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Abstract

The genome-wide association study (GWAS)-identified asthma
susceptibility risk alleles on chromosome 17q21 increase the
expression of ORMDL3 (ORMDL sphingolipid biosynthesis
regulator 3) in lung tissue. Given the importance of epithelial
integrity in asthma, we hypothesized that ORMDL3 directly
impacted bronchial epithelial function. To determine whether
and how ORMDL3 expression impacts the bronchial epithelium,
in studies using both primary human bronchial epithelial cells
and human bronchial epithelial cell line, 16HBE (16HBE14o-),
we assessed the impact of ORMDL3 on autophagy. Studies
included: autophagosome detection by electron microscopy, RFP-
GFP-LC3B to assess autophagic activity, and Western blot
analysis of autophagy-related proteins. Mechanistic assessments
included immunoprecipitation assays, intracellular calcium
mobilization assessments, and cell viability assays. Coexpression
of ORMDL3 and autophagy-related genes was measured in
primary human bronchial epithelial cells derived from 44
subjects. Overexpressing ORMDL3 demonstrated increased
numbers of autophagosomes and increased levels of autophagy-
related proteins LC3B, ATG3, ATG7, and ATG16L1. ORMDL3
overexpression promotes autophagy and subsequent cell death by
impairing intracellular calcium mobilization through interacting

with SERCA2. Strong correlation was observed between
expression of ORMDL3 and autophagy-related genes in patient-
derived bronchial epithelial cells. Increased ORMDL3 expression
induces autophagy, possibly through interacting with SERCA2,
thereby inhibiting intracellular calcium influx, and induces cell
death, impairing bronchial epithelial function in asthma.
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Genome-wide association studies
(GWASs) have revealed a common
haplotype on chromosome 17q21 to be the
most widely reproducible asthma-
susceptibility locus identified to date (1,

2). Common risk alleles that are in
complete linkage disequilibrium with each
other increase asthma susceptibility by
21–56% in all major world populations,
regardless of ancestry (3, 4). The alleles

reside on a preserved haplotype, and it has
been repeatedly demonstrated that the
asthma risk haplotype regulates the
expression of a cluster of genes on 17q21
in a strand-specific manner by expression
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quantitative trait locus mapping (1, 5) and
allelic imbalance assays (6).

The two 17q21 genes under the
strongest genetic influence of the asthma-
susceptibility regulatory haplotype are
GSDMB (Gasdermin B) and theORMDL3
(ORMDL sphingolipid biosynthesis
regulator 3), with�20% of the population
variances of both genes’ expression
attributable to this locus. This effect is
observed broadly across all tissues where the
two genes are naturally coexpressed, most
consistently in asthma relevant tissues and
cell types, including CD41 lymphocytes
(5, 7) and the lung (8, 9). The asthma risk
alleles increase the expression of both genes,
implying that increased expression of
ORMDL3 and/or GSDMB confers asthma
risk. Guided by these observations, Miller
and colleagues demonstrated that ubiquitous
overexpression of ORMDL3 in a transgenic
mouse model leads to asthma-like
histopathologic and physiologic changes in
the lung, including features of airway smooth
muscle and glandular hyperplasia, increased
airway hyperresponsiveness, and evidence of
early airway remodeling (10). These findings
were observed even in the absence of allergen
sensitization or challenge, and before any
inflammatory cell infiltration, highlighting
the importance of local pulmonary
ORMDL3 expression in asthma
pathogenesis. Furthermore,Ormdl3-null
mice are protected from developing fungal-
induced allergic airway disease; this
protection is lost by restoration ofOrmdl3
expression in the bronchial epithelium (BE)
alone (11, 12).

HowORMDL3 overexpression confers
asthma risk in airway epithelial cells is not
fully understood. As recently reviewed (13),
ORMDL3 is implicated in multiple
processes, including sphingolipid
metabolism (14), the endoplasmic reticulum
unfolded protein response (UPR) (15), and
concentration of intracellular calcium
[Ca21]i homeostasis (15). Alluded to by
others (11, 12), one of the most reproducible
findings from our initial studies of ORMDL3
function was the observation that ORMDL3
induces autophagy when overexpressed in
BE (reported herein). Because the autophagy

pathway has recently been implicated in
multiple pulmonary diseases, including
chronic obstructive pulmonary disease, acute
lung injury, and asthma (16–19), we set out
to determine whether and howORMDL3
regulates autophagy in human BE. Herein we
provide evidence, for the first time, that
ORMDL3 promotes autophagy in human
BE, and this in turn leads to increased cell
death. We further demonstrate that this
process is mediated through the physical
interaction of ORMDL3 with SERCA2 and
subsequent disruption of intracellular
calciummobilization.

