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Abstract

Bacterial pneumonia induces the rapid recruitment and
activation of neutrophils and macrophages into the lung, and
these cells contribute to bacterial clearance and other defense
functions. TBK1 (TANK-binding kinase 1) performs many
functions, including activation of the type I IFN pathway and
regulation of autophagy and mitophagy, but its contribution to
antibacterial defenses in the lung is unclear. We previously
showed that lung neutrophils upregulate mRNAs for TBK1 and
its accessory proteins during Streptococcus pneumoniae
pneumonia, despite low or absent expression of type I IFN in
these cells. We hypothesized that TBK1 performs key
antibacterial functions in pneumonia apart from type I IFN
expression. Using TBK1 null mice, we show that TBK1
contributes to antibacterial defenses and promotes bacterial

clearance and survival. TBK1 null mice express lower
concentrations of many cytokines in the infected lung.
Conditional deletion of TBK1 with LysMCre results in TBK1
deletion from macrophages but not neutrophils. LysMCre TBK1
mice have no defect in cytokine expression, implicating a
nonmacrophage cell type as a key TBK1-dependent cell. TBK1
null neutrophils have no defect in recruitment to the infected
lung but show impaired activation of p65/NF-kB and STAT1 and
lower expression of reactive oxygen species, IFNg, and IL12p40.
TLR1/2 and 4 agonists each induce phosphorylation of TBK1 in
neutrophils. Surprisingly, neutrophil TBK1 activation in vivo does
not require the adaptor STING. Thus, TBK1 is a critical
component of STING-independent antibacterial responses in the
lung, and TBK1 is necessary for multiple neutrophil functions.
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Bacterial pneumonia induces recruitment of
many cell types and elaboration of mediators
including type I and II IFNs, reactive oxygen
species (ROS), and inflammatory cytokines.
Neutrophils are critical early responders to
bacterial pneumonia, and they clear
pathogens both directly by phagocytosis and
indirectly by activation of other cell types.
Streptococcus pneumoniae in the mouse or
human lung rapidly induces brisk neutrophil

recruitment and activation. Upon
recruitment, activated neutrophils use
multiple signaling pathways to regulate tasks
such as migration, phagocytosis, ROS
production, and transcription of mRNA. In
particular, signaling kinases, including the
MAP kinase family, JNK, andmTOR, drive
critical cell processes including translation,
mitochondrial activity, and cytoskeletal
rearrangement (1). Neutrophils are an

attractive target for host-directed
therapeutics in settings where they cause
significant tissue injury. Thus, understanding
their signaling is useful for developing
neutrophil-directed drugs that tune their
responses.

Type I and II IFNs play overlapping and
important roles in bacterial pneumonia, and
their expression is tightly regulated. Type I
IFN (IFNb and the many isoforms of IFNa)
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can be induced by bacterial and viral
components as well as host damage-
associated molecular patterns (DAMPs); type
I IFNs induce receptive cells to restrict viral
replication as well as potentiate the cytotoxic
activity of natural killer (NK) and T cells (2).
Type I IFN expression is controlled by the
cooperative action of transcription factors
from the IRF (interferon regulatory factor)
and NF-kB families. Viral and bacterial
ligands are sensed by PRRs (pathogen
recognition receptors) such as the TLR
family, RIG-I/MDA-5, or cGAS/STING,
leading to activation of the kinase TBK1
(TANK-binding kinase 1). TBK1
phosphorylates IRF3 and, in some cells,
IRF7, causing them to translocate to the
nucleus and drive transcription of the IFNa
and IFNb loci. The promoters for IFNa/b
also have binding sites for NF-kB p65/RelA,
and under some circumstances TBK1may
directly phosphorylate and activate p65 (3).
However, when studied by conditional
deletion in individual cell types, TBK1
performs distinct, type I IFN-independent
functions in T cells, B cells, adipocytes, and
dendritic cells (4–7), demonstrating that
TBK1 contributes to other pathways.

Type II IFN (IFNg) potently activates
macrophages, polarizing them toward
antibacterial responses and promoting
phagocytosis and bactericidal functions.
IFNg is commonly expressed by T cells and
NK cells downstream of the transcription
factor Tbx21/T-bet. Neutrophils can express
IFNg in the setting of bacterial pneumonia
(including both Streptococcus and
Staphylococcus), but T-bet expression in
neutrophils has not been observed,
suggesting that another pathway generates
IFNg in this context (8–10).

