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Mapping individual differences in behavior is fundamental to personalized neuroscience, but quantifying complex behavior in real
world settings remains a challenge. While mobility patterns captured by smartphones have increasingly been linked to a range of
psychiatric symptoms, existing research has not specifically examined whether individuals have person-specific mobility patterns.
We collected over 3000 days of mobility data from a sample of 41 adolescents and young adults (age 17–30 years, 28 female) with
affective instability. We extracted summary mobility metrics from GPS and accelerometer data and used their covariance structures
to identify individuals and calculated the individual identification accuracy—i.e., their “footprint distinctiveness”. We found that
statistical patterns of smartphone-based mobility features represented unique “footprints” that allow individual identification (p <
0.001). Critically, mobility footprints exhibited varying levels of person-specific distinctiveness (4–99%), which was associated with
age and sex. Furthermore, reduced individual footprint distinctiveness was associated with instability in affect (p < 0.05) and
circadian patterns (p < 0.05) as measured by environmental momentary assessment. Finally, brain functional connectivity, especially
those in the somatomotor network, was linked to individual differences in mobility patterns (p < 0.05). Together, these results
suggest that real-world mobility patterns may provide individual-specific signatures relevant for studies of development, sleep, and
psychopathology.
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INTRODUCTION
Linking individual differences in behavior to brain function is a
central task of behavioral neuroscience [1]. However, quantifying
complex human behavior in real world settings remains a
challenge. One alternative to standard behavioral assessment is
digital phenotyping, which uses mobility data from personal
smartphones to quantify moment-by-moment human behavior
[2]. Prior work has associated geolocation features to important
clinical outcomes in psychiatric disorders such as bipolar disorder
and schizophrenia [3], and has linked accelerometer metrics to
post-surgical recovery [4, 5]. Furthermore, researchers have

recently begun to capitalize on the substantial variability of
behavior assessed with digital phenotyping to link individual
differences in brain and behavior. For example, lower prefrontal
activity during processing negative emotions has been associated
with individual exposure to urban green space [6], while greater
functional coupling of the hippocampus and striatum has been
linked to location variability [7].
While these studies suggest that digital phenotyping can be a

powerful tool for studying individual differences, it remains
unknown whether mobility patterns are in fact person specific.
Recent high-impact work has established that individual humans
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have unique patterns of functional brain connectivity [8, 9]. The
uniqueness of such brain-based “fingerprints” [10] (also called
“connectotypes”) have been associated with development, cogni-
tion, and psychiatric conditions [11]. Interestingly, rather than the
random walks as found in animal mobility trajectories, a classic
study on individual mobility patterns using sparsely sampled
locations inferred from cell phone towers (a pre-GPS technology)
found that human movement follows reproducible patterns [12].
This suggests that human mobility patterns may encode
characteristics that are unique to specific individuals. Establishing
analogous person-specific mobility patterns—or mobility “foot-
prints”—would constitute an important advance in behavioral
neuroscience, and provide the foundation for targeted, individual-
specific interventions.
Accordingly, in the current study, we seek to test the hypothesis

that mobility patterns are person specific and can be used to
accurately identify individuals. To do this, we capitalized on the
ubiquity of personal smartphones and their capability to collect
real-time geolocation and accelerometer data in naturalistic
environment with no user input. As psychomotor disturbances
are common in psychiatric disorders [13, 14], we collected data
from a clinical sample of adolescents and young adults, enriched
for affective instability. It should be noted that the approach of the
current study to identify individuals is not based on raw GPS
coordinates, which would allow trivial identification given a
participant’s exact location. In contrast, we aimed to use
covariance structures of summary mobility metrics, such as time
spent at home and total distance traveled, to abstract an overall
statistical mobility pattern for each individual. Such an approach
has been successfully applied in prior work on brain connectome
fingerprints to map individual differences [10, 11].
As described below, we establish that mobility patterns are

person-specific and can be used to accurately identify individuals.
Furthermore, we show that individual footprint distinctiveness, or
the extent to which an individual’s footprint can be accurately
identified, varies by age and sex in youth. Notably, we find that
higher degree of affective instability and circadian irregularity, as
measured by environmental momentary assessment (EMA), are
associated with reduced individual footprint distinctiveness.
Finally, we found that a cross-validated multivariate machine
learning model could predict footprint distinctiveness using brain
functional connectivity patterns.

METHODS AND MATERIALS
Participants
A sample of 41 adolescents and young adults (28 females; mean (s.d.)
age= 23.4 (3.5) years, range 17–30 years) were enrolled as part of a study
of affective instability in youth. Participants were recruited via the Penn/
CHOP Lifespan Brain Institute or through the Outpatient Psychiatry Clinic
at the University of Pennsylvania. Of these 41 participants, 38 participants
met criteria for Axis I psychiatric diagnosis based on a semi-structured
clinical interview [15]; 33 met criteria for more than one disorder
(Supplementary Table 1). Additionally, 16 of the 41 participants met
criteria for a personality disorder (mainly borderline personality disorder)
based on assessment with the SCID-II [15]. All participants provided
informed consent to all study procedures; for minors, the parent or
guardians provided informed consent and the minor assented as well. This
study was approved by the University of Pennsylvania Institutional
Review Board.