Some of the results of these studies have
been previously reported in the form of
abstracts (20, 21).

Methods

Quantitative Assessment
of Autophagy
Human bronchial epithelial cell line, 16HBE
(16HBE14o-) was seeded on four-chamber
culture slides (Falcon, 354114) at a density of
20,000 cells per chamber; 6 μl Autophagy
Sensor (Premo Autophagy Tandem Sensor
RFP (red fluorescent protein)-GFP-LC3B
Kit, Thermo Fisher Scientific, P36239) was
added to each chamber. After 30 hours, cells
were treated with or without 20 μM
chloroquine for an additional 16 hours. Cell
images were obtained using an Olympus
FV-1000 Confocal Microscope (Harvard
Medical School Neurobiology Imaging
Facility). The number of cells positive for
both sensor transduction and autophagy was
counted blinded to experimental conditions.
Cells containing more than five puncta or
with puncta accumulations were considered
positive for autophagy.

Calcium Flux Assessment
16HBE cells were seeded on confocal dishes
and loaded with calcium-sensitive Fluo-4
AM dye (Invitrogen, F14201), Pluronic
F-127 (Invitrogen, P36400), and probenecid
(Invitrogen, P3000MP) for 45 minutes of
incubation before measurement. [Ca21]i was
measured with a temperature- and humidity-

controlled Andor Revolution Spinning Disk
Microscope (HarvardMedical School
Neurobiology Imaging Facility) to maintain
physiological conditions (5% CO2, 37�C,
and humidity). Images were captured every
3 seconds and digitized usingMetaMorph
Imaging Software (Molecular Devices).
Fluorescence intensities were analyzed using
ImageJ.

Gene Expression Correlation Analysis
Genome-wide gene expression data were
generated by microarray in BE brushing
samples from 44 subjects participating in the
Asthma BRIDGE (Asthma BioRepository
for Integrative Genomic Exploration) study
(see Table E1 in the online supplement), as
previously described (7). Expression profiles
were derived using the Illumina HT-12 v4
Expression or HumanRef8 v2 BeadChip
platforms (Illumina, Inc.) (22). Autophagy-
related genes selected for the analysis included
ATG7,ATG12, andATG16L1.Correlation
between these genes andORMDL3 gene
expression was performed using linear
regressionmodels, as implemented with the R
package “limma,” after adjusting for age, sex,
race, and processing batch. Differential
expression analyses were adjusted for age, sex,
race, and the first two principal components
of gene expression.

Additional methods are described in the
online supplement, including ORMDL3
overexpression, CRISPR-associated protein 9
(Cas9)ORMDL3 gene knockout (KO),
lentiviral-based ORMDL3 stable
overexpression, transmission electron
microscopy sample preparation,Western
blotting, immunoprecipitation,
immunofluorescence staining, lactate
dehydrogenase (LDH)measurement, cell
proliferation rate measurement, and
statistical methods.

Results

ORMDL3 Promotes Autophagy in
Human Bronchial Epithelial Cells
We first examined the subcellular
morphologic changes after overexpression
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of ORMDL3 in 16HBE cells by electron
microscopy. Compared with vector-
transfected controls, cells transiently
overexpressing ORMDL3 demonstrated an
increased number of double-membrane
structures resembling autophagosomes
(Figures 1A and E1A). Similar structures
were also identified in 16HBE cells with
stable ORMDL3 overexpression
(Figures 1B and E1B). Consistently,
ORMDL3 overexpression resulted in
increased levels of autophagy-related
proteins ATG3, ATG5, ATG7, ATG16L1,
and Beclin-1, as well as the autophagosome
protein LC3B in both primary normal
human bronchial epithelial (NHBE) cells
(Figures 1C, 1D, and E1C) and 16HBE cells
(Figure E1D), suggesting activation of the

autophagy pathway on overexpression of
ORMDL3.We next measured autophagy
using a tandem RFP-GFP-LC3B lentiviral
sensor (23), where LC3B-positive
autophagosomes were indicated by
coexpression of GFP and RFP (in yellow),
whereas autolysosomes were indicated by the
expression of RFP (in red) only (Figure 1E).
Compared with control cells, 16HBE cells
overexpressing ORMDL3 exhibited a greater
percentage of autophagy-positive cells
(P, 0.05) (Figure 1F).

