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Abstract
The present study aims to investigate the shielding properties of the electromagnetic interference of polymer nanocompos-
ites with different weight percentages of magnetite nanoparticles and cost-effective carbon black nanoparticle (CBN) on 
different thicknesses. X‐ray diffraction test, Raman spectroscopy, the scanning electron microscopy,  and the transmission 
electron microscope analysis were used for investigating the crystallographic structure, morphology and microstructure of 
the material. The nanocomposites were successfully prepared using a simple mixing and casting. Their shielding efficiency 
was measured by a vector network analyzer (VNA) in the frequency range of 8.2 ~ 12.4 GHz. The maximum total shielding 
efficiency was 36.6 dB at 8.2 GHz for a weight percentage of 15% Fe3O4 composite and 50% CBN (0.7 mm thickness). The 
results showed that with an increase of nanocomposite thickness, there is a shift of absorption shielding efficiency peak 
toward a higher frequency. In addition, nanocomposites had the greatest shielding effectiveness in the low-frequency range. 
It was found that the proper combination of electrical and magnetic losses causes excellent wave absorption. These findings 
indicated that epoxy resin with a combination of optimal weight percentage of magnetite and carbon black nanoparticle can 
be used as a suitable shielding in low thickness.
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Introduction

Nowadays, given the increasing use of equipment utilizing 
electromagnetic radiation in their operation, the effects of 
these waves on the human body or the efficiency of vari-
ous devices have been investigated [1]. Exposure to electro-
magnetic fields has been listed as a potential carcinogen for 
humans by the International Agency for Research on Can-
cer (IARC) (group 2B) [2]. Various studies on the effect of 
exposure to electromagnetic fields include the risk of cancer 
[3], electromagnetic hypersensitivity [4], cognitive effects 
[5], neurological disease [6], Central Nerve System [7]and 
reproductive disorders [8].  The control measures to protect 
workers against electromagnetic fields (radio waves) include 

following the instructions for working with electromagnetic 
fields, compliance with permissible exposure limits, reduc-
ing exposure time, using technical and engineering methods 
as well as the appropriate personal protective equipment [9]. 
Among these, the application of technology and engineer-
ing methods, such as using shields is one of the  methods 
to prevent or reduce exposure [10]. Some common types 
of shields against waves include metals, carbon, ceramics, 
cement, polymers, hybrids, and composites [11].

Polymer nanocomposites are another class of electro-
magnetic shields that, in addition to being used to con-
trol the exposure of employees, are also used in electrical 
and electronic equipment and prevent the electromagnetic 
interference (EMI) [12]. These materials have good con-
ductivity, lower density, and higher corrosion resistance 
compared with metals [13]. Today, with the advent of 
nanotechnology, using nanocomposite shields to pre-
vent EMI is a new approach that has recently been con-
sidered by researchers [14]. Carbon compounds are one 
of the best compounds to be used as absorbents due to 
their good electrical and thermal conductivity [15]. Car-
bon black nanoparticle (CBN) is an amorphous form of 
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carbon commercially obtained by thermal decomposition 
or oxidation of hydrocarbons. Carbon black is widely 
used in the industry as a filler to modify the electrical 
and optical properties of dispersed materials [16]. Black 
carbon is used as a conductive filler and reinforcing mate-
rial for polymer matrices because of its unique properties, 
which include a wide surface area, good chemical stability, 
excellent electrical conductivity, and low cost [17]. Fer-
romagnetic particles with a diameter less than the criti-
cal diameter (Dc) exhibit single-zone behavior. The Dc 
is the maximum diameter of the rod which is quenched to 
produce 50% martensitic. In single-zone particles, mag-
netic losses are generally caused by spin rotation, while 
for larger particles (multi-zone) these losses are mostly 
due to the movement of the zone walls [18]. Due to the 
proper attenuation of waves in single-zone ferromagnetic 
materials, these materials have been widely used in elec-
tromagnetic wave absorption applications [19]. Magnetic 
iron oxide or magnetite (Fe3O4) is one of the ferromag-
netic materials with relatively high magnetic properties, 
which has an excellent ability to absorb electromagnetic 
waves. Fe3O4 has been investigated as an absorber due to 
its permittivity and permeability properties, appropriate 
saturation magnetization and high curie temperature [20].

