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Abstract

Genetic algorithms mimic the process of natural selection in order to solve optimization problems 

with minimal assumptions and perform well when the objective function has local optima on 

the search space. These algorithms treat potential solutions to the optimization problem as 

chromosomes, consisting of genes which undergo biologically-inspired operators to identify a 

better solution. Hyperparameters or control parameters determine the way these operators are 

implemented. We created a genetic algorithm in order to fit a DeGroot opinion diffusion model 

using limited data, making use of selection, blending, crossover, mutation, and survival operators. 

We adapted the algorithm from a genetic algorithm for design of mixture experiments, but the 

new algorithm required substantial changes due to model assumptions and the large parameter 

space relative to the design space. In addition to introducing new hyperparameters, these changes 

mean the hyperparameter values suggested for the original algorithm cannot be expected to result 

in optimal performance. To make the algorithm for modeling opinion diffusion more accessible 

to researchers, we conduct a simulation study investigating hyperparameter values. We find the 

algorithm is robust to the values selected for most hyperparameters and provide suggestions for 

initial, if not default, values and recommendations for adjustments based on algorithm output.
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1. Introduction

Genetic algorithms, developed by John Holland in the 1970s, mimic the process of natural 

selection to solve optimization or search problems and are particularly useful when the 

objective function lacks continuity, differentiability, or convexity or has local optima on 
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the search space [1-6]. These algorithms represent a solution to the optimization problem 

as a chromosome consisting of genes. The chromosomes undergo biologically-inspired 

operators, modifying the genes to identify progressively better solutions. Hyperparameters 

or control parameters govern the behavior of these operators; however, specifying these 

hyperparameters is a barrier to use of genetic algorithms, particularly for researchers outside 

of the field of machine learning who are applying genetic algorithms in their research [7,8].

We developed a genetic algorithm to fit DeGroot opinion diffusion models using limited 

data on small social networks specifically for use in network and social science research [9]. 

While there were existing algorithms for the closely-related Stochastic Opinion Dynamics 

Model (SODM), both the maximum-likelihood-based algorithm and the particle learning 

algorithm were developed for online social networks and require far more data than are 

practical to obtain in the public health and social science applications for which we 

developed our method [10,11]. Though other bio-inspired algorithms may be viable options 

for fitting the DeGroot model–for example, bacterial foraging optimization (BFO) or particle 

swarm optimization (PSO)–these algorithms have a tendency to identify local as opposed 

to global optima: a concern motivating our choice of a genetic algorithm [12-14]. Using 

adaptive modifications of these algorithms, such as the self-adaptive chemotaxis strategy 

for bacterial foraging optimization (SCBFO), is a potential solution, but the performance 

of a genetic algorithm has already been demonstrated on the related problem of design 

of constrained mixture experiments with the structure of the design matrix and the matrix 

of parameters for the DeGroot model having a similar structure and the same sum-to-one 

constraint across rows [2,14]. Further, we demonstrated the performance of the genetic 

algorithm under the conditions expected in the intended application of this method [15].

While we adapted the operators from the genetic algorithm for design of mixture 

experiments, substantial changes to the operators were necessary due to model assumptions 

and the large parameter space relative to the design space. As such, the suggested 

hyperparameter values for the original algorithm cannot be expected to result in optimal 

performance. While research exists on either optimizing or removing hyperparameters from 

genetic algorithms in general, the algorithms and objective functions used bear even less 

resemblance to our algorithm because of the features specific to the opinion diffusion 

application [7,16]. To make the algorithm for modeling opinion diffusion more accessible 

to applied researchers, we conduct a simulation study investigating hyperparameter values, 

removing a barrier for researchers applying this methodological development to their applied 

research.

We begin by providing an overview of the model for opinion diffusion, detailing the genetic 

algorithm, and describing our approach and procedures for calibrating the algorithm in 

Section 2. We then present the results of the simulation study, addressing the performance of 

the algorithm in terms of parameter recovery and efficiency for the different hyperparameter 

values considered in Section 3. Finally, we conclude by tying the results back to the 

hyperparameters considered, providing specific suggestions for hyperparameter values and 

paying particular attention to hyperparameters that can negatively affect performance if 

poorly calibrated in Section 4.
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2. Materials and Methods

In this section, first, we explain our model for opinion diffusion, focusing on the features 

that inform our decisions regarding the genetic algorithm. Then, we detail the genetic 

algorithm, highlighting the purposes of the operators and how the hyperparameters govern 

their behavior. Lastly, we describe the hyperparameters, procedures, and measures used in 

the simulation study.

2.1. Opinion Diffusion Modeling

In this section we provide an overview of the approach we take to opinion diffusion 

modeling. We focus on the details of the model to be fit and the modifications necessary to 

work with ordinal opinion data. Finally, we detail the objective function, highlighting why 

a new method was appropriate for optimization and why suggestions on hyperparameter 

values from the algorithm we adapted are not expected to be informative.