Decreased ORMDL3 Inhibits
Autophagy in Human Bronchial
Epithelial Cells
Complementing our gain-of-function
studies, we next sought to determine

whether inhibition of ORMDL3 constrains
epithelial cell autophagy. First,
siRNA-mediated silencing of ORMDL3
(Figures E2A and E2B) resulted in decreased
levels of the autophagy-related proteins
ATG3, ATG5, ATG7, and ATG16L1, as well
as reduced levels of the autophagosome
marker LC3B, in both 16HBE cells (Figure
E2C) and primary NHBE cells (Figures 2A
and 2B). Furthermore, compared with wild-
type (WT) control cells, CRISPR-Cas9-
generated ORMDL3 16HBE KO cells
infected with the RFP-GFP-LC3B viral
sensor showed a reduction of autophagy-
positive cells at basal levels (P, 0.05)
(Figures 2C, 2D, and E2D) and had fewer
autophagosome aggregates (Figures 2C and
2E) with chloroquine treatment, a potent
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Figure 1. ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) overexpression promotes autophagy in primary normal human bronchial
epithelial (NHBE) and human bronchial epithelial cell line, 16HBE (16HBE14o-) cells. (A and B) Representative electron microscopy (EM) images
from two biological replicates show increased number of autophagosomes (white arrows) in 16HBE cells transiently (A) or stably (B) transfected
with ORMDL3. Scale bars, 500 nm. (i–iii) Zoom images from B ORMDL3 overexpression group. (C) Blots and protein abundance of autophagy
markers measured by Western blot in primary NHBE cells transfected with either empty vector or Flag-tagged human ORMDL3. (D) Western
blots were quantified by ImageJ. Means6SEM are from two to four biological replicates. *P, 0.05, unpaired t test. (E) Confocal images and (F)
quantification of autophagosomes by RFP (red fluorescent protein)-GFP-LC3B tandem sensor in 16HBE cells. Yellow and red puncta denote
LC3B-positive autophagosomes and autolysosomes, respectively. Scale bar, 20 mm. Means6SEM shown from 20 image views of control (Ctrl)
and 10 image views from each of the two overexpression lines. Cells with five or more puncta or with puncta accumulations are defined as
positive. *P, 0.05, unpaired t test. ATG=autophagy related; ATG16L1=autophagy related 16 like 1.
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inhibitor of autophagosome–lysosome
fusion, than condition-matched WT cells.
Taken together, ORMDL3 promotes
autophagy in human BE cells.

ORMDL3 Interacts with SERCA2,
Thereby Promoting Autophagy in
Human Bronchial Epithelial Cells
Although previous studies have
implicated ORMDL3 in Beclin-
1–mediated autophagy in endothelial cells
(17) and B cells (16), the mechanisms by
which ORMDL3 may regulate autophagy
in the airway epithelium is unclear. Given
that ORMDL3 can trigger the UPR
(11, 12), which itself may induce
autophagy (24), we assessed whether the
increased autophagy observed in our
cellular models was accompanied by UPR
activation. UPR signaling activation is

mediated by three paralleled endoplasmic
reticulum membrane transducers, PERK
(PRKR-like endoplasmic reticulum
kinase), ATF6 (activating transcription
factor 6), and IRE1 (inositol-requiring
kinase 1) (25). Despite evident activation
of IRE1a signaling as supported by
increased protein levels of IRE1a and
phospho-JNK after treatment of the
endoplasmic reticulum stressor
thapsigargin (Tg), neither mRNA nor
protein levels of UPR targets altered
(Figures E3B and E3D–E3F) after
overexpression or knockdown of
ORMDL3 (Figures E3A and E3C),
suggesting that UPR induction is unlikely
a primary mechanism responsible for
ORMDL3-regulated autophagy in BE.

