings of the Gecco, New York, NY, USA, 9–13 July 2002; Volume
2.

22. Veček N; Mernik M; Filipič B; Črepinšek M Parameter tuning with Chess Rating System (CRS-
Tuning) for meta-heuristic algorithms. Inf. Sci 2016, 372, 446–469.

23. Nannen V; Eiben AE Efficient relevance estimation and value calibration of evolutionary algorithm
parameters. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore,
25–28 September 2007; pp. 103–110.

24. Rudolph G; Jansen T; Lucas SM; Poloni C; Beume N Parallel Problem Solving from Nature-PPSN
X: 10th International Conference Dortmund, Germany, 13–17 September 2008; Springer: Berlin/
Heidelberg, Germany, 2008; Volume 5199.

25. Bezanson J; Edelman A; Karpinski S; Shah VB Julia: A fresh approach to numerical computing.
SIAM Rev. 2017, 59, 65–98.

Johnson and Carnegie Page 15

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Transformation procedure for a 5-point ordinal scale.

Johnson and Carnegie Page 16

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Procedure for algorithm calibration.

Johnson and Carnegie Page 17

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Boxplots and violin plots for root-mean-square-error for recovery by number of generations

without improvement for runs that identified a solution with 1000 generations.

Johnson and Carnegie Page 18

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Boxplots and violin plots for root-mean-square-error for recovery by number of generations

without improvement with ProbSigma hyperparameter levels (horizontal) and number of

time steps (vertical) across facets.

Johnson and Carnegie Page 19

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Boxplots and violin plots for log (base 10) number of generations to solution by number

of generations without improvement. The absence of a box for 200 generations without

improvement indicates that the median, first quartile, and third quartile are the same.

Johnson and Carnegie Page 20

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Boxplots and violin plots for log (base 10) number of generations to solution by number

of chromosomes for 200 generations without improvement. The absence of a box for 21 or

more chromosomes indicates that the median, first quartile, and third quartile are the same.

Johnson and Carnegie Page 21

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Boxplots and violin plots for log time to identify a solution (in seconds) by number of

chromosomes for 200 generations without improvement.

Johnson and Carnegie Page 22

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Carnegie Page 23

Table 1.

Name and description of all hyperparameters used in the algorithm.

Hyperparameter Description

chromosomes Number of chromosomes

probb Initial probability of blending (pb)

factorb Multiplicative factor for modifying pb

maxb Maximum value of pb

iterb Number of iterations with no improvement before modifying pb

probc Initial probability of crossover (pc)

factorc Multiplicative factor for modifying pc

minc Minimum value of pc

iterc Number of iterations with no improvement before modifying pc

probm Initial probability of blending (pm)

factorm Multiplicative factor for modifying pm

minm Minimum value of pm

iterm Number of iterations with no improvement before modifying pm

sigma Initial value of standard deviation σ of ε for mutation operator

factors Multiplicative factor for modifying σ

mins Minimum value of σ

iters Number of iterations with no improvement before modifying σ

max_iter Maximum number of iterations to run algorithm

min_improve Minimum decrease in value of objective function considered an improvement

min_dev Acceptable value of objective function for stopping algorithm

reintroduce Type of chromosome to be reintroduced

iterr Number of iterations with no improvement before reintroducing chromosome

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Carnegie Page 24

Table 2.

Grouping levels and hyperparameter values for ProbSigma.

Level probb probc probm sigma

Low 0.01 0.05 0.05 0.2

Medium 0.1 0.1 0.1 0.5

High 0.2 0.2 0.2 1

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Carnegie Page 25

Table 3.

Grouping levels and hyperparameter values for MinMax.

Level maxb minc minm mins

Minimal 1 0 0 0

Moderate 0.5 0.01 0.01 0.01

Extreme 0.2 0.05 0.05 0.05

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Carnegie Page 26

Table 4.

Grouping levels and hyperparameter values for MultFactor.

Level factorb factorc factorm factors

Slow 2 0.5 0.5 0.5

Moderate 5 0.2 0.2 0.2

Rapid 10 0.1 0.1 0.1

Algorithms. Author manuscript; available in PMC 2022 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Johnson and Carnegie Page 27

Table 5.

Inputs used in the hyperparameters simulation study.

Input Values Notes

Network Size N = 4, 20, 50 reachability enforced

Mean Degree d = 2, 5, 9 minimum degree d = 1 for all nodes

Self-weight wii = 0.5 beta distribution with κ = α + β = 4

Time Steps T = 2, 3, 6

Scale Bins n = 5, 7, 10, 20, 30

Chromosomes 5, 21, 51, 99 chromosomes hyperaprameter

ProbSigma low, medium, high (see Table 2)

MinMax minimal, moderate, extreme (see Table 3)

MultFactor slow, moderate, rapid (see Table 4)

Algorithms. Author manuscript; available in PMC 2022 June 02.

	Abstract
	Introduction
	Materials and Methods
	Opinion Diffusion Modeling
	DeGroot Model
	Transformations
	Forward Transformation
	Back Transformation

	Objective Function

	Genetic Algorithm
	Gene Swapping
	Operators
	Selection:
	Blending:
	Crossover:
	Mutation:
	Survival:

	Other Features

	Algorithm Calibration
	Hyperparameters
	Procedure
	Measures

	Results
	Parameter Recovery
	Generations
	Time

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