One of the constant challenges in designing and con-
structing electromagnetic shields is to achieve a shield with 
high absorption efficiency in the wide frequency band. The 
purpose of this research was to investigate the efficiency of 
electromagnetic interference shielding using cost-effective 
nanocomposites containing carbon black and iron oxide 
nanoparticles (as fillers) in the epoxy resin matrix and the 
frequency range of 8.2 to 12.4 GHz.

Materials and methods

Materials

In this study, an epoxy resin was used as a matrix, and 
spherical nanoparticles CBN and Fe3O4 were used as a filler 
(98%, Electrical conductivity: 0.30 Ω.cm, spherical parti-
cles of size: 25–50 nm). Epoxy resin (EI-403) is produced 
by Mokarrar Engineering Material Co. Nanomaterials were 
supplied from Us Research Nanomaterial.

CBN properties

Scanning electron microscope (SEM) (model S-4160 -Hitachi, 
Japan), Raman spectroscopy (532 nm laser beam, Takram 
P50C0R10 model, Teksan Co., Iran), and X-ray diffraction 
(XRD) (Cu Kα λ = 0.154 nm, Ultima IV model, Rigaku Co., 
Japan) pattern results of CBN are shown in Fig. 1.

Fe3O4 properties

Figure 2 shows SEM image, transmission electron micro-
scope (TEM) image (model Zeiss EM10), Raman spectros-
copy, and XRD results of Fe3O4.

Nanocomposite synthesis

In this study, the desired nanocomposites were prepared 
using the mixing and casting melt mixing method with 
different filling percentages in epoxy resin matrix with a 
thickness of 0.7 mm. The Fe3O4 and Carbon black pow-
ders as filler were added to the epoxy resin at different 
weight percentages (from 15 to 50) and then, they were 
adequately blended. The nanoparticles weight percentage 
of the composites is presented in Table 1. Mixing was per-
formed at   60 rpm for 15 min for all the samples. The con-
stituents of nanocomposites in each case were first mixed 
manually based on the weight percentage and then mixed 
by the extruder (Brabender Co. produced the 25 DS twin-
screw extruder, which has a screw diameter of 25 mm and a 
length-to-diameter ratio of 40). The speed of movement of 
the screws was adjusted to 60 rpm. In the end, each mixture 
was poured into glass casts and cured at 100 C for 2 h [22]. 
The hole with an outer diameter of 6.9 mm and an inner 
diameter of 3 mm [23] was used for measuring EM proper-
ties of the nanocomposites.

To remove the moisture in the nanoparticles, they were 
placed in a dryer at 90 °C for 2 h [24].

EMI Shielding Efficiency Analysis

The electromagnetic properties of the fabricated nanocom-
posites were measured by an E8362B vector network analyzer 
(VNA) (E8362B model, Agilent Co., USA) in the frequency 
range of 8 to 12.5 GHz (X) based on the transmission/reflec-
tion method. To this end, the sample was placed in a coaxial 
waveguide with the same internal and external diameters as the 
sample. The values of the microwave permeability and permit-
tivity were extracted based on the Nicholson-Rose-Weir method 
using scattering indices. The amount of EM wave attenuation 
of the encountering wave is expressed in decibels by assessing 
the total shielding efficiency (SET). When the SET value reaches 
20 dB, it can reduce 99% of the EM waves [25]. The SET of the 
fabricated nanocomposites was calculated according to Eqs. (1, 
2 and 3) [26–29].

(1)SE
T(dB) = SE

A(dB) + SE
R(dB) + SEM(dB)
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where SER represents shielding efficiency (SE) via reflec-
tion, absorption shielding efficiency (SEA) represents SE duo 
to absorption and SEM represents SE via multiple reflec-
tions. Zin is the normalized input impedance at free space 
and material injector. d is the thickness of composite, and 
δ is the skin depth, which is shown in Eq. (4) [27, 30]. SEM 
can be neglected if SEA is more than 10dB.

Reflective loss (RL) is a part of the electromagnetic 
wave energy reflected towards the source when it comes 
in contact with the absorber. RL depends on the ratio of 
the electromagnetic wave impedance to the absorbent 
impedance and the conductivity and permeability of the 

(3)SER = R
L
= 20log
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shielding material. An RL value equal to 10 dB means that 
90% of the emitted wave is absorbed by the absorbent [31]. 
The transmission line concept, which can be summarized 
by Eqs. 5 and 6, can be used to determine RL values [32].

where, εr and μr are the complex permittivity and magnetic 
permeability of the nanocomposite, respectively, f is the fre-
quency, and c is the light speed in open space.
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Fig. 1   (a) SEM image, (b) Raman spectroscopy, and (c) XRD results of CBN
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Results and discussion

Microscopy analysis

While the high electrical conductivity of Fe3O4 and CBN 
is one of the main reasons for the high EMI shielding effi-
ciency of the composites fabricated in the study, the distri-
bution of CBN is also significant. The uniform distribution 
of Fe3O4 and CBN particles in the matrix established a con-
ducting network that provides the optimum EMI shielding 
possible. In Fig. 3, the obtained SEM micrographs of FC1 
to FC4 composites are shown. The images show that in pre-
pared composites, especially for FC1 and FC2 specimens, 
the mixed nanoparticles form an electron transfer network 
inside the samples.

The phase composition, chemical structure, and morphol-
ogy of the composites were characterized by XRD, as shown 
in Fig. 4. The XRD result indicated both high crystallinity 
and purity of the Fe3O4/CBN composites.

Fig. 2   Microstructure investigation of Fe3O4 (a) SEM image, (b) TEM image, (c) XRD pattern, and (d) Raman spectroscopy

Table 1   Carbon black and Fe3O4 weight percentages in making nano-
composite samples

Nanocomposites FC1 FC2 FC3 FC4

Carbon black Nanopar-
ticles (CBN)

15% 15% 15% 50%

Fe3O4 Nanoparticles 15% 30% 50% 15%
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EMI analysis

In the study, the EMI shielding effectiveness of different 
weight percentages of magnetite and CBNs was investigated. 
In the X-band, the electromagnetic shielding effectiveness 
of these materials was investigated (8.2–12.4 GHz). All the 
samples had a thickness of 0.7 mm. The SET, SER, and SEA 
were determined using the scattering parameters obtained 
from the VNA. The efficiency of the fabricated samples' 
SEA, SER, and SET as a function of frequency in a thickness 
of 0.7 mm is shown in Fig. 5.

According to Fig. 5, in all the samples, SET had a higher 
efficiency at lower frequencies compared with higher fre-
quencies. Moreover, the value of SER at high frequencies 
was higher than that at low frequencies.

Figure 5, reveals that the mean SEA value for samples 
FC1, FC2, FC3, and FC4 was 11.21 dB, 11.82 dB, 13.28 dB, 
and 11.85 dB, respectively. The mean SER value for sam-
ples FC1, FC2, FC3, and FC4 was -16.09 dB, -16.63 dB, 
-6.81 dB, and -17.61 dB, respectively. Moreover, the low-
est and highest  SET values in the prepared nanocomposites 
were 20.10 dB in FC3, and 36.6 dB in FC4, respectively. 
Therefore, as was shown in Fig. 5d, 50% weight percentage 
of carbon black in FC4 nanocomposite case more shield-
ing effectiveness because of rising dielectric loss caused by 
electrical conduction in the specimen. On this basis, this 
composite has mean higher reflection loss compared with 
other composites, for instance, the composite has reflection 

loss -24.9 dB at 8.2 GHz, which was able to reduce over 99% 
of EM waves [33].

The sample FC3 contained a weight percentage of 50% 
magnetite and 15% carbon black had a higher mean absorp-
tion loss with a maximum of 13.47 dB at 11.89 GHz than the 
other samples. Therefore, adding magnetite nanoparticles 
rise in magnetic loss and it case more absorption loss. While, 
the sample FC3 had less reflection in mean-6.81 dB, because 
of the low weight percentage of carbon black (15%), which 
leads to lower electrical conductivity and less dielectric loss 
in the composite.

Because of  the importance of the absorption efficiency 
of the prepared shields, the SEA of the nanocomposites was 
predicted using Eq. (2) in various thickness. The results of 
the prediction was shown in Fig. 6.  