To determine the molecular
mechanisms by which ORMDL3 promotes

autophagy, we screened for ORMDL3
interacting proteins by affinity purification
followed by protein mass spectrometry using
Flag-tagged ORMDL3 as bait in two
epithelial cell types (16HBE and HEK-293).
After subtraction of background protein
sequences detected in vector control–
transfected 16HBE and HEK-293 cells, we
identified 181 proteins that uniquely interact
with ORMDL3 in both epithelial cell lines.
Of these, one of the most abundant proteins
(>10 unique protein sequences) identified
was SERCA2 (gene nameATP2A2), a sarco/
endoplasmic reticulum Ca21-ATPase
previously shown to inhibit autophagy (26,
27). We confirmed that ORMDL3 interacted
with SERCA2 by co-immunoprecipitation
assay (Figure 3A) and that ORMDL3 and
SERCA2 colocalized in the cytosol (Figure
3B). Given very limited affinity
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Figure 2. ORMDL3 knockdown inhibits autophagy in primary NHBE and 16HBE cells. (A) Detection, and (B) quantification of the autophagy
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purification–mass spectrometry evidence of
protein–protein interaction of ORMDL3
with other major autophagy proteins, we
focused subsequent studies to test the
hypothesis that ORMDL3may promote
epithelial autophagy via interacting with
SERCA2.

To test this, we first assessed the
impact of pharmacologic inhibition of
SERCA2 on autophagy activation. Herein,
SERCA2 inhibitors cyclopiazonic acid
(CPA) or Tg that disrupt Ca21

homeostasis (28) were used to inhibit the
function of SERCA2. The treatment of
Tg or CPA resulted in increased protein
levels of LC3B (Figure 3C) in primary
NHBE cells and increased mRNA levels of
autophagy-related genes, including ATG3,
ATG5, ATG7, ATG12, ATG16L1, and
Beclin-1, in 16HBE cells (Figure 3D). We
next assessed whether SERCA2 modulated
ORMDL3-induced autophagy.
Interestingly, cotransfection of ORMDL3
with either SERCA2a or SERCA2b
completely abrogated ORMDL3-mediated
autophagy in primary NHBE cells
(Figure 3E). These studies together
suggest that ORMDL3 promotes
bronchial epithelial autophagy through
inhibitory interaction with SERCA2.

ORMDL3 Modulates [Ca21]i
Mobilization Possibly through
SERCA2 in Human Bronchial
Epithelial Cells
Given that SERCA is responsible for calcium
transport from the cytosol into the
sarcoplasmic reticulum, we evaluated the
impact of ORMDL3 on intracellular calcium
([Ca21]i) flux. In Ca

21-free media, treatment
of epithelial cells with ATP results in rapid
induction of [Ca21]i release followed by a
prolonged recovery phase of Ca21

translocation from the cytosol into the sarco/
endoplasmic reticulum (Figures 4A and 4B).
16HBE cells overexpressing ORMDL3 led to
significant (at least 25% longer) delays in
[Ca21]i recovery compared with controls
(Figures 4C, 4D, and E4A). Conversely,
ORMDL3 deficiency resulted in a more rapid
recovery of Ca21 translocation compared
with controls (Figures 4E, 4F, and E4B).
More importantly, silencing of SERCA2 in
ORMDL3-deficient cells partially rescued
these Ca21 recovery rates compared with
WT cells (Figures 4E and 4F). These results
cumulatively support ORMDL3 as a
regulator of BE [Ca21]i signaling, possibly
through SERCA2.

Increased ORMDL3 Level Promotes
Cell Death in Human Bronchial
Epithelial Cells
Airway epithelial damage is a pathologic
feature of asthma in both children and
adults and is correlated with airway
hyperresponsiveness and other measures
of asthma severity (29, 30). Recognizing
that autophagy can, under different
contexts, be either beneficial (promoting

prosurvival signals) or detrimental
(accelerating cell death) (31), we set out to
determine the impact of ORMDL3
overexpression on 16HBE survival and
cell proliferation. Compared with control
lines, 16HBE cells overexpressing
ORMDL3 demonstrated increased cell
death, as indicated by an �1.5-fold
increase in LDH release (Figure 5A). This
increase was partially alleviated by
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Figure 4. ORMDL3 modulates concentration of intracellular calcium [Ca21]i mobilization by
inhibiting SERCA2 in 16HBE cells. (A) Fluo-4 dye fluorescence signals indicating calcium
impulse recorded in 16HBE cells before and after treatment with ATP (10 mM). (B)
Representative time-series recordings of Fluo-4 AM fluorescence intensities of calcium
concentration in WT 16HBE cells after ATP stimulation. (C) Cytosolic Ca21 decay plots in
Ctrl (black) and ORMDL3-overexpressing (ORMDL3, red) 16HBE cells. Means6SEM from
seven biological repeats performed per group. Lines denote the time-dependent recovery of
the mean fluorescence intensity expressed as the percentage of peak cytosolic Ca21 intensity.
(D) Bar graphs of time to cytosolic Ca21 clearance corresponding to C. (E) Cytosolic Ca21