Mobility data acquisition
Global Positioning System (GPS) geolocation data were acquired via the
Beiwe platform [16]. Participants were asked to download the Beiwe
application on their personal smartphone. The application recorded the
location of the participant’s phone in latitude, longitude, and altitude, as
well as the precision of that measure. To conserve battery and minimize
degradation of the phone performance, Beiwe was designed to track a
participant’s geolocation in a periodic fashion [17]. Specifically, Beiwe

tracked GPS for 2 min at a fixed interval point every 20min, resulting in
144min of data recording and 1296min of dormancy in a 24-h cycle
(Fig. 1). Due to user and device related factors in the naturalistic setting,
such as the phone being powered off, no cell signal, or airplane mode,
longer periods of recording dormancy were possible. Mobility data were
automatically uploaded daily via WiFi to a cloud-based data management
system.
The intended GPS tracking period was 3 months. However, participants

were free to end the study early by uninstalling the Beiwe application.
Conversely, they could volunteer to continue data collection beyond the
3-month period specified. Thus, in total, 3317 days of GPS data across all
participants were collected (mean (s.d.)= 77 (26) days, range 14–132 days,
see Supplementary Fig. 1). After removing the first and last days of each
participant’s study period when only partial data were recorded and days
containing no data, the remaining data available for analysis had
3156 days.
Accelerometer data were also acquired via the Beiwe platform. The

application recorded the participants’ acceleration in three cardinal axes (x,
y, and z) in m/s2. In total, 2972 days of accelerometer data were obtained
across all participants (mean (s.d.)= 74 (32) days, range 15–134 days). After
removing the first and last days of each participant’s study period when
only partial data were recorded, the remaining data available for analysis
had 2890 days.

Mobility data analysis
GPS data preprocessing. Raw GPS data were processed using the
Smartphone Sensor Pipeline [17], a validated pipeline specifically designed
to handle GPS data while accounting for data missingness (Fig. 1a). First,
each subject’s GPS longitude and latitude coordinates on the spherical
Earth’s surface were transformed to a standardized two-dimensional
Cartesian plane, thus deidentifying subject’s real-world locations. Second,
the data were converted to a sequence of flights and pauses, where flights
were defined as segments of linear movements and pauses were defined
as periods of no movement (Fig. 1b, c). Finally, missing flights and pauses
were then imputed by the hot-deck method [18], which resamples from
observed events over each missing interval.

Mobility metrics calculation. Using the constructed subject mobility traces
and the Smartphone Sensor Pipeline, 15 GPS-based mobility metrics were
calculated for each day of recording, defined as midnight to midnight
(Fig. 1d). See Barnett et al. for details [17]. An additional seven
accelerometer-based mobility metrics were calculated for each day of
recording. These were implemented according to methods described in
the RAPIDS pipeline [19]. See Supplementary Table 2 for definitions of each
metric.

Mobility footprint construction. Inspired by studies of person-specific
connectome fingerprints [8, 11], we constructed a mobility footprint for
each participant using the covariance matrix of mobility metrics (Fig. 1e).
First, we extracted the mobility metric time series by concatenating the
daily mobile metric output from the Smartphone Sensor Pipeline. Then we
computed the pairwise Pearson correlation for all the mobility metrics to
construct a covariance matrix. The nodes of the network were the mobility
metrics, and the edges of the network were the Pearson correlation
coefficients between metrics. We refer to the resulting covariance matrix
as the “Mobility Footprint.” This procedure was carried out separately for
GPS- and accelerometer-based mobility data. For the main analysis, the
upper triangle of the resulting covariance matrices from GPS and
accelerometer metrics were concatenated and were used as input
features for the individual identification procedure. We also repeated
the identification procedure using GPS or accelerometer features alone.
To compare the differences between GPS-alone and the combined GPS-
accelerometer features, we performed a two-sample, two-tailed t-test
on the identification distributions resulting from the two different
feature sets.
As a sensitivity analysis to test performance of alternative features for

individual identification, we also computed the mean and the stability of
each measure and used these features to identify participants. Stability
was defined as the root mean square of the successive differences
(RMSSD) of each measure [20] (Supplementary Fig. 7).

Individual identification procedure (“footprinting”). To test whether mobi-
lity footprints were individual-specific, we randomly partitioned each
participant’s data into two equally sized parts, named the “reference” and
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the “target”, respectively [8]. The objective of the individual identification
procedure was to match the participant from the target group (T) to the
same one in the reference group (R) (Fig. 1f). For a given subject, S, we
computed the Pearson correlation (r) between that subject’s features in the
target group, ST, and everyone’s features in the reference group, SR 1, SR
2,..., SR N, where N was the total number of participants, which resulted in
r1; r2; � � � rN .
Individual identification was operationalized as a one-to-one match,

defined as the maximum correlation between the reference and target
groups. If the data in the target group and the reference group came from
the same participant, a correct match was declared (M):

SM ¼ argmax r1; r2; � � � rNð Þ:

The individual identification accuracy was defined as the number of
correct identifications divided by the total number of potential matches in

the target group (N):

individual identification accuracy ¼
PN

i¼1 1; if ST i ¼ SMi; 0; if ST i ≠ SMif g
N

:

The above individual identification procedure was repeated 1000 times,
each time with a new random data partition (P). We calculated the average
individual identification accuracy across the 1000 runs, which yielded a
distribution of sample-wise identification accuracy. Furthermore, we also
calculated the accuracy for each participant, defined as the number of
correct identifications for that specific participant divided by the number
of data partitions (B). We refer to this participant-specific identification
accuracy as the individual “footprint distinctiveness”:

individual footprint distinctiveness ¼
PB

i¼1 1; if PT i ¼ PMi; 0; if PT i ≠ PMif g
B

;

Fig. 1 Constructing personal mobility “footprints”. a We collected 3317 days of mobility sensing data via personal smartphones from 41
adolescents and young adults. Geolocation data were recorded in cycles of 2min on and 18min off. Raw geolocation coordinates were de-
identified via sphere-to-2D standard space projection and were further imputed for missing data. b For each individual, we constructed daily
personal mobility trajectories, which consist of flights (movement) and pauses (stationary segments). Length of linear lines represents the
duration of flights and size of circles represents the duration of pauses. Warm and cold colors indicate daytime and nighttime, respectively. c A
representative week of trajectories is shown, which demonstrates rich characteristics of personal mobility patterns formed over time. d We
extracted timeseries of mobility statistics (e.g., daily time spent at home) from geolocation and accelerometer data that parameterize
movement characteristics over weeks to months. The example represented all 110 days of participants’ geolocation metrics recorded. e For
each individual, we constructed a covariance matrix from the mobility metric timeseries. Each cell of the matrix was populated by the Pearson
correlation between a given pair of mobility metrics. Warm and cold colors indicate positive and negative correlations, respectively. f We
randomly divided data into two equally sized parts, called the reference and target set. Subj X from the target set was matched to the subject
in the reference that had the highest correlations between their footprints (argmax(r1, r2, ..rN)). The identification was considered correct when
underlying data came from the same subject; otherwise, the identification was considered incorrect. We quantified individual identification
accuracy as the proportion of correct identifications across the entire sample; this procedure was repeated 1000 times across different random
partitions of the data.
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where PTi is target in a partition for subject i, and PMi is matched subject.
We conducted the individual identification procedure using the covariance
matrix of the GPS data, accelerometer data, as well as the combined
feature set. Sensitivity analyses examined the mean and stability of each
feature as above.

Similarity matrix construction. To visualize individual footprint distinctive-
ness, we constructed similarity matrices between participants’ mobility
covariance features [21]. First, we concatenated the daily mobility metrics
for a participant from multiple random data partitions. Next, a similarity
matrix was constructed by computing the Pearson correlation coefficients
between every pair of participants. The resulting matrix was a symmetric
matrix, where the nodes were each participant, and the edges were the
correlation coefficients between any two participant’s mobility metrics.
This grouping procedure was performed solely for visualization, high-
lighting the within-individual, across-partition block structures on the
diagonal of the matrix. This grouping was not used in any statistical
analysis.

Permutation testing. To assess the statistical significance of individual
identification accuracy, we used a permutation testing procedure to create
a null distribution of accuracy. Specifically, we randomly scrambled the
identity of the daily mobility metrics, thus disrupting the linkage between
the mobility data and the corresponding participant. We repeated the
individual identification procedure for each random permutation. The
empirical p-value was then calculated as the proportion of times when the
permuted data yielded higher accuracy than the original data:

Ppermutation ¼
PM

i¼1 1; if Ai � Aoriginal 0; if Ai < Aoriginal
�

M
;

where A is the individual identification accuracy, and M is the total
permutations.

Sensitivity analysis of data missingness. To understand the effect of data
missingness on our ability to identify participants’ mobility footprint, we
conducted sensitivity analyses that used data constructed using different
thresholds for data missingness [17, 22]. Specifically, we applied four
thresholds with diminishing tolerance for the number of missing samples
(i.e., minutes recorded) in a day’s worth of data to be included in analysis
(Supplementary Fig. 1). At the 100th percentile level, which corresponded
to retaining all available days except for those with all data missing (or
1440min), 79 recording days were removed, which resulted 3156 days
remaining for analysis. At the 90th percentile, a further 216 days were
removed, yielding 2940 days for analysis. At 80th percentile, a further
356 days were removed, resulting in 2584 days for analysis. Finally, at 75th
percentile, a further 171 days were removed, resulting in 2413 days
remaining for analysis. Using these four sub-samples constructed with
different inclusion criteria, we then repeated the individual identification
procedure and permutation testing as described above.

Feature lesion analysis. To further investigate the influence of any single
feature’s influence on the individual identification accuracy, we conducted
a feature lesion analysis. We sequentially removed one metric (out of the
total 15 geolocation mobility metrics available) and constructed a new
covariance matrix which had one node (and 14 edges) less than the
original feature covariance matrix. Using this reduced feature set, we
repeated the individual identification and permutation testing procedures
as described above (Supplementary Fig. 3).