2.1.1. DeGroot Model—The DeGroot model for opinion diffusion is a deterministic 

model that describes the process through which individuals or agents update their opinions 

from time t, through the influence of their social network contacts, to their opinions at time t 
+ 1 using

X(t + 1) = W X(t), (1)

where X(t) is an N × 1 vector of opinions and W is an N × N weight matrix. Each element 

in X(t), xi(t) ∈ [0, 1], represents the opinion of agent i at time t and each element of W, wij 

∈ [0, 1], represents the weight that agent i places on the opinion of agent j when updating 

their current opinion. The elements in W are restricted by ∑j = 1
N wij = 1 so that wij can be 

interpreted as the proportion of the total influence on agent i exerted by agent j. The model 

also incorporates the structure of the social network through an adjacency matrix A, where 

aij = aji = 1 if agents i and j can directly influence each other and aij = aji = 0 otherwise, 

with a link between i and j in the social network being the simplest definition of “ability to 

influence”. The adjacency matrix constrains the weight matrix by forcing wij ≤ aij, so the 

absence of influence implies zero weight. Though atypical for social network analysis, we 

include a self-link (aii = 1) so that agents update their opinions based on their own current 

opinions.

2.1.2. Transformations—The purpose of our method is to fit the above model, 

producing estimates for the parameters in the weight matrix W, using observed opinions 

across T time steps on a network of N agents. Ideally, we would be able to observe the 

continuous opinions, on the interval [0, 1], of all agents across T time steps (X(0), X(1),…, 

X(T – 1)). In practice, opinions are typically measured using a Likert or other ordinal scale 

in behavioral and social science research. As such, we assume the continuous opinions are 

shared with network contacts without error according to the DeGroot model, but researchers 

are only able to measure these opinions on an n-point ordinal scale (Y(0), Y(1),…, Y(T 
– 1)). To be consistent with the model, we assume these ordinal data possess interval 

properties. A common approach when using ordinal data, this is necessary to perform any 
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mathematical operations and is implicit in the use of a composite scale. We convert between 

ordinal and continuous opinions using the following process:

Forward Transformation

1. Begin with data on an n-point ordinal scale, converting to a 1 to n scale if 

necessary.

2. Divide the interval [0, 1] into n sub-intervals of equal width.

3. An opinion of y on the ordinal scale takes on the middle value, x, in the yth 

sub-interval on the continuous scale.

Back Transformation

1. Begin with data on a continuous [0, 1] interval to be converted to an n-point 

ordinal scale.

2. Multiply the continuous opinion x by n.

3. Round the multiplied continuous opinion up to an integer (ceiling function) to 

produce an opinion on the ordinal scale. (This final step does not work for the 

edge case where x = 0, so any such values are automatically converted to an 

ordinal value of 1.)

This process is also presented graphically in Figure 1 using a 5-point ordinal scale. For 

example, an ordinal opinion of 4 is converted to a continuous opinion of 0.7, the center of 

the 4th sub-interval or bin from 0.6 to 0.8, and any continuous opinion on that sub-interval 

are converted back to an ordinal opinion of 4.

2.1.3. Objective Function—Our selected objective function incorporates opinions on 

both the continuous and ordinal scales, accounting for an important feature of the back-

transformation process: a range of continuous opinions map back to a single ordinal opinion. 

We use

f(X, X) = ∑
i = 1

N
∑
t = 0

T − 1
B xi(t), xi(t) ∣ xi(t) − xi(t) ∣ , (2a)

where N is the number of agents in the network and B(xi(t), xi(t)) measures the absolute 

deviation between the observed and predicted opinions on the ordinal scale, measured in 

bins. This allows us to penalize deviation from the center of the correct interval on the 

continuous scale only if the observed and predicted opinions also differ on the ordinal scale 

(B(xi(t), xi(t)) ≠ 0). Though this objective function is well-suited for our goal of fitting a 

model based on observed ordinal opinions, the inclusion of B(xi(t), xi(t)) presents problems 

for any optimization method requiring continuity or differentiability. We also expect many 

perfect solutions (f(X, X) = 0) will fail to recover the parameters, particularly for less precise 

ordinal scales (ones with fewer points) and fewer time steps. This objective function can also 

be assessed on a chromosome or agent level by excluding the sum across agents:
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f(xi, xi) = ∑
t = 0

T − 1
B xi(t), xi(t) ∣ xi(t) − xi(t) ∣ , (2b)

which we leverage as part of the gene-swapping procedure in Section 2.2.1.