decay plots in WT (black), ORMDL3 KO (blue) 16HBE cells, and ORMDL3 KO transfected with
SERCA2 siRNA (KO1 siSERCA2, purple). Means6SEM from four to nine biological repeats.
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followed by unpaired t test was used for statistical analysis.
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treatment with CDN1163, an allosteric
SERCA activator, indicating that
ORMDL3-induced cell damage was
inhibited by SERCA2 activation
(Figure 5A). In contrast, ORMDL3-
induced cell death was unlikely mediated
by apoptosis, as supported by minimal
changes of cleaved caspase-3 and PARP
(Figure 5C). Furthermore, extracellular
LDH concentrations were decreased in
ORMDL3-deficient 16HBE cells
compared with WT, and treatment with
SERCA2 inhibitors CPA and Tg reversed
these effects (Figure 5B). Meanwhile, we
observed minimal impacts of ORMDL3
on cell proliferation, as shown by
overexpression or depletion of ORMDL3
in 16HBE lines (Figures E5A and E5B).

ORMDL3 Correlates with Autophagy
Gene Expression in Human Primary
Bronchial Epithelial Cells
In multiple 16HBE cell single colonies with
stable overexpression or KO of ORMDL3,
we observed significant correlation between
levels of ORMDL3 and autophagy genes
across all single colonies of stable lines
(Figure E6). To corroborate our in vitro
observations with in vivo evidence of a
relationship between ORMDL3 and
autophagy, we examined the correlation of

ORMDL3 expression to that of known
autophagy-related genes in human BE
samples obtained by bronchoscopy
brushings from 44 subjects from Asthma
BRIDGE (27 cases, 17 control subjects) (22).
As shown in Figure 6, expression of
autophagy-related genes ATG7 and ATG12
showed significant correlation with
expression ofORMDL3, suggesting the
activation of the autophagy pathway in
human BE cells. However, we found no
correlation between autophagy gene
expression and clinical asthmatic
characteristics, possibly because of small
sample size.

Discussion

Discovery of the 17q21 association with
asthma risk is a convincing example of how
hypothesis-free genetic approaches like
GWAS can lead to new understandings of
disease and reveal previously unappreciated
pathobiology. The coupling of GWASs and
expression quantitative trait locus mapping
studies revealed that genetic risk for asthma
at 17q21 was conferred by increased
expression of two genes with no prior links
to asthma—ORMDL3 andGSDMB—and
animal models confirmed that

overexpression of each recapitulated cardinal
features of asthma (10, 32). Subsequent work
had demonstrated that ORMDL3may
impart these phenotypes by influencing a
variety of asthma relevant biochemical and
cellular processes, including sphingolipid
metabolism (14) and the UPR (15). In this
study, we implicate another autophagy
pathway by demonstrating its regulation by
ORMDL3 in human BE cells. Inhibition of
endogenous ORMDL3 expression reduces
basal rates of autophagy in 16HBE cells and
primary NHBE, whereas ORMDL3
overexpression alone (i.e., in the absence of
additional cellular stress) induces autophagy.

Autophagy has been increasingly
recognized to play a central role in the
pathogenesis of various lung diseases,
including chronic obstructive pulmonary
disease, idiopathic pulmonary fibrosis, and
asthma (18, 33). In asthma, autophagy has
been firmly implicated in multiple processes
within the immune compartment (34),
contributing to the programming of the
innate immune response (35), the
establishment of atopic phenotypes (35, 36),
and granulocytic inflammation (37). More
evidence has emerged on human genetic
analysis in individuals with asthma. Some
studies indicate genetic variants in autophagy
genes are significantly associated with lung
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function in subjects with asthma (38, 39).
The function of autophagy in the BE is also
receiving considerable attention in asthma.
Increased expression of autophagy-related
genes in bronchial epithelial cells has been
repeatedly observed in individuals with
asthma and consistently correlated with
markers of airway remodeling (40), and
morphologic evidence of bronchial
epithelial autophagy in asthma has been
reported (38, 41, 42).