Ecological momentary assessment
Using the Beiwe platform application on personal smartphones, partici-
pants completed daily questionnaires specifically designed to assess mood
variability at three timepoints throughout the day [23]. The participants
were sent questions within the same general windows, but they were
allowed to choose the alert time within a range of time windows. The
specific time windows were: 6 am-9 am, 3 pm-6 pm, and 7 pm-10 pm. In
each survey, participants rated on a scale from 1 (“not at all”) to 7
(“extremely”) of their endorsement of six statements assessing mood,
aggression, impulsivity, and self-esteem since the last time they had
answered the survey to capture their mood (Supplementary Table 3). To
quantify the variability of answers to the mood survey, we pooled
responses to all six items and calculated the root mean square of
successive differences (RMSSD) between concatenated answers. Prior

research indicates that pooling responses to individual mood items and
calculating a single variability score may allow for improved reliability
measurement of mood variation [24]. RMSSD has been the preferred index
of affective instability, because it captures both variability and temporal
dynamics of time series, particularly in borderline personality disorder and
mood cycling disorders [24, 25]. Additionally, every morning, participants
were also asked about their sleep patterns from the night before. Similarly,
we also calculated the RMSSD of sleep duration as a measurement of its
stability.
We built a generalized additive model (GAM) to investigate the

association between footprint distinctiveness and demographic factors
such as age and sex, as well both mood and sleep duration stability. Age
was modeled using penalized splines within GAM using restricted
maximum likelihood (REML) to estimate linear and nonlinear develop-
mental effects without over-fitting the data [26, 27].

Brain functional connectivity analysis
Imaging acquisition. Brain images were acquired on the same day as the
participants were given the instructions regarding the mobile data
tracking. Since the participants downloaded the Beiwe app within the
next few days, the mobility data collection commenced shortly after
neuroimaging acquisition. As previously described [28], structural and
functional MRI scans were acquired using in a single session on a clinically-
approved 3 Tesla Siemens Prisma (Erlangen, Germany) quadrature body-
coil scanner and a Siemens receive-only 64-channel head coil at the
Hospital of the University of Pennsylvania. Prior to functional MRI
acquisitions, a 5-min magnetization-prepared, rapid acquisition gradient-
echo T1-weighted (MPRAGE) image (TR= 1810ms; TE= 3.45ms; TI =
1100ms, FOV= 180 × 240mm2, matrix= 192 × 256, 160 slices, effective
voxel resolution= 0.9375 × 0.9375 × 1mm3) was acquired. All fMRI
images were acquired with the same multi-band, interleaved multi-slice,
gradient-echo, echo planar imaging (GE-EPI) sequence sensitive to BOLD
contrast with the following parameters: TR= 500ms; TE= 25ms; multi-
band acceleration factor= 6, flip angle= 30°; FOV= 192 × 192mm2;
matrix= 64 × 64; 48 slices; slice thickness/gap= 3/0 mm, effective voxel
resolution= 3.0 × 3.0 × 3.0 mm3; 1200 volumes were acquired.

Image processing. All preprocessing was performed using fMRIPrep 20.0.7
[29], which is based on Nipype 1.4.2 [30], and the eXtensible Connectivity
Pipelines (XCP) [31, 32] (PennBBL/xcpEngine: atlas in MNI2009 Version
1.2.3; Zenodo: https://doi.org/10.5281/zenodo.4010846). The T1-weighted
(T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection [33], distributed with ANTs 2.2.0 [34], and used as
T1w-reference throughout the workflow. The T1w-reference was then
skull-stripped with a Nipype implementation of the antsBrainExtraction.sh
workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-
matter (GM) was performed on the brain-extracted T1w using FAST in FSL
5.0.9 [35]. Volume-based spatial normalization to MNI2009c standard space
was performed through nonlinear registration with antsRegistration (ANTs
2.2.0), using brain-extracted versions of both the T1w reference and the
T1w template.
BOLD runs were first slice-time corrected using 3dTshift from AFNI

20160207 [36] and then motion corrected using mcflirt (FSL 5.0.9) [35]. A
fieldmap was estimated based on a phase-difference map calculated with
a dual-echo GRE sequence, processed with a custom workflow of
SDCFlows inspired by the epidewarp.fsl script and further improvements
in HCP Pipelines [37]. The fieldmap was then co-registered to the target EPI
reference run and converted to a displacement field map with FSL’s fugue
and other SDCflows tools. Based on the estimated susceptibility distortion,
a corrected BOLD reference was calculated for a more accurate co-
registration with the anatomical reference. The BOLD reference was then
co-registered to the T1w reference using bbregister, which implements
boundary-based registration [38]. Co-registration was configured with nine
degrees of freedom to account for distortions remaining in the BOLD
reference. Six head-motion parameters (corresponding rotation and
translation parameters) were estimated before any spatiotemporal filtering
using mcflirt. Finally, the motion correcting transformations, field distortion
correcting warp, BOLD-to-T1w transformation and T1w-to-template (MNI)
warp were concatenated and applied to the BOLD timeseries in a single
step using antsApplyTransforms (ANTs) with Lanczos interpolation.
After pre-processing with fMRIPRep, confound regression was carried

out in XCP. Preprocessed timeseries were despiked and then de-noised
using a 36-parameter confound regression model that has been shown to
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minimize the impact of motion artifact [39]. Specifically, the confound
regression model included the six framewise estimates of motion, the
mean signal extracted from eroded white matter and cerebrospinal fluid
compartments, the global signal, the derivatives of each of these nine
parameters, and quadratic terms of each of the nine parameters as well as
their derivatives. Both the BOLD-weighted time series and the confound
regressor timeseries were temporally filtered simultaneously using a fist-
order Butterworth filter with a passband between 0.01 and 0.08 Hz to avoid
mismatch in the temporal domain [40]. Confound regression was
performed using AFNI’s 3dTproject. Note that in-scanner head motion
was also included as a covariate in all statistical models (see below).

Functional network and community connectivity. Functional connectivity
between each pair of brain regions was quantified as the Fisher‐
transformed Pearson correlation coefficient between the mean regional
BOLD time series. For each participant, a 200 × 200 weighted adjacency
matrix encoding the connectome was constructed based on the
parcellation system defined by Schaefer and colleagues [41]. Each node
was assigned to one of seven canonical functional brain modules or
communities defined by Yeo et al. [42].
The within‐community connectivity was defined as
P

j;j02Ck A
i
jj0

Ckj j ´ ð Ckj j � 1Þ ;

where Aijj0 is the weighted edge strength between the node j and node j′,
both of which belong to the same community Ck, for the i‐th subject. The
cardinality of the community assignment vector, Ck, represents the number
of nodes in the k‐th community [43].

Mass-univariate analysis. For each of the seven canonical networks, we fit
a generalized additive model (GAM) to investigate the relationship
between within-network connectivity and footprint distinctiveness, while
controlling for in-scanner motion, mobility data quantity, sex, and age.
Specifically, we used penalized splines using restricted maximum like-
lihood (REML) within GAM to capture linear and nonlinear age-related
changes [26, 27]. We controlled for multiple comparisons using the False
Discovery Rate (Q < 0.05).

Predicting footprint distinctiveness using functional connectivity. As a final
step, we fit a penalized regression model to predict footprint distinctive-
ness using the multivariate pattern of functional connectivity [8]. In each
iteration of leave-one-out cross-validation, one subject was left out as the
testing set and the rest the training set. Using the training set, we
computed residualized footprint distinctiveness from a GAM model with
covariates as above (linear terms for in-scanner motion, data quantity, sex;
age was modeled with as a penalized spline). Then we fit a lasso regression
model to predict the residualized footprint distinctiveness using a sparse
collection of functional connectivity edges. L1 lasso hyperparameter was
similarly tuned within the training set in a nested leave-one-out fashion; at
no time did hyper-parameter tuning include testing set data. Next, we
calculated the predicted footprint distinctiveness for the unseen subject in
the testing set. After all iterations, we obtained predicted footprint
distinctiveness for all participants and then calculated the Pearson
correlation between the actual footprint distinctiveness and predicted
values.

RESULTS
Individual mobility footprints are person-specific
When tracked over weeks to months, timeseries of mobility
statistics captured rich characteristics of individual mobility
patterns (Fig. 1a–c). One illustrative example of the sensitivity of
the timeseries to track mobility patterns is when COVID-19
pandemic hit the Philadelphia area towards the end of the study
period. Participants who were still engaged in active data
collection (n= 3) exhibited dramatic shifts in mobility features
(Supplementary Fig. 2). Of note, as the data points during COVID-
19 represented merely 1.1% of all data, the findings reported
below did not change significantly when these data were
removed.
Drawing on prior work of brain connectome “fingerprinting,”

[8, 10] we created a covariance matrix using each participant’s

fifteen geolocation-based and seven accelerometer-based mobi-
lity features timeseries to identify individuals, akin to a person-
specific mobility “footprint” (Fig. 1d, e). Across the sample, the
average positive correlation was 0.47, indicating a high degree of
common variability among many mobility features (such as
distance traveled and radius of gyration), and the average
negative correlation was −0.10, indicating a moderate antic-
orrelated variability among a few variables (such as distance
traveled and home time). Conceptually, one’s temporal pattern in
a single mobility dimension (e.g. distance traveled) can be similar
to that of another person, but when combined with more
dimensions of mobility features (e.g. possibility of pauses), the
complex pattern of interplay between the dimensions as depicted
in the covariance matrix (i.e. mobility “footprint”) may help
distinguish one person from another.
Data from each individual was partitioned into two groups: the

target partition and the reference partition. For each individual,
the data in the target partition was separately correlated with
every individual’s data in the reference partition; this procedure
yielded 41 correlation values (Fig. 1f). A correct identification was
declared only when the maximum correlation was from the data
belonging to the same individual across the target and reference
partitions. To ensure that the random partitioning of the data did
not impact results, this matching procedure was then repeated for
each individual 1000 times.
Initial inspection across random partitions of the data revealed

that there was substantially greater correlation between mobility
footprints within participants rather than between participants
(Fig. 2a). Permutation testing on the entire sample revealed that
individuals could be successfully identified using their mobility
footprints (p < 0.001; Fig. 2b). Across 1000 random data partitions,
the mean individual identification accuracy was 63%. Critically, this
accuracy was far better than chance performance determined by a
permuted null distribution (mean: 3% accuracy; see Fig. 2b inset).