2.2. Genetic Algorithm

We use the genetic algorithm to identify the parameters of the DeGroot model, in the form 

of the weight matrix W, that minimize the objective function. A chromosome is defined as 

the weight matrix W and a gene as a row of W, denoted Wi and representing the sources 

and strength of influence on agent i. We begin with a population consisting of an odd 

number of chromosomes, consistent with any fixed values. These fixed values are usually 

zeros resulting from zeros in the adjacency matrix (See Section 2.1.1) but can be other 

known parameters. Though the user has the option to specify chromosomes, the default is 

a population of randomly generated chromosomes and an identity matrix. This population 

undergoes selection, blending, crossover, mutation, and survival operators, incorporating a 

gene-swapping procedure, to identify an optimal solution.

2.2.1. Gene Swapping—Since the objective function can be assessed on the individual– 

or gene–level, the fitness of a gene clearly does not directly depend on the other genes 

within the chromosome. Instead, the fitness of a gene Wi depends on the predicted opinions 

of the agents who influence agent i, as indicated by non-zero elements within Wi. Since 

these predicted opinions are a function of the genes corresponding to the agents who 

influence agent i, the fitness of a gene can be assessed independently of other genes within 

the chromosome but does depend those other genes. We use this ability to assess fitness at 

the gene level while accounting for dependencies in our gene-swapping process.

At any point in the algorithm where we identify the fittest chromosome, we assess the fitness 

of each gene within that chromosome and for all other chromosomes. If the overall fittest 

chromosome B contains a gene Bi which is less fit than the corresponding gene Ci in a less 

fit chromosome C, we swap Bi and Ci between the two chromosomes to produce B* and 

C*. We retain this change for both chromosomes if B* is fitter than B and revert to B and C 
otherwise. In the case where the less fit population contains multiple chromosomes, we swap 

all fitter genes at once, either retaining all swaps or reverting to the original chromosome B. 

This helps prevent the loss of a fit gene in an otherwise unfit chromosome while ensuring the 

best solution identified so far is retained.

2.2.2. Operators—We apply selection, blending, crossover, mutation, and survival 

operators to our population of chromosomes. The application of all operators constitutes 

a single iteration of the algorithm and produces a new generation of chromosomes. We 

use “iteration” and “generation” interchangeably except where a distinction between the 

process of producing a new generation (in this case referred to as an iteration) and the 

generation itself is meaningful. We repeat the process until stopping criterion are met, 

modifying the behavior of the operators as the generations progress to shift from exploration 

of the parameter space to exploitation of existing solutions, making this an adaptive genetic 
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algorithm as suggested by the literature [2,17-19]. Descriptions of the operators that include 

examples are available in Johnson et al. and the code is linked in the Data Availability 

Statement [9].

Selection:  In order to preserve the best solution identified in any previous generation, we 

use selection with elitism: identifying the fittest chromosome (the chromosome producing 

the lowest value of the objective function), and exempting it from the remaining operators 

until the next generation. After identifying the elite chromosome, we attempt gene swapping 

between that chromosome and the remaining population of non-elite chromosomes. We 

exempt either the original elite chromosome or row-swapped elite chromosome, depending 

on the fitness of each, and proceed with either the original remaining population or the 

row-swapped remaining population as appropriate.

Blending:  Using the even number of chromosomes remaining after the selection operator, 

we randomly pair all chromosomes. For each pair of chromosomes, blending occurs 

independently for each gene with probability pb. For a pair of chromosomes B and C, if 

blending occurs for row i, a blending factor β is drawn from a Unif(0,1) distribution. The 

new genes (Bi
∗ and Ci

∗) are the weighted averages of the current genes and corresponding 

genes from the paired chromosome according to:

Bi
∗ = βBi + (1 − β)Ci and Ci

∗ = (1 − β) Bi + βCi . (3)

While this can result in substantial changes to genes Bi and Ci when these genes are very 

different, we use the blending operator primarily to make slight changes to a population 

of similar chromosomes for later generations in order to refine a solution as we shift from 

exploration to exploitation, meaning we begin with a lower value of pb and increase the 

probability over time.

Crossover:  The within-parent crossover operator defined by Limmun, Borkowski, and 

Chomtee uses a crossover point after the decimal point, resulting in small changes to the 

genes [2]. Since both the blending and mutation operator either already accomplish this goal 

or can easily be modified in later generations to do so, we use a more drastic version of 

this operator to explore our much larger parameter space. Crossover occurs independently 

for each gene within each chromosome with probability pc, with all values not fixed at zero 

randomly reshuffled within the gene, preserving the sum-to-one constraint and any fixed 

values. Since exploring the parameter space is desirable during early generations, but drastic 

changes to chromosomes are not helpful in later generations, we begin with a higher value of 

pc which decreases over time.

Mutation:  While the mutation operator is also used to make slight changes to genes for 

later generations, the primary purpose of this operator is to explore the boundaries of the 

parameter space: solutions where a gene contains a weight where wij = 1 and all others 

are zero (or with wij = 1 – wfixed where wfixed is the sum of all fixed weights within 

the row). Since our method for generating the initial population of chromosomes–drawing 

each weight from a Unif(0, 1) distribution and scaling the rows to sum to one–will not 
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result in any edge cases other than the identity matrix included in the initial population, 

this is necessary in order to consider edge cases as potential solutions. Mutation occurs 

independently for all genes within each chromosome with probability pm. If mutation 

occurs, ε is drawn from a N(0, σ2) distribution and added to a randomly selected weight 

within the gene to produce w* = w + ε, and all other non-fixed weights are scaled by 
1

1 − wfixied − w∗  to preserve the sum-to-one constraint. We handle edge cases as follows:

• If w* < 0, w* is set to 0, with scaling of other non-fixed weights as above.

• If w* > 1 – wfixed, w* is set to 1 – wfixed. All other non-fixed weights in the row 

are set to 0.

• If the selected weight w = 1 – wfixed, the excess weight of 1 – wfixed – w* is 

evenly distributed between all other non-fixed weights within the row.

Survival:  After the preceding operators, our population of chromosomes includes the elite 

chromosome, the parent chromosomes (the chromosomes from the previous generation), 

and the offspring chromosomes (the chromosomes from the current generation, having 

undergone the selection, crossover, and mutation operators). For each pair of parent and 

offspring chromosomes, we identify the fittest chromosome and attempt gene swapping with 

the other chromosome. The fittest chromosome from each pair after the attempted gene 

swapping along with the elite chromosome constitute the current generation and become the 

parent chromosomes for the next generation.

2.2.3. Other Features—As discussed in the descriptions of the operators, we use an 

adaptive genetic algorithm where each operator becomes more or less important as the 

generations progress, and the mutation operator in particular can be modified to serve a 

different purpose. This allows us to begin with a focus on exploration of the parameter 

space and progressively move to refining existing solutions (exploitation). For the sake 

of clarity, we will refer to the values controlling behavior of the individual operators, 

the operator probabilities (pb,pc,pm) and σ, as control parameters and reserve the term 

hyperparameters for the user-specified values that govern the overall behavior of the 

algorithm, including the way the control parameters are modified within the algorithm. 

We modify the control parameters by applying a multiplicative adjustment whenever a 

specified number of generations without improvement is reached. For example, pb
∗ = cpb for 

the specified constant c where pb
∗ is the new value of the probability of blending.

We apply a similar process with chromosome reintroduction: reintroducing either a clone of 

the elite chromosome or an identity matrix after a specified number of generations without 

improvement. Reintroducing a clone of the elite chromosome allows slight changes to the 

current best solution—facilitating exploitation—while still preserving this solution in the 

selection operator. Reintroducing an identity matrix reinforces a prior belief that agents 

place high weight on their own opinions. In either case, the reintroduced chromosome 

replaces the least fit chromosome in the population.
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2.3. Algorithm Calibration

In this section, we explain all aspects of the simulation study to calibrate the algorithm, 

detailing the hyperparameters and our approach for condensing them into groups, describing 

the procedure for the simulation study, and presenting the measure used to assess algorithm 

performance. Though tuning approaches such as the Chess Rating System (CRS-tuning), 

Relevance Estimation and Value Calibration (REVAC), and F-race are available, the 

simulation study approach, overviewed in Figure 2, better suits our objectives [8,20]. The 

simulation study facilitates investigating the relationship between hyperparameter values and 

performance and providing accessible suggestions to algorithm users based on the results 

while acknowledging that both the relationship and suggestions may depend on network or 

dataset characteristics.

F-race identifies a set or sets of hyperparameters that are statistically significantly better 

than others; however, our goal is not to identify an ideal set of hyperparameters based 

on an arbitrary threshold but to characterize the behavior of the algorithm under various 

hyperparameter combinations [21]. While CRS-tuning does address the concerns of the 

binary include or exclude through the use of a ranking system, this raking does not 

contain the information necessary for users to develop intuition about how the different 

hyperparameters affect algorithm behavior [22]. Since REVAC identifies a marginal 

distribution of high-performing values for each hyperparameter that approximates the 

maximum Shannon entropy distribution, this approach produces a distribution of values 

instead of a single value, and the relevance of each parameter can be measured [23,24]. 

While these are both appealing, the simulation study allows for an assessment of relevance 

through the relationship between the values used and algorithm performance while also 

presenting this overall relationship in an accessible manner that incorporates network and 

dataset features.

2.3.1. Hyperparameters—Table 1 contains all of the hyperparameters used in the 

algorithm. Since most are considered in the simulation study, we highlight the ones that 

are not: max_iter, min_improve, min_dev, and reintroduce. In all simulations, we 

run the algorithm until we either reach 100,000 iterations (max_iter=100,000) or identify 

a perfect solution on the ordinal scale (min_dev=0). Note that this check is only applied 

every thousand generations. We do not specify a minimum change in the objective function 

that is considered an improvement (min_improve=0) and reintroduce the elite chromosome 

(reintroduce=“elite”).

To reduce the simulation study to a manageable size, we condense some of these 

hyperparameters to a single value or otherwise group them. We consider 200, 1000, 

and 5000 generations without improvement before modifying control parameters or 

reintroducing a chromosome, using the same value for all relevant hyperparameters (iterb, 

iterc, iterm, iters, and iterr) within a run of the algorithm. The remaining 

hyperparameters are grouped into ProbSigma (probb, probc, probm, and sigma), 

MinMax (maxb, minc, minm, and mins), and MultFactor (factorb, factorc, 

factorm, factors). These groupings represent the starting values of the control 

parameters, the minimum or maximum values for the control parameters, and the factors for 
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multiplicative adjustment to the control parameters, respectively. Since the hyperparameters 

within a group cannot reasonably be set to the same value, we instead define three levels for 

each group with differing values of each hyperparameter but consistent goals or concepts.

For ProbSigma, we use low, medium, and high to indicate whether we use low, medium, 

or high initial values for the control parameters. Table 2 shows the specific hyperparameter 

values corresponding to each level for ProbSigma. For MinMax, we use minimal, moderate, 

and extreme to specify whether we applied minimal, moderate, or extreme restrictions on the 

minimum or maximum value of each control parameter. The specific values corresponding 

to each level for MinMax are in Table 3. Note that the minimal level imposes no restrictions 

on the probabilities beyond those either implied as probabilities or possible through a 

multiplicative adjustment. Finally, we use slow, moderate, and rapid levels for MultFactor, 

indicating whether the multiplicitive factors used will result in slow, moderate, or rapid 

changes to the control parameters, with specific values for each level in Table 4.

2.3.2. Procedure—The hyperparameters and features of the social network and opinion 

diffusion process considered in the simulation study are in Table 5. We use each 

combination for ten runs of the algorithm, generating a new network, weight matrix, and 

dataset each time. First, we generate an Erdős-Rényi network, to represent a cluster within a 

larger network, of the specified size and target degree, rejecting any disconnected networks 

(networks that do not include a path between every pair of agents). We generate a weight 

matrix using a target self-weight of wii = 0.5, drawn from a beta distribution with κ = 

α + β = 4, and draw all other weights from a Unif(0, 1) distribution, scaling all weights 

other than the self-weight to maintain the sum-to-one constraint. Note that this approach 

results in a ground truth that is biased against edge cases, as is the population of initial 

chromosomes other than the identity matrix. Then, we draw initial opinions (X(0)) from 

a Unif(0,1) distribution, using these and the weight matrix to generate “true” opinions 

across the specified number of time steps (X(1),…, X(T – 1)). Finally, we convert the 

latent, continuous opinions to the appropriate ordinal scale to produce observed opinions 

(Y(0),…, Y(T – 1)), using the back-transformation process (See Section 2.1.2). We provide 

the adjacency matrix representing the generated network and the observed opinions to the 

algorithm, using the specified hyperparameter values.

2.3.3. Measures—Optimal hyperparameters would quickly identify a perfect solution 

in terms of the objective function. Ideally, this perfect solution would also result in good 

parameter recovery. Since how quickly the algorithm identifies a solution can be measured 

in both number of generations and time, we record the amount of time and the number 

of generations to reach a solution, both measured in thousand-generation increments. 

Simulations were run on a custom desktop with a Ryzen 9 3950X CPU with 64 GB of 

3000 MHz RAM on Ubuntu Server 21.10 and Julia 1.5—using a single thread per run of 

the algorithm—and use @elapsed to time in thousand-generation increments [25]. We assess 

parameter recovery using root-mean-square-error (RMSE) according to
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RMSErec =
∑i = 1

N ∑j = 1
N (wij − wij)2

∑i = 1
N ∑j = 1

N aij
=

∑i = 1
P (wp − wp)2

P , (4)

where P is the number of elements not fixed at zero in the weight matrix (the number of 

parameters to be estimated) and wp is the pth non-structurally-zero element, with wp and 

wp representing the true and estimated weights, respectively. Though we also assessed the 

ability of the algorithm to model the latent opinions on the observed time steps and predict 

future latent opinions in Johnson et al., parameter recovery implies the other outcomes and 

is not possible to measure in practical applications [15]. As such, selecting hyperparameters 

that improve parameter recovery is our priority.

3. Results

To provide context for this section, note that the existence of a perfect solution is guaranteed 

(the ground truth used to generate the data) but many “perfect” solutions that fail to recover 

the parameters are expected, particularly for runs with imprecise ordinal scales (i.e., few 

bins) and few time steps. Overall, the algorithm identified a perfect solution very quickly 

regardless of the hyperparameters used, with 67.7% of runs finding a solution within the 

first 1000 generations. Only 4.5% of runs failed to identify a perfect solution within 100,000 

generations, though the largest value of the objective function for these runs was 0.02, 

representing a good—but imperfect—solution. Since we prioritize recovery over either 

measure of speed, we begin by assessing the hyperparameters that produce the best recovery. 

Informed by the results on recovery, we assess speed in number of iterations, the measure 

independent of the computer used. Finally, we present results on computation time to 

provide context on the trade-off between time per generation and number of generations.

3.1. Parameter Recovery

Figure 3 shows parameter recovery RMSE by number of generations without improvement 

before the control parameters are modified and the elite chromosome reintroduced, the only 

set of hyperparameters that produces a notable difference in parameter recovery. This plot 

includes only the subset of the data where a perfect solution was identified within the 

first 1000 generations to illustrate our next point, but the features seen in this plot hold 

for the full dataset. Clearly, using 200 generations without improvement results in the best 

parameter recovery. Nothing that the populations of chromosomes requiring either 1000 

or 5000 generations without improvement could not possibly have begun the exploitation 

phase within 1000 generations, this initially seems intuitive since we would expect solutions 

resulting from the exploitation phase to be better. Unfortunately, this does not explain the 

results since all the solutions presented here are perfect in terms of the value of the objective 

function. Instead, we must explain why perfect solutions identified during the exploration 

phase have worse recovery that perfect solutions identified during the exploitation phase.

To do so, we revisit the intended purpose of the exploration process. During early iterations 

of the algorithm, we use control parameter values that result in drastic changes to the 

chromosomes and force—to varying degrees depending on the ProbSigma hyperparameters
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—the exploration of edge cases. As noted in our description of the procedures, our process 

for generating the true parameters is biased against edge cases. Consequently, populations 

forced to search the boundaries of the parameter space will identify solutions with poor 

recovery. Figure 4 supports this assertion by showing parameter recovery for 200, 1000, or 

5000 generations without improvement by level of ProbSigma and number of time steps. 

For the purpose of transparency, this plot uses the full dataset. We use the number of time 

steps as a proxy for the prevalence of perfect solutions in the parameter space and include 

ProbSigma as it governs the extent to which early generations are forced to explore edge 

cases (The precision of the ordinal scale is also indicative of the ease of finding a perfect 

solution and demonstrates the same phenomenon seen in Figure 4. We selected number of 

time steps because the fewer levels of that factor improve readability of the plot).

Comparing across number of time steps, we see the difference in parameter recovery 

between different numbers of generations without improvement decreases as the number 

of time steps increases (decreasing the number of potential perfect solutions). This supports 

our assertion that the poor parameter recovery is the result of forcing the algorithm to 

search the boundaries, where any solutions identified will inherently result in poor recovery. 

When an increased number of time steps makes it more difficult to identify an edge-case 

solution, the threshold for number of generations without improvement can then be reached, 

starting the transition away from the exploration phase and pulling the chromosomes away 

from the boundary. As expected, high values for the hyperparameters in the ProbSigma 

group—corresponding to the high level—appear to exacerbate this difference since larger 

values of the control parameter σ apply stronger pressure to search the boundaries. It is 

much more difficult to assess any differences between the low and medium levels, but the 

level of ProbSigma also controls the values of pb, pc, and pm, any of which could have a 

moderating effect on the value of σ.

3.2. Generations

While the poor parameter recovery with 1000 or 5000 generations without improvement 

when the ground truth is biased against edge cases does not necessarily imply they will 

perform poorly in practical applications, having 2
3  of our runs identify a solution within 

1000 generations does suggest lower values may be a better choice. Figure 5, showing 

the log-transformed number of generations to a solution by number of generations without 

improvement, further supports that 200 generations is a better choice. 200 generations 

consistently requires the fewest generations necessary to find a solution, though it also has 

the highest density of runs requiring 100,000 generations, suggesting a slight tendency to 

transition from the exploration phase too quickly and become stuck near a local minima that 

is not a perfect solution. We will consider only 200 generations without improvement for the 

remainder of these results.

Figure 6 shows the log-transformed number of generations to a solution by number of 

chromosomes. Unsurprisingly, five chromosomes typically requires more generations to 

identify a solution and also has the most runs reaching 100,000 generations. Though each 

iteration would be completed more quickly with only five chromosomes, the iterations are 

much less efficient. Five chromosomes also resulted in slightly worse recovery overall, 
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though this difference is barely discernible in a plot, so we remove five chromosomes 

from consideration. ProbSigma, MinMax, and MultFactor all showed minimal difference in 

number of iterations to find a solution across the varying levels.

3.3. Time

Figure 7 shows the time to identify a solution on the log scale by number of chromosomes, 

with median times to identify a solution of 4.7 s, 11.0 s, and 19.3 s for 21, 51, and 

99 chromosomes, respectively. This demonstrates that, for the computer used to conduct 

the simulation study, the efficiency of using fewer chromosomes outweighs any potential 

reduction in number of generations from using more chromosomes. Since the number 

of chromosomes used—after excluding 5—had little effect on the number of generations 

required to identify a solution, we expect this to be true for most users. It should also be 

noted that, while the magnitude of the differences in time are substantial on the scale used, 

these differences are fairly negligible in practice. The exception to this is for conditions 

that are known to increase computation time, such as large and high-degree networks. 

Since computational time scales roughly linearly with the number of chromosomes (O(n) 

complexity), using a high number of chromosomes can substantially increase computation 

time under these conditions.

4. Discussion

While we discuss the following specifically in the context of the opinion diffusion 

application, the hyperparameters of concern are the result of a parameter space with many 

perfect solutions other than the parameters used to generate the data. The behavior and 

suggestions for mitigation, along with the associated operator modifications, are relevant 

to other applications of genetic algorithms under similar conditions. Overall, the algorithm 

is fairly robust to the hyperparameter values selected, with number of generations without 

improvement (iterb, iterc, iterm, iters, and iterr) and number of chromosomes 

(chromosomes) being notable exceptions. We recommend using at least 21 chromosomes, 

though using more should have minimal practical impact on computation time, except in 

cases where the networks are large—increasing the size of the chromosomes—or more 

dense—making the chromosomes less sparse. For the hyperparameters in the ProbSigma, 

MinMax, and MultFactor groupings, we suggest values close to those in the medium 
and moderate levels simply because they fall roughly in the center of ranges of values 

demonstrated to perform well. The exception to this suggestion is when users may seek to 

use these hyperparameters to mitigate undesirable effects from the number of generations 

without improvement.

The results suggest using 200 generations without improvement is a good starting point 

for all relevant hyperparameters because of both the performance in recovering parameters 

and the low number of generations typically needed to find a solution. While the number 

of generations to identify a solution may increase in practical applications—without a 

guaranteed solution and with agents missing from the network—the user will receive this 

feedback and can adjust accordingly. We identified the bias against edge cases inherent in 

our weight matrix generation process as an explanation for the poor parameter recovery 
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for runs using either 1000 or 5000 generations without improvement, pointing to iters—

which triggers the change to the control parameter σ within the mutation operator—as the 

hyperparameter of concern. The choice of itetrs is the one decision where we encourage 

caution and careful consideration, particularly because the consequences are not just poor 

efficiency but also poor recovery.

While the bias against edge cases is clear in the networks used in this simulation study, 

the extent to which this is a concern for real-world opinion diffusion processes is unknown. 

Networks of stubborn individuals would be biased toward the boundary, while networks 

of highly receptive individuals could be biased either toward or away from the boundary, 

depending on whether they have preexisting opinions on the topic. Unfortunately, it is 

not possible to distinguish between these cases using the opinion data since consistent 

opinions across time could indicate either stubborn individuals or receptive individuals only 

connected to those with similar opinions. As such, it would be irresponsible to intentionally 

direct the algorithm toward or away from the boundaries using the hyperparameter. Instead, 

the user must find a balance between forcing the algorithm to search only the boundaries 

or beginning the exploitation phase without first exploring the boundaries. Recall that, since 

the method for generating the initial chromosomes is also biased against edge cases, setting 

the initial probability of mutation (probm) to zero or making the initial value of the control 

parameter σ (sigma) very small is not a viable solution, avoiding concerns about becoming 

stuck at the boundary by preventing the algorithm from exploring them at all.

As with the other hyperparameters controlling the number of generations without 

improvement before the control parameters are modified and the elite chromosome 

reintroduced, our recommendation for finding this balance for iters is to test different 

values and make modifications based on the feedback. Users can decrease the value 

of iters if the algorithm consistently identifies solutions at the boundary or increase 

iters to ensure they are being searched. A value closer to one for factors can also be 

used to control how quickly the algorithm moves away from the boundaries, mitigating 

the choice of an inappropriately low value of iters. Since the number of generations 

without improvement must be reached for factors to be relevant, this is not an option 

for correcting inappropriately high values of iters. Though not directly tied to the 

hyperparameters, using more time steps or a more precise scale can minimize the effect 

of iters by decreasing the prevalence of perfect solutions with poor recovery, which we 

already suggest as they improve overall performance of the method.

In summary, we suggest at least 21 chromosomes, values close to the medium and moderate 
levels for the ProbSigma, MinMax, and MultFactor groupings, and setting iterb, iterc, 

iterm, iters, and iterr to 200 as initial values. Users should assess performance with 

these values and make modifications as necessary. Since inappropriate values of iters 

inhibit a proper search of the parameter space, especially when used with a high value 

of sigma, we strongly recommend paying close attention to this hyperparameter. In cases 

where forcing a search of only the boundaries is of particular concern, such as datasets 

with limited time steps and imprecise ordinal scales, users can use a conservative (low) 

value of iters, mitigating concerns about failing to explore the edge cases by using 
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values of factors closer to one. While all the discussion surrounding iters may seem 

intimidating, we want to highlight that the algorithm is robust to the choices of all but a few 

hyperparameter values, all of which are discussed here and for which initial, if not default, 

values are suggested.
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Abbreviations

The following abbreviations are used in this manuscript:

SODM stochastic opinion dynamics model

BFO bacterial foraging optimization

PSO particle swarm optimization

SCBFO self-adaptive chemotaxis strategy bacterial foraging optimization

CRS Chess Rating System

REVAC Relevance Estimation and Value Calibration

RMSE root-mean-square error
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Figure 1. 
Transformation procedure for a 5-point ordinal scale.
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Figure 2. 
Procedure for algorithm calibration.
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Figure 3. 
Boxplots and violin plots for root-mean-square-error for recovery by number of generations 

without improvement for runs that identified a solution with 1000 generations.
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Figure 4. 
Boxplots and violin plots for root-mean-square-error for recovery by number of generations 

without improvement with ProbSigma hyperparameter levels (horizontal) and number of 

time steps (vertical) across facets.
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Figure 5. 
Boxplots and violin plots for log (base 10) number of generations to solution by number 

of generations without improvement. The absence of a box for 200 generations without 

improvement indicates that the median, first quartile, and third quartile are the same.
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Figure 6. 
Boxplots and violin plots for log (base 10) number of generations to solution by number 

of chromosomes for 200 generations without improvement. The absence of a box for 21 or 

more chromosomes indicates that the median, first quartile, and third quartile are the same.
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Figure 7. 
Boxplots and violin plots for log time to identify a solution (in seconds) by number of 

chromosomes for 200 generations without improvement.
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Table 1.

Name and description of all hyperparameters used in the algorithm.

Hyperparameter Description

chromosomes Number of chromosomes

probb Initial probability of blending (pb)

factorb Multiplicative factor for modifying pb

maxb Maximum value of pb

iterb Number of iterations with no improvement before modifying pb

probc Initial probability of crossover (pc)

factorc Multiplicative factor for modifying pc

minc Minimum value of pc

iterc Number of iterations with no improvement before modifying pc

probm Initial probability of blending (pm)

factorm Multiplicative factor for modifying pm

minm Minimum value of pm

iterm Number of iterations with no improvement before modifying pm

sigma Initial value of standard deviation σ of ε for mutation operator

factors Multiplicative factor for modifying σ

mins Minimum value of σ

iters Number of iterations with no improvement before modifying σ

max_iter Maximum number of iterations to run algorithm

min_improve Minimum decrease in value of objective function considered an improvement

min_dev Acceptable value of objective function for stopping algorithm

reintroduce Type of chromosome to be reintroduced

iterr Number of iterations with no improvement before reintroducing chromosome
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Table 2.

Grouping levels and hyperparameter values for ProbSigma.

Level probb probc probm sigma

Low 0.01 0.05 0.05 0.2

Medium 0.1 0.1 0.1 0.5

High 0.2 0.2 0.2 1
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Table 3.

Grouping levels and hyperparameter values for MinMax.

Level maxb minc minm mins

Minimal 1 0 0 0

Moderate 0.5 0.01 0.01 0.01

Extreme 0.2 0.05 0.05 0.05
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Table 4.

Grouping levels and hyperparameter values for MultFactor.

Level factorb factorc factorm factors

Slow 2 0.5 0.5 0.5

Moderate 5 0.2 0.2 0.2

Rapid 10 0.1 0.1 0.1
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Table 5.

Inputs used in the hyperparameters simulation study.

Input Values Notes

Network Size N = 4, 20, 50 reachability enforced

Mean Degree d = 2, 5, 9 minimum degree d = 1 for all nodes

Self-weight wii = 0.5 beta distribution with κ = α + β = 4

Time Steps T = 2, 3, 6

Scale Bins n = 5, 7, 10, 20, 30

Chromosomes 5, 21, 51, 99 chromosomes hyperaprameter

ProbSigma low, medium, high (see Table 2)

MinMax minimal, moderate, extreme (see Table 3)

MultFactor slow, moderate, rapid (see Table 4)
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