In our study, we demonstrate that
ORMDL3’s regulation of autophagy in the
BE is possibly mediated through SERCA2-
and ORMDL3-mediated regulation of
[Ca21]i flux. These latter findings are
supported by complementary observations:
1) that ORMLD3 overexpression delayed
[Ca21]i recovery in the BE; and 2) that
SERCA2 abrogates ORMDL3-mediated
autophagy; and 3) that pharmacologic
activation of SERCA2 attenuates induction
of cell death by ORMDL3. Last, gene
expression profiling in BE cell samples
derived from patients with asthma confirmed
the strong correlation of ORMDL3
expression with that of autophagy-related
genes. Together with prior demonstration
that increased ORMDL3 expression impairs
BE barrier function (43), these findings
strongly support that the asthma
susceptibility geneORMDL3 on
chromosome 17q21 enhances autophagy
that promotes epithelial cell damage and
asthma risk.

Autophagy can be activated after UPR
induction in response to the accumulation of
aggregated misfolded proteins (44),
including through IRE1-mediated feedback

loops (44, 45). Despite this and prior
observations that ORMDL3 expression in
human airway epithelial cell A549 increases
expression of the UPR pathway transcription
factor ATF6 (11), we found no evidence that
ORMDL3-induced autophagy involves UPR
pathway activation. Rather, the absence of
increased expression of markers of UPR
activation in our models, combined with our
subsequent implication of SERCA-mediated
calcium flux, supports a UPR-independent
mechanism.

In addition to confirming the
importance of [Ca21]i flux in the regulation
of autophagic processes (46, 47), our findings
that ORMDL3-induced BE cell autophagy is
mediated through interaction with SERCA2
are consistent with studies implicating
ORMDL3–SERCA interactions in other
asthma-related processes, including airway
remodeling and airway hyperresponsiveness.
Overexpression of ORMDL3 induces the
expression of SERCA2b (11) in BE and
promotes airway remodeling (10). ORMDL3
also induces increased SERCA2b expression
in smooth muscle, with resulting increases
smooth muscle proliferation and contractility
(48), features that promote airway
hyperreactivity. Together with our data, these
findings implicate the ORMDL3–SERCA2
cross-talk as an important regulator of three
cellular processes central to the pathobiology
of asthma: epithelial damage, airway
remodeling, and airway smooth muscle
dysfunction.

One potential limitation of our work is
that the level of ORMDL3 overexpression
achieved in our experimental models was
greater than that conferred by natural genetic

variation. Although results of experiments
performed under supraphysiologic
conditions must be interpreted cautiously,
three important corroborative lines of
evidence suggest our observations are both
reliable and generalizable. First, we found
that the expression of numerous autophagy-
related genes was correlated with that of
ORMDL3 in unadulterated patient-derived
bronchial-brush BE samples. Second, the
results of our overexpression studies are
corroborated by the complementary set of
siRNA and CRISP-Cas9 KO studies, which
consistently demonstrated that ORMDL3
knockdown reduced endogenous autophagy
activity. Last, our findings are consistent with
previously reported observations in
nonepithelial cell types, including
B-lymphocytes (16) and endothelial cells
(17), in which inhibition or overexpression
of ORMDL3 respectively resulted in
reduction or augmentation in basal levels of
autophagy (as measured by reduced LC3-II
and Beclin-1 protein expression).

In summary, we have shown that
ORMDL3 regulates BE cell autophagy and
that this process is mediated by SERCA2-
facilitated [Ca21]i mobilization. These
findings provide further evidence that the
chromosome 17q21 locus confers asthma
risk throughmultiple complementary
mechanisms. In addition to the as-of-yet
unclear functions of GSDMB, genetic
regulation ofORMDL3 alone impacts a wide
range of asthma-relevant processes in
multiple asthma-relevant cell types. This
perhaps explains how the genetic
associations of 17q21 with asthma risk are so
robust and readily observable in diverse
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Figure 6. The correlation of ORMDL3 and autophagy gene expression in human primary bronchial epithelial cells from brushing samples.
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populations across the globe, as differences in
genetic background or environmental
exposures are overcome by the pleiotropic
effects of this important locus. This
pleiotropy also argues for the prioritization
of ORMDL3 for therapeutic targeting, as

inhibition of this key regulator could, ideally,
simultaneously impact multiple clinical
features of asthma.�
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