Footprint distinctiveness exhibit developmental effects and sex
differences. Moving beyond aggregate measures of accuracy
across the group, we next investigated whether certain individuals
could be consistently identified more accurately than others.
Similar to prior studies of brain connectome fingerprinting
[8, 10, 11], we refer to this measure as an individual’s “footprint
distinctiveness”. Notably, individuals exhibited a wide distribution
of footprint distinctiveness, ranging from 4% to 99% (Fig. 2c). In
other words, certain participants had such distinct mobility
patterns that they enabled correct identification nearly every
single time; other participants were difficult to identify. None-
theless, permutation testing showed that all participants had
significant footprint distinctiveness compared to the null distribu-
tion.
As the group and individual level accuracy reported thus far

were based on the combination of geolocation and accelerometer
features, we next examined each feature set separately. Individual
footprint distinctiveness derived from geolocation was not
correlated with that from accelerometer (r= 0.18; p= 0.26).
Interestingly, while accelerometer data alone yielded lower
identification accuracy (28%) than geolocation data (55%),
combining these features resulted in higher identification
accuracy (63%, p < 2.2 × 10–16, Fig. 2d), suggesting that they
encode complementary information. As a proxy to accounting for
operating system differences in data collection [22], we removed
minutes-missing from the feature set and re-calculated the
individual identification analysis. No significant changes in
individual footprint identification were observed (Supplementary
Fig. 3), suggesting the results were robust to data completeness
that might be influenced by operating system differences.
Importantly, individual identification accuracy was stable across
different inclusion thresholds for data missingness and was robust
to removal of individual mobility features (Supplementary Fig. 3).
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We next investigated participant factors that influenced
footprint distinctiveness. We found that data quantity (i.e., number
of days recorded per participant) was associated with footprint
distinctiveness (Supplementary Fig. 4). In contrast, the amount of
missing data within a given day was unrelated to footprint
distinctiveness. To understand the range of distinctiveness after
controlling for data quantity, we calculated the individual
identification accuracy after thresholding subjects at varying
levels of data quantity (Supplementary Fig. 5). We found that as
subjects’ minimum data quantity increased, the range of footprint
distinctiveness narrowed, driven by increase of the lower bound
while the upper bound remained the same. Based on these
results, a practical recommendation for the minimum quantity of
data to run mobility based individual identification analysis would

be at least 30 days. Based on this result, all subsequent analyses of
footprint distinctiveness were controlled for number of days of
data available.
As a next step, we evaluated whether footprint distinctiveness

was related to age or sex in our sample of adolescents and young
adults. We found that geolocation-based footprints became more
distinct with age across the transition from adolescence to
adulthood (partial r= 0.33, p < 0.05, Supplementary Fig. 6). Further-
more, female sex was associated with higher accelerometer-based
footprint distinctiveness (Cohen’s d= 1.27, p < 0.001, Supplemen-
tary Fig. 6). As a sensitivity analysis to test performance of
alternative features for individual identification, we also computed
the mean and the stability of each measure and used these
features to identify participants (Supplementary Fig. 7). We found

Fig. 2 Identifying individuals using personal footprints. a As an initial step, we visualized the similarity of mobility features across multiple
random reference and target partitions (R & T in inset). Mobility features were more correlated within participants (on-diagonal) across data
partitions than between participants (off-diagonal). Note that this visualization was not used in statistical analysis or individual identification.
b Across 1000 random partitions, mobility footprinting enabled successful individual identification (mean: 63%, S.D.: 6%). In contrast, the
mean chance accuracy from 1000 permutation was 3% (inset, p < 0.001). The dotted line indicates the average individual identification
accuracy across random data partitions. c For each individual, we calculated the footprint distinctiveness, or the percentage of correct
identification across the 1000 random partitions of the data. Ranked in ascending order, participants’ footprint distinctiveness exhibited a
wide range, from 4% to 99%. However, even the participant with the lowest footprint distinctiveness was significantly higher than the null
distribution (2%). d Individual identification based on geolocation alone had higher accuracy than accelerometer alone (p < 2.2 × 10−16).
However, they appeared to encode complementary features, as performance was maximal when both measures were used in footprinting
(p < 2.2 × 10−16). The dotted line indicates the average individual identification accuracy across random data partitions.
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that using mean, variability, or combined mean and variability
features was able to identify individuals, albeit much less
accurately than the covariance features.

Affective instability and circadian irregularity associated with
reduced footprint distinctiveness
We next evaluated how footprint distinctiveness was related to a
key domain of psychopathology: affective instability. Affective
instability is defined in the DSM-5 as “marked reactivity of mood”,
for example, “intense episodic dysphoria, irritability, or anxiety
lasting a few hours” [44]. It is particularly prominent in youth [14],
and is an important predictor of suicide [45]. However, affective
instability is often challenging to quantify using standard tools as
it is fundamentally a dynamic measure [24]. Here, we capitalized
on the participant ratings of six mood features collected three
times a day for 2 weeks using ecological momentary assessment.
To quantify a single score of affective instability, we then
computed overall instability of concatenated responses of all six
items for each participant using root mean square successive
difference (RMSSD) [46]. This approach has been successfully
applied to capture both the variability and temporal dynamics of
mood, especially in borderline personality disorder and mood
cycling disorders [24, 25]. We hypothesized that individuals who
had less predictable patterns of mobility (i.e., reduced footprint
distinctiveness) would have higher levels of affective instability.
While controlling for data quantity, age, sex, and the mean of
mood ratings, we found that affective instability was associated
with reduced footprint distinctiveness (partial r=−0.37, p < 0.05,
Fig. 3a). Furthermore, given well-established links between sleep
disturbance and mood disorders [47], we also evaluated whether
variability in sleep duration was also associated with footprint
distinctiveness. While controlling for covariates as above, we

found that variability in sleep duration was similarly associated
with reduced footprint distinctiveness (partial r=−0.36, p < 0.05,
Fig. 3b).

Functional brain connectivity predicts individual footprint
distinctiveness
As a final step, we investigated whether footprint distinctiveness
was related to patterns of functional connectivity. Initially, we
examined associations with a simple summary measure of high-
dimensional functional connectivity data: the mean connectivity
within each of seven canonical large-scale functional networks
[41]. While controlling for covariates as above (as well as in-
scanner motion) and correcting for multiple comparisons with the
false discovery rate, we found that footprint distinctiveness was
associated with greater connectivity within the somatomotor
network (r= 0.46, pfdr= 0.03, Fig. 3c).
Lastly, we moved beyond the simple summary measure of

mean network connectivity and investigated whether complex
multivariate patterns of functional connectivity could predict
footprint distinctiveness in unseen data. Given that there were far
larger number of features than participants, we used regularized
regression with leave-one-out cross-validation and nested para-
meter tuning, followed by permutation testing to determine
significance. We found that multivariate patterns of functional
connectivity could predict footprint distinctiveness in unseen data
(r= 0.29, p= 0.025; Fig. 3d). The predictive model yielded results
that aligned with the mass-univariate analyses (Fig. 3c), suggesting
that the multivariate model was driven in part by features linked
to somatomotor network (67% of edges selected by the model).
Moreover, this model also revealed important features beyond the
motor system, including increased connectivity between the
frontoparietal and default mode system (Fig. 3e).

Fig. 3 Individual footprint distinctiveness is associated with affective instability, sleep irregularity, and patterns of brain functional
connectivity. a Greater affective instability, measured by root mean square of successive differences in mood measures from ecological
momentary assessment performed three times a day, was associated with reduced footprint distinctiveness (r=−0.37, p < 0.05), after
controlling for data quantity, age, sex, and mean level of mood ratings. b Similarly, we found that increased variability in sleep duration was
associated with reduced footprint distinctiveness (r=−0.36, p < 0.05), after controlling for covariates. c Across functional brain networks,
greater connectivity within the somatomotor network had a significant association with footprint distinctiveness (r= 0.46, p < 0.05, corrected
for multiple comparisons with the false discovery rate). d Patterns of brain functional connectivity significantly predicted individual footprint
distinctiveness using leave-one-out cross-validation (r= 0.29, inset: permutation-based p= 0.025). e Six network edges consistently
contributed to the sparse regression model. These edges included greater connectivity within somatomotor network, reduced connectivity
between left and right frontal eye fields (FEF), increased connectivity between the somatomotor network and the left orbital frontal cortex
(OFC) in the limbic network, as well as increased connectivity between the ventrolateral prefrontal cortex (vlPFC) in the frontoparietal network
and the dorsomedial prefrontal cortex (dmPFC) in the default mode network. Cord thickness reflects the weights in the model, reflecting each
edge’s contribution to the prediction; cord color indicates the sign of the weights.
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DISCUSSION
Leveraging a sample of adolescents and young adults and recent
advances in digital phenotyping, we demonstrated that anon-
ymized mobility footprints, captured patterns unique to each
person and enabled subject-specific identification. Notably,
subjects exhibited individual differences in the extent to which
their footprint patterns could be differentiated from others. Such
footprint distinctiveness increased with age and was stronger in
females. Furthermore, affective instability and circadian irregular-
ity was associated with reduced footprint distinctiveness. Finally,
functional brain connectivity, particularly within the somatomotor
network, significantly predicted individual footprint distinctive-
ness. Taken together, these results suggest that person-specific
mobility patterns embed individual biosignatures that are linked
to development, sleep, mood, and brain networks.
Instead of measuring behavior that requires active participant

engagement, we used passive sensor data to track behavior over
an extended time period. Previous studies have demonstrated
the utility of mobility metrics in predicting a wide range of health
outcomes, as diverse as psychiatric symptom severity [3], quality
of life [4], and post-surgical recovery [5]. However, most studies
have principally examined group average data. In contrast, this
study explicitly examined whether an individual’s overall statis-
tical mobility patterns tracked over weeks to months could
distinguish from one person from another. Our approach was
motivated by recent development in neuroimaging that focused
on understanding inter-individual variability. Specifically, a series
of high-impact papers have reported that person-specific brain
connectivity fingerprints, which emerge with brain development,
differ between sexes, and are altered in psychiatric conditions
[8, 10, 11].
Here, instead of brain fingerprinting, we demonstrated the

feasibility of mobile footprinting using rich digital phenotyping
data. Specifically, we show that individual mobility footprints can
reliably identify individuals in unseen and anonymized data,
suggesting that personal mobility patterns embed specific
behavioral information unique to each person. The accuracy of
identification was robust to random data partitions, feature
selection, and amount of data missing. This is consistent with
prior reports that human mobility trajectories contain person-
specific patterns, rather than random walks as previously
hypothesized [12].
Our finding that footprint distinctiveness is related to data

quantity recalls recent work demonstrating that the ability to
delineate person-specific functional brain networks is dependent
in large part on the quantity of data available [21, 48]. However,
while accruing large amounts of functional imaging data is often
difficult and expensive, passive collection of long timeseries of
mobility data is both tolerable for participants and inexpensive
[49]. The high degree of scalability enabled by ubiquitous usage of
personal smartphones will allow future studies to test the
generalizability of these findings across different age groups and
clinical samples.
Adding to a growing body of evidence [6, 7], we found that

individual distinctiveness in mobility patterns has implications
for mental health. Specifically, we found that affective instability
and circadian irregularity were both associated with reduced
individual footprint distinctiveness. Such observation concurs
with the known clinical associations of psychomotor distur-
bances with mood and sleep disorders [50]. Since affective
instability is a risk factor for the development of later
psychopathology, including borderline personality disorder
and bipolar disorder [51], mobility footprints may be used to
identify individuals at risk.
Indeed, the dynamics of interacting with daily environmental

experiences may shape individual personality [52] and the brain
circuits that underlie individual differences in experiential proces-
sing are both plastic [53] and are altered in patients with affective

instability [54]. The current findings that footprint distinctiveness
increases with age, appears stronger in females, and weakens in
psychopathology mirror the results from studies investigating
brain functional connectivity fingerprints quite closely [11]. In that
paper, the authors reported that individual connectome distinc-
tiveness was similarly lowered in psychopathology, increased with
age, and was elevated in females—linking individual differences in
brain to behavior.
Finally, we were interested in how individual differences in

footprint distinctiveness were related to functional brain network
connectivity, which has also been shown to be person-specific
[8, 10]. Prior work has shown that the distinctiveness of such brain
connectome fingerprints was related to both brain development
and trans-diagnostic psychopathology [11]. Specifically, connec-
tome distinctiveness exhibited slowed maturation in individuals
with higher general psychopathology scores. Inspired by these
individual brain distinctiveness studies, we set out to examine
whether brain network connectivity was associated with indivi-
dual differences in footprint distinctiveness. Using both univariate
and multivariate analysis, we found that within-network con-
nectivity in the somatomotor network was correlated with
footprint distinctiveness, suggesting that the stronger functional
connectivity within the somatomotor network might give rise to
the distinctiveness of the footprint. Previous work has demon-
strated that somatomotor network connectivity develops over the
lifespan (years) [55, 56] and is altered acutely (days) during limb
disuse [57]; our results further indicate that mobility patterns over
a medium time-scale (weeks-months) can be predicted by
somatomotor network connectivity. Furthermore, results from
the multivariate analysis also suggest that functional integration of
association networks beyond the motor system (e.g. prefrontal
cortex of the control network) may relate to person-specific
mobility patterns [58].
Although this study benefited from a richly sampled cohort in a

naturalistic environment, several limitations should be noted. First,
while dense sampling per person enabled us to study behavior on
the individual level, a modest sample size limited our ability to
examine the generalizability of our findings. Thanks to ubiquitous
smartphone and cloud-based technologies, collecting mobility
data from a larger cohort should be easy to scale. Second, we
successfully identified individuals with mobility metrics, but digital
phenotyping provides many more options of behavioral readout.
Incorporating additional types of mobile data may extract
different sources of important individual differences, such as
voice [59] and screen time [60]. Finally, future research examining
a broader set of correlates of footprint distinctiveness, such as
substance use, gender identity, and socioeconomic status, may
provide additional insights into factors that influence individual
differences in mobility.
In summary, we established that statistical patterns in passively

collected digital phenotyping data can be used to construct
person-specific mobility footprints. Furthermore, the distinctive-
ness of mobility footprints was related to individual differences in
multiple domains including development in youth, biological sex,
circadian irregularity, affective instability, and functional connec-
tivity, which mirrors findings in functional brain connectome
fingerprints. Moving forward, mobility-based digital biomarkers
that combine objective measurement and individual-specific
analysis of behavior could accelerate the advances in personalized
diagnostics for diverse psychiatric illnesses.

CODE AVAILABILITY
The code for GPS data preprocessing, mobility metric extraction, individual
identification, additional analysis, and data visualization is available in R on github:
https://github.com/PennLINC/footprinting. Code notebook is available at: https://
pennlinc.github.io/footprinting/.
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