
Mycobacterium paratuberculosis zoonosis is a One Health
emergency

Coad Thomas Dow 1 and Briana Lizet Alvarez2

1Department of Ophthalmology and Visual Sciences, 9431 Wisconsin Institutes for Medical Research (WIMR), McPherson Eye Research Institute,

University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705
2Biology and Global Health, University of Wisconsin-Madison, 120 N Orchard St #1, Madison, WI 53705

Abstract: A singular pathogen has been killing animals, contaminating food and causing an array of human

diseases. Mycobacterium avium subspecies paratuberculosis (MAP) is the cause of a fatal enteric infectious

disease called Johne’s (Yo’-nees), a disorder mostly studied in ruminant animals. MAP is globally impacting

animal health and imparting significant economic burden to animal agriculture. Confounding the management

of Johne’s disease is that animals are typically infected as calves and while commonly not manifesting clinical

disease for years, they shed MAP in their milk and feces in the interval. This has resulted in a ‘‘don’t test, don’t

tell’’ scenario for the industry resulting in greater prevalence of Johne’s disease; furthermore, because MAP

survives pasteurization, the contaminated food supply provides a source of exposure to humans. Indeed,

greater than 90% of dairy herds in the US have MAP-infected animals within the herd. The same bacterium,

MAP, is the putative cause of Crohn’s disease in humans. Countries historically isolated from importing/ex-

porting ruminant animals and free of Johne’s disease subsequently acquired the disease as a consequence of

opening trade with what proved to be infected animals. Crohn’s disease in those populations became a lagging

indicator of MAP infection. Moreover, MAP is associated with an increasingly long list of human diseases.

Despite MAP scientists entreating regulatory agencies to designate MAP a ‘‘zoonotic agent,’’ it has not been

forthcoming. One Health is a global endeavor applying an integrative health initiative that includes the

environment, animals and humans; One Health asserts that stressors affecting one affects all three. Recognizing

the impact MAP has on animal and human health as well as on the environment, it is time for One Health, as

well as other global regulatory agencies, to recognize that MAP is causing an insidious slow-motion tsunami of

zoonosis and implement public health mitigation.
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INTRODUCTION

As global populations begin to recover from the recent

pandemic caused by coronavirus disease 2019 (COVID-

19), attention has turned to the origin of the disease found
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at the interface between animals and humans. Where did

this disease originate? Molecular and serologic evidence

points to bats (Zhou et al. 2020) and pangolins (Xiao et al.

2020), both species having previously been associated with

SARS-CoV-2-related viruses (Wacharapluesadee et al.

2021). A global movement that addresses health risk,

including zoonosis, occurring at the human–animal–envi-

ronment interface is called One Health (Vandersmissen and

Welburn 2014).

This integrated approach to health across disciplines

received formal recognition with the establishment in 2010

of collaborative agreement between the World Health

Organization (WHO), World Organization for Animal

Health (OIE) and the Food and Agriculture Organization

(FAO) to ‘‘address health risks at the animal–human–

ecosystems interface’’ (FAO–OIE–WHO 2021).

While some zoonotic diseases such as anthrax, bovine

tuberculosis and brucellosis attract significant attention

from the international health community, less common

zoonotic diseases are considered ‘neglected’ and are inad-

equately addressed nationally and internationally. The

World Health Organization designates these Neglected

Zoonotic Diseases (NZD).

A common, yet often neglected, zoonotic pathogen is

Mycobacterium avium subspecies paratuberculosis (MAP)

(The editors 2002). MAP is the well-established cause of a

fatal enteritis mostly studied in ruminant animals called

Johne’s (Yo’-nees) disease (Johne’s Information Center

2021).

JOHNE’S DISEASE—PARATUBERCULOSIS

OF ANIMALS

Johne’s disease of ruminant animals is a common, conta-

gious, chronic, granulomatous enteritis characterized by

persistent and progressive diarrhea, weight loss and death

(Whittington and Sergeant 2001). It is costly to dairy

farming as it causes reduced milk production, increased

mortality and premature culling of sick animals as well as

reduced sale price for cattle from regions with a high dis-

ease burden (Marcé et al. 2010). Johne’s disease is primarily

transmitted by the fecal–oral route with MAP exposure

during consumption of milk or colostrum containing MAP

bacilli. Animal exposure to MAP can also come from

contaminated pastures, feed, soil and/or water (Whitting-

ton and Sergeant 2001; Stabel 2006).