In examining the transcriptome of
purified neutrophils from S.
pneumoniae–infected mouse lungs, we made
the paradoxical observation that neutrophils
upregulate mRNA expression of multiple
components of the TBK1 pathway but do not
appear to express significant amounts of type
I IFN (8). Specifically, activated neutrophils
upregulated the mRNA of TBK1 itself, the
related kinase IKKe, upstream activators
(DAI and RIG-I), TBK1 scaffolds (TANK,
NEMO), and TBK1 phosphorylation targets
(IRF7). But although the lung neutrophils
expressed high concentrations of multiple
cytokine mRNAs, the mRNAs for IFNb or
the many IFNa isoforms were expressed at
low concentrations and not significantly
upregulated during S. pneumoniae infection,

although IFNgmRNA and protein were
significantly produced. The transcriptional
state of these neutrophils was more
consistent with an IFN type I–stimulated
phenotype than an IFN type I–producing
phenotype. These findings are in agreement
with a study by Ericson and colleagues
examining neutrophil activation in sterile
inflammation, such as thioglycolate- or uric
acid–induced peritonitis (11). Taken
together, these observations suggest that
activated neutrophils upregulate the TBK1
pathway to execute distinct functions
unrelated to viral control or IFN I
production.

In this study, we test the hypothesis that
TBK1, a known critical component of
antiviral responses, mediates multiple aspects
of the myeloid response to S. pneumoniae
during pneumonia. Our data show that
TBK1 is required for host defense functions
apart from type I IFN expression or cell
recruitment, including ROS production,
bacterial clearance, transcription factor
activation, and elaboration of multiple
cytokines. TBK1 deletion produces a
different phenotype than deletion of either
IFNAR (type I IFN receptor) or STING
(12, 13). We believe that these are the first
studies to examine the function of TBK1 in
neutrophils during inflammation and an
innate immune response. These findings
highlight the role of TBK1 in host defense
against bacteria in the lung.

Methods

Mice
Sv129 TBK11/D mice were the kind gift of
Dr. Perry Hall (Pfizer) and were crossed to
generate Sv129 wild type (WT) and
TBK1D/D, also referred to as TBK1 knockout
(KO). C57Bl/6 TBK1lox/lox mice were the
kind gift of Dr. Katherine Fitzgerald
(University of Massachusetts) and were
crossed with LysM-Cre mice from Jackson
Laboratories (stock 004781), described
previously (14); these mice are heterozygous
for LysM-Cre. STING KOmice were from
Jackson Laboratories and were the kind gift
of Dr. Uma Nagarajan. gp91phox KOmice
are maintained in our colony and have been
described previously (10). Colonies of all
genotypes were maintained at the University
of North Carolina at Chapel Hill. All mouse
lines were bred and housed in ventilated
cages in pathogen-free facilities. Experiments
involving animals were conducted in

accordance with recommendations from the
American Association for Laboratory
Animal Science. Procedures were conducted
using protocols approved by the University
of North Carolina School of Medicine
Institutional Animal Care and Use
Committee.

Bacterial Infections
Eight- to 12-week-old mice were infected by
intratracheal administration into the left lung
of S. pneumoniae (serotype 19, ATCC 49619)
suspended in PBS, optical density (OD) 0.9,
2.3 μl/gm body weight as described
previously (8). The range of colony-forming
units was 1.2–3.33 107 per mouse. For
in vitro infection, 106 bone marrow cells at a
density of 105/ml were mixed with S.
pneumoniaeOD 0.8 at a final dilution of 1:20
and incubated at 37�C for 4 hours in the
presence of brefeldin A before
permeabilization, staining, and fixation.

BAL Fluid Collection and Analysis
The lungs of killed mice were lavaged once
with 1 ml PBS/2 mMEDTA for cytokine
analysis or 53 1 ml for cell analysis.
Cytokines were measured by Bio-Plex Pro
Mouse Cytokine Group 1 Panel 23-Plex
(Bio-Rad). Mouse IFNb and IFNa ELISAs
were from InvivoGen. BAL cell differentials
and protein concentration were measured as
described (10). For purification of BAL
neutrophils, BAL cells were labeled with
Ly6G-FITC or Ly6G-biotin and purified with
anti-FITC or antibiotin beads (Miltenyi).