According to Fig. 6, in all four samples, the thickness of 
3.2 mm had the highest SEA with an average of 14.84 dB.  
The results showed that the maximum value of SEA was 
15.89 dB in the thickness of 3.2 mm, which appeared at a 
frequency of 11.89 GHz (sample FC3) and the minimum 
value of SEA was 10.60 dB in the thickness of 0.7 mm at a 
frequency of 10.04 GHz (sample FC1). With an increase of 
nanocomposite thickness, there is a shift of SEA peak toward 
higher frequency [Fig. 6 (d), 6(f) and 6(h)]. Knowing the 
SE values will help choose the right sample thickness for 
shielding.

Table  2 compares the Fe3O4/CBN (FC4) composite 
material to other commonly used absorbents. Compared 
with the reduced graphene oxide (rGO)–Fe3O4 (rGO:IO) 

Fig. 3   SEMM images of (a) 
FC1, (b) FC2, (c) FC3, and (d) 
FC4 composites
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Fig. 4   XRD patterns of (a) FC1, 
(b) FC2, (c) FC3, and (d) FC4 
composites
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[34], acrylonitrile-co-butadiene-co styrene(ABS)/ car-
bon black(CB): carbon nanotubes(CNT) [35], chlorinated 
polyethylene(CPE)/ carbon black (CB) [36], poly (styrene-
b-ethylene-ran-butylene-b-styrene)(SEBS) and carbon addi-
tives (SEBS/CB) [37], Ketjen carbon black (K-CB)-ethylene 
methyl acrylate copolymer (EMA) [38], graphene Nano 
platelets /Fe3O4/epoxy (G/Fe3O4/epoxy) [39], Fe3O4/gra-
phene foam/poly dimethyl siloxane (Fe3O4/G/PDMS) [40], 
magnetic reduced graphene oxide (RGO)@Fe3O4 (RGO/
Fe3O4) [41], silicone rubber/MWCNTs/Fe3O4 [42], PMMA/
Fe3O4@ MWCNTs [43], it can be seen that the sample thick-
ness is thinner for the Fe3O4/CBN composite material.

The Fe3O4/CBN composite tends to be a promising can-
didate for high-absorption materials as a result. CBN and 
Fe3O4 not only cause the dielectric and magnetic loss but 
also improve the EMI shielding efficiency of the composites 
by multiple internal reflections. Suitable impedance match-
ing of the composite in the study allow waves to enter the 
material, and due to several internal reflections in them, the 
reflected internal radiation energy is subsequently absorbed 
by the carbon black [44].

In a review of the literature, it was found that simi-
lar studies have not been conducted to show the SE of 
the shielding material with the nanocomposites used in 
the present study, which was the limitation of this study. 
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Fig. 5   Comparison of SET, SER, and SEA in samples (a) FC1, (b) FC2, (c) FC3, and (d) FC4 as a function of frequency (8.2–12.4 GHz) (the 
thickness of all the samples is 0.7 mm)
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Future research could be on optimizing morphology and 
structure to provide optimal nanocomposites.

Conclusion

In the study, four nanocomposites were prepared by 
mixing magnetite and carbon black nanoparticles was 
mixing in epoxy resin, successfully and their shielding 
EMI efficiency was investigated in the frequency range 

of 8.2–12.4 GHz. The  mixing and casting method has 
provided a good dispersion of magnetite and CBN in the 
epoxy resin. The maximum value of SE was 36.62 dB at 
8.2 GHz for epoxy resin nanocomposites with a content 
of a weight percentage of 50% carbon black nanoparti-
cles and 15% magnetite and 0.7 mm in thickness. These 
magnetite/carbon black nanocomposites based on epoxy 
resin provide promising opportunities for EMI shielding 
materials. The Fe3O4/CBN composite not only causes the 
dielectric and magnetic loss but also improves the EMI SE 
of the composites by multiple internal reflections. Suitable 
impedance matching of the composite in the study allows 
waves to enter the material, and due to several internal 

Fig. 6   SEA as a function of frequency for samples (a) FC1; (b) FC2; (c) FC3; (d) FC4 with different thicknesses
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reflections in them, the reflected internal radiation energy 
is subsequently absorbed by the carbon black.
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