Newborn ruminants are more susceptible than adults

presumably due to their relatively undeveloped immune

system (Stabel 2006). Yet adult cattle, having exposure to

high MAP inocula, can acquire both infection and disease

(Stewart et al. 2004; Roermund et al. 2007; Whittington

et al. 2012). After infection, disease progression follows

four distinct stages: latent, subclinical, clinical and ad-

vanced (Whittington et al. 2012; Whitlock and Buergelt

1996). Infected cattle begin shedding bacilli after a latent

period ranging from 2 to 10 years; shedding of MAP in-

creases with disease progression.

When an infected animal is identified, it reflects herd

transmission events that occurred years earlier. The finding

of a clinically infected animal is the ‘‘tip of the iceberg,’’

alluding to the high background prevalence of undiag-

nosed, subclinical infection of animas. For example, it is

estimated that for each animal in the advanced stage, there

are 1-2 animals in the clinical stage, 4-8 in the subclinical

stage and 10-14 in the latent stage (Magombedze et al.

2013). According to the United States Department of

Agriculture (USDA), herd-level prevalence of MAP infec-

tion in US dairy herds increased from 21.6% in 1996 to

91.1% in 2007 (Lombard et al. 2007).

India extensively tested ruminant animals for MAP

burden and reported an increasing MAP ‘‘bio-load’’ in

cattle (43%), buffalo (36%), goats (23%) and sheep (41%).

Moreover, in this same geographic area, 30.8% of 28,291

humans (via serum ELISA, blood PCR and stool PCR)

tested positive for MAP (Chaubey et al. 2017). Similarly,

testing of ruminants in Saudi Arabia found MAP; 26% of

sheep, 27% of goat, 30% of cattle and 15% of camels

(Elsohaby et al. 2021).

MAP in the Environment

MAP is a resilient organism and shedding by infected

animals is a major source of environmental MAP; once

excreted, MAP can survive up to 120 weeks in soil or water

(Garvey 2020). MAP is found in grazing areas as well as in

runoff continuing on to rivers and in municipal water

(Beumer et al. 2010). These water sources may be a sig-

nificant reservoir of MAP (Whittington et al. 2005) as it

persists in the biofilm (Botsaris et al. 2016). Cow manure in

solid and liquid forms is applied as fertilizer to agricultural

land (Grewal et al. 2006). MAP persists on farms depop-

ulated of ruminants. MAP persists in the soil and grass of

pasture plots (Whittington et al. 2004); persisting in both

the root and aerial parts of plants (Kaevska et al. 2014;
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Rhodes et al. 2014). Aerosol inhalation is another suggested

route of transmission of MAP to animals (Corner et al.

2004) and possibly humans as MAP is found in river

aerosols as well as domestic showers (Rhodes et al. 2014;

Pickup et al. 2005; Eisenberg et al. 2011).

The inefficiency of MAP diagnostic tests coupled with

the long latency of infection in seemingly uninfected,

productive animals makes producers hesitant to test their

herds—and there is no mandate to do so. This results in (1)

MAP-shedding animals that contaminate products (2)

trade of asymptomatic animals and 3) delayed animal

culling (Garvey 2020 Oct 1).

MAP in Food

Milk and dairy products are considered to be the primary

source of MAP infection in humans (Gill et al. 2011);

products from pasteurized milk constitute a consumption

risk as pasteurization only reduces the MAP load originally

present in milk (Gill et al. 2011; Eltholth et al. 2009). MAP

is present in yogurt (Brandt et al. 2011), cheese (Galiero

et al. 2016), muscle meat (Alonso-Hearn et al. 2009) and

hamburger (Hammer et al. 2013).

MAP and Human Disease

Though the link of MAP zoonosis to Crohn’s disease has

been controversial for over one hundred years (Sechi and

Dow 2015), validation of this association has come from

studies showing Crohn’s disease resolution with anti-my-

cobacterial therapy targeted against MAP (Qasem et al.

2020; Agrawal et al. 2020; Savarino et al. 2019; Borody et al.

2007). Moreover, MAP is now linked to an increasing list of

inflammatory and autoimmune diseases (Dow and Sechi

2019; Ekundayo and Okoh 2020). To date, MAP has been

causally associated with granulomatous diseases: Crohn’s

(Kuenstner et al. 2017), sarcoidosis (Celler BG 2018; Reid

and Chiodini 1993) and Blau syndrome (Dow and Elling-

son 2010). Through molecular mimicry from mycobacte-

rial heat shock protein (hsp65) (Dow 2012), MAP induces

autoantibodies in autoimmune diabetes (T1D) (Naser et al.

2013 Jun), multiple sclerosis (Cossu et al. 2013; Ekundayo

et al. 2022), autoimmune thyroiditis (Sisto et al. 2010),

lupus (Dow 2016), rheumatoid arthritis (Bo et al. 2019a,

2018) and possibly, Sjogren’s syndrome (Dow and Chan

2021). The causal association of three diseases will be fur-

ther featured: T1D, multiple sclerosis and rheumatoid

arthritis.

MAP and Type 1 Diabetes

Type 1 diabetes (T1D) is a chronic autoimmune disease

(Eisenbarth 1986); it is associated with early life dietary

exposure to cow’s milk. A large international study of 78

centers in 15 countries was conducted; the TRIGR (Trial to

Reduce Insulin-Dependent Diabetes Mellitus in the

Genetically at Risk) Study was initiated with the rationale

that cows’ milk protein is too complex and that early

exposure to it will provoke an autoimmune response in at-

risk infants. Two study arms used cows’ milk-based for-

mula; one arm had traditionally prepared formula while the

other had extensively hydrolyzed formula. The results: it

did not work; ‘‘Weaning to a hydrolyzed formula did not

reduce the risk of type 1 diabetes in children with an in-

creased disease risk’’ (Knip et al. 2018).

An alternative explanation encompassing the rationale

for the study was presented in 2018 (Dow 2018). It pro-

posed that Mycobacterium avium ss. paratuberculosis

(MAP), present in the formula, was the trigger for

autoimmune diabetes. It suggested that shared genetic risk

for both mycobacterial infection and T1D offers a per-

missive environ for latent MAP infection in the infant.

Further, MAP’s immunodominant heat shock protein 65

(HSP65) cross reacts with pancreatic glutamic acid decar-

boxylase (GAD) through molecular mimicry (Vander-

smissen and Welburn 2014) resulting in anti-GAD

antibodies causing an immune mediated destruction of

insulin producing islet cells of the pancreas.

In 2006, Dow postulated that MAP may be an envi-

ronmental trigger for T1D in the genetically at-risk. Three

proposals were offered to support the postulate: (1) there

are shared genetic susceptibilities to both mycobacterial

infection and T1D, (2) MAP is the source of the HSP65

protein, providing epitope homologies between mycobac-

terial HSP65 and pancreatic glutamic acid decarboxylase

(GAD) and (3) epidemiologic findings tie the risk of T1D

to early life exposure to cow’s milk (Dow 2006). Subse-

quently, Sechi and associates conducted several studies

associating MAP and T1D. They found an association of

MAP and T1D patients on their home island of Sardinia

(Sechi et al. 2008; Sechi et al. 2008; Cossu et al. 2011). The

island of Sardinia has the second highest incidence of T1D

in the world (Songini et al. 2017). They reported finding

MAP in T1D patients but not in type 2 diabetics (Rosu

et al. 2008; Rosu et al. 2009). They found MAP in T1D

children (Bitti et al. 2012; Cossu et al. 2013; Masala et al.

2013). They confirmed a genetic risk factor linking
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mycobacterial infection and T1D (Paccagnini et al. 2009).

They also identified additional MAP peptides that are

homologous with pancreatic proteins (Cossu et al. 2011;

Masala et al. 2011; Scotto et al. 2012) and showed that

immune reaction to these MAP peptides cross-react to the

classical islet cell antibodies (Niegowska et al. 2016). They

demonstrated parallel findings on the Italian mainland

(Masala et al. 2014; Masala et al. 2015) and (Sechi and

collaborators) in Iran (Hesam Shariati et al. 2016).

Recently, a body of evidence pointed to a role for

human endogenous retroviruses (HERVs) in the activation

of genes (Greenig 2019). It is thought that most HERVs are

genetically silent. However, assorted environmental stimuli,

including infection, may activate HERVs to potentiate

certain autoimmune diseases (Levet et al. 2017). A recent

study demonstrated anti-HERV antibodies correlating with

sero-reactivity against MAP in children at risk for T1D

(Niegowska et al. 2019). This study showed that an acti-

vated HERV gene expressing a specific envelope protein,

HERV-W, is associated with T1D in diverse populations.

Of more than a dozen articles implicating MAP in

T1D, only one article failed to do so. That article came

from India where MAP was not found in the blood of T1D

patients. A few possible explanations offered included the

compulsory BCG vaccination against tuberculosis, with the

thought that BCG provides cross protection against

paratuberculosis as it does with leprosy. Also, the cultural

culinary practice of vegetarianism would reduce exposure

to MAP, as would the common practice of boiling milk

before consumption (Rani et al. 2014).

Of interest is the publication that the BCG vaccination

of long standing T1D individuals, followed by a booster in

one month, resulted in the control of blood sugar (seen

after a delay of three years). The effect was durable with

normal blood sugars eight years after the vaccination

(Kühtreiber and Faustman 2019). The beneficial effect is

postulated to be due to a ‘‘reset’’ of the immune system. An

alternative explanation is that BCG vaccination is effective

against MAP as it is against tuberculosis and non-tuber-

culous mycobacteria (Dow 2018).

MAP and Multiple Sclerosis

There has been steady progress in the identification of

microbial triggers of multiple sclerosis; this includes animal

model studies of experimental autoimmune

encephalomyelitis (EAE) a surrogate model of multiple

sclerosis. The introduction of MAP both orally and sub-

cutaneously has been shown to elicit EAE (Cossu et al.

2021, 2019).

Several studies have demonstrated the existence of a

link between MAP and multiple sclerosis in Italy. Similar

testing was carried out in Japan. The findings support the

view that MAP acts as a risk factor or a triggering agent of

multiple sclerosis in some Japanese patients with genetic

susceptibility to the mycobacterium (Cossu et al. 2016).

The proliferation of Italian MAP-autoimmune studies

came primarily from the specialized lab of Prof. Leonardo

Sechi, Sardinia. His postdoctoral student, Davide Cossu,

matriculated to the lab of Prof. Eiichi Momotani in Japan.

Cossu continued his investigation of microbial triggers of

multiple sclerosis there and coauthored several publications

that have linked MAP as well as other microbial triggers of

multiple sclerosis in these two disparate populations

(Ekundayo et al. 2022; Cossu et al. 2017).

Antigenic peptides of both MAP and Epstein-Barr

virus (EBV) are recognized by anti-myelin basic protein in

multiple sclerosis individuals supporting the concept that

both MAP and EBV trigger multiple sclerosis autoimmu-

nity through a common target (Mameli et al. 2014).

Anti-MAP antibodies are identified in the spinal fluid

of, not only multiple sclerosis individuals, but also those

with the clinically distinct, but related disease, neu-

romyelitis optica spectrum disorder (Yokoyama et al.

2018).

A marked media response was seen to the January 2022

issue of the journal Science wherein a report from a large

database revealed a high prevalence of the EBV in associ-

ation with multiple sclerosis (Bjornevik et al. 2022). While

the scope of the data mining was large, this revelation was

not novel; paralleling the previous section on RA, identified

multiple sclerosis-related microbial antigens come from

EBV, MAP and HERVs (Frau et al. 2021).

MAP and Rheumatoid Arthritis

The uptake and survival of MAP in human cells is en-

hanced in cholesterol-rich compartments that are slow to

acidify (Keown et al. 2012). MAP, like other pathogenic

mycobacteria, is able to manipulate host lipid metabolism

and accumulate cholesterol within macrophages to enhance

infection (Johansen et al. 2019 May). This association be-

tween host lipoprotein levels and reactivity to MAP is seen

in autoimmune diabetes, rheumatoid arthritis (RA) and

multiple sclerosis (Bo et al. 2019b).
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Many studies have tied MAP to RA. MAP virulence

factors tyrosine phosphatase A (PtpA) and kinase G

(PknG) are proteins necessary for MAP survival within

macrophages. PtpA and PknG are strongly recognized in

RA which supports the hypothesis that MAP infection may

be involved in the pathogenesis of RA (Bo et al. 2019a).

Moreover, polymorphisms of tumor necrosis factor (TNF)

receptors which are linked to Crohn’s disease are associated

with RA as well as poor response in some patients to ant-

TNF treatment (Naser et al. 2019).

Specific genetic polymorphisms that regulate immune

responses that increase susceptibility to mycobacterial

infection and Crohn’s disease (Sharp et al. 2018) are also

found in RA. The Protein Tyrosine Phosphatase Non-re-

ceptor type 2 and 22 (PTPN2/22) polymorphisms found in

RA patients who also had the DNA of MAP in their blood

(Sharp et al. 2018). RA is characterized by erosive joint

damage as well as by cellular and humoral responses against

a broad range of self-peptides. Interferon regulatory factor

5 (IRF5) is such an RA peptide and a mimicry target of

both Epstein-Barr virus (EBV) antigen BOLF1 and MAP

antigen MAP_4027; this supports the hypothesis that both

EBV and MAP infections may be involved with the

pathogenesis of RA by triggering an immune response

against RA self-peptides (Bo et al. 2018).

A recent study suggests a role for multiple microbial

antigens in the etiology of RA: MAP, EBV, and the human

endogenous retrovirus (HERV); all were shown to exhibit a

humoral immune response in RA individuals compared to

controls (Jasemi et al. 2021). HERVs are ancient viruses

that have been integrated into the human genome. Most

often silent, they have been associated with several

autoimmune diseases (Balada et al. 2010).

MAP Zoonosis Principles—Parsimony and Precau-

tionary

Although MAP is difficult to detect and even more difficult

to culture, it is significantly associated with Crohn’s disease

and, if appropriate culture and PCR tests are done cor-

rectly, nearly every individual with chronic inflammation of

the gut from Crohn’s disease is found to be infected with

MAP (Feller et al. 2007; Bull et al. 2003; Naser et al. 2004;

Sabatino et al. 2011).

PARSIMONY

Occam’s razor, or the principle of parsimony, could be

employed in the MAP / Crohn’s zoonosis debate. The

principle roughly states: the simplest explanation is usually

the right one. Some have argued that the causation of

Crohn’s by MAP is already solidified citing fulfilled Koch’s

postulates as well as Relman criteria (Chamberlin et al.

2007; Agrawal et al. 2014).

In 1930, paratuberculosis was unknown in Iceland

when sheep were imported from Germany and distributed

to fourteen farms (Fridriksdottir et al. 2000). The appar-

ently healthy, yet sub-clinically infected animals brought

paratuberculosis to Iceland and by 1938 five of the original

farms had infected sheep. By 1945, clinical paratuberculosis

was found in cattle on the same farms and the organism

was later confirmed as the sheep strain of MAP by

molecular techniques (Whittington et al. 2001). The inci-

dence of Crohn’s disease is noted to have steadily increased

by 14-fold over the last half of the twentieth century

(Hruska and Pavlik 2014).

Similarly, before 1990 paratuberculosis was virtually

unknown in Czechoslovakia; a country isolated economi-

cally and politically until 1989 when the Iron Curtain was

lifted. Following that came opened borders and importa-

Figure 1. Mycobacterium avium subspecies paratuberculosis—

MAP—is the cause of Johne’s disease of ruminant animals. MAP

contaminates food, the environment and is associated with an

increasing list of human inflammatory and autoimmune diseases.

One Health is uniquely positioned to introduce and advance policies

that address the consequences of MAP in the environment and food

as well as in animal and human health.
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tion of livestock. Now, as the Czech Republic and pos-

sessing comprehensive medical records, an increase in

Crohn’s disease of more than 13-fold occurred between

1995 and 2012 (Hruska and Pavlik 2014).

A comprehensive review of pediatric inflammatory

bowel disease in thirty-eight countries between 1985 and

2018 found a steadily increasing incidence of Crohn’s dis-

ease and concluded that the results indicate its emergence

as a global disease; moreover, the authors suggest that

studies should investigate environmental risk factors for

pediatric cohorts (Sýkora et al. 2018).

Precautionary Principle

The precautionary principle is a policy making approach

that considers adoption of preventative measures to address

potential risks to the environment and/or to the public.

Transmissible Animal Diseases and Food Safety (TASF) is a

Swiss-based international forum. TASF acknowledges the

uncertainties of the zoonotic potential of MAP and sug-

gests:

‘‘… a decision by food safety regulators to exercise

the ‘precautionary principle’, label MAP as a

potential zoonotic agent, and adopt measures to

limit as much as possible the levels of MAP

contamination of raw milk and meat would go far

to protect the coming generations of children from

MAP exposure, possible infection, and potentially

Crohn’s disease.’’ (Transmissible Animal Diseases

and Food Safety Forum 2022).

Similarly, the United Kingdom has produced a general

statement referencing the United Kingdom Food Standards

Agency policy towards MAP and human health, advising

that the precautionary principle be adopted (Agri-Food &

biosciences Institute 2022).

A study conducted among Australian veterinarians

regarding their perceptions of the MAP /Crohn’s causation

debate revealed that nearly one third viewed MAP as the

likely cause of Crohn’s disease and the other two thirds

agreed with the adoption of the precautionary principle

(Acharya et al. 2020). The precautionary principal discus-

sions have been entrenched around MAP zoonosis and

Crohn’s disease. Another inflammatory disease associated

with MAP is sarcoidosis (Reid and Chiodini 1993); the first

case report of sarcoidosis cured with anti-MAP antibiotics

has been reported (Celler 2018).

DISCUSSION—MAP ZOONOSIS: PARSIMONY

INSIGHT AND PRECAUTION INCITE

The incidence of T1D in children is increasing worldwide

(Hummel et al. 2012) as is the incidence of Crohn’s disease

(Torres et al. 2017). Both the principle of parsimony and

Koch’s postulates support inculpation of MAP as a cause of

Crohn’s disease. Regardless of the relative strength one

might assign to the MAP/Crohn’s association, this article

enumerates other MAP-associated diseases and the

increasing medical literature supporting it (Ekundayo and

Okoh 2020). The combined weight of these disease asso-

ciations should incite a call to action by regulatory agencies

to invoke the precautionary principle with regard to con-

sumption of MAP-contaminated food in at-risk individu-

als. In spite of public health implications, contamination of

milk and dairy products with MAP is not currently re-

stricted. We view the management of public health risk due

to MAP as an increasingly important policy issue. With

mounting global recognition of the impact MAP has upon

the health of the environment, animals and humans, One

Health is well positioned at that nexus (Fig. 1). One Health

is in a unique position to elevate the discussion to mitigate

this emerged, yet neglected zoonotic pathogen: Mycobac-

terium avium subspecies paratuberculosis.
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HK, Al Taji E, Becker D, Bruining J, Castano L, Danne T, et al.
Effect of Hydrolyzed Infant Formula vs Conventional Formula
on Risk of Type 1 Diabetes: The TRIGR Randomized Clinical
Trial. JAMA. 2018 Jan 2;319(1):38–48. doi: https://doi.org/10.
1001/jama.2017.19826

Kuenstner JT, Naser S, Chamberlin W, et al. (2017) The Con-
sensus from the Mycobacterium avium ssp. paratuberculosis
(MAP) Conference 2017. Front Public Health. 27(5):208. https://
doi.org/10.3389/fpubh.2017.00208
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