Flow Cytometry
Lungs were digested to single-cell suspensions
by intratracheal instillation of 5 mg/ml
collagenase I (Worthington Biochemical
Corporation) and 0.25 mg/ml DNase I
(Sigma) at 37�C for 30 minutes, followed by
mechanical disruption, as previously
described (15). Details of antibody and ROS
staining are in the online supplement.

Immunoblotting and Antibodies
Cells were lysed in complete RIPA buffer,
resolved by SDS-PAGE, and blotted as
described previously (14). For phospho-
specific antibodies, membranes were blocked
with 1% BSA in TBST before probing.
Antibodies are listed in the online
supplement.

Statistical Analysis and Graphics
Error bars represent the SEM. For qRT-PCR,
all samples were run in technical (assay)
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triplicate or duplicate. All figures depict
experiments that have been replicated a
minimum of two times. For Kaplan-Meier
survival curves, significance was computed
by Gehan-Breslow-Wilcoxon test. ANOVA
and two-tailed unpaired t test were
performed in GraphPad Prism. Asterisks
indicate significant differences between
genotypes or treatments, and the level of
significance is indicated by *P, 0.05,
**P, 0.01, ***P, 0.005, and ****P, 0.001.

Results

TBK1 Deletion Impairs the Host
Response to S. pneumoniae
Based on our observation that TBK1 and
TBK1 pathway gene mRNAs are upregulated
in neutrophils during pneumonia (8), we
examined the requirement for TBK1 in a
setting in which neutrophils contribute
significantly to pathogen control. Sv129WT
and TBK1 KOmice (also known as
TBK1D/D) (16) were challenged with
intratracheal inoculation of S. pneumoniae.
Relative toWTmice, TBK1 KOmice had
worse survival (Figure 1A) but no observable
difference in post-infection weight loss or
recovery of weight in those who survived
(Figure 1B). At 24 hours post inoculation
(p.i.), TBK1 KOmice displayed impaired
clearance of bacteria from the lung
(Figure 1C). By 48 and 96 hours p.i., bacterial
clearance was nearly complete and similar
between the two genotypes (Figure 1C).

To determine if macrophages are the
important site of TBK1 expression in
clearance, LysMCre/TBK1flox mice (termed
M-TBK1 KO) were compared with
Cre(2)/TBK1flox mice (termed littermate
WTmice). Macrophages of M-TBK1 KO
mice do not express TBK1, whereas
neutrophil TBK1 expression appears intact
in these mice (see Figure E1 in the online
supplement) (14). Interestingly, the defect in
clearance at 24 hours is not observed in
M-TBK1 KOmice compared with littermate
WTmice (Figure 1D).

No significant differences betweenWT
and KOmice were observed in BAL fluid
protein concentrations (Figure 1E) at
24 hours or total BAL cells (Figure 1F) at
24 or 48 hours p.i. Examination of BAL cell
populations using cytospins showed that
BAL fluid from TBK1 KOmice contained a
smaller percentage and number of
macrophages in BAL at 24 hours but no
significant difference in the number of BAL

neutrophils (Figures 1G and 1H); by
48 hours p.i., differences betweenWT and
KOmice were no longer significant.
Single-cell digests of the lung revealed a
similar difference in the percentage and
number of lung macrophages (defined as
CD451/CD641/Ly6G2 cells) between
genotypes and no difference in
Ly6G1/CD11b1 lung neutrophils
(Figures 1I and 1J). Taken together, these
data suggest that TBK1 contributes to
bacterial clearance, survival, and macrophage
kinetics but not to neutrophil recruitment.
Furthermore, the defect in clearance is not
due to TBK1 expression in macrophages.

TBK1 Is Required for Expression of
Multiple Cytokines in the Infected
Alveolar Space
Because TBK1 is required for type I IFN
expression in many contexts, we examined
the requirement for TBK1 in alveolar
cytokine expression. TBK1 KOmice
expressed lower concentrations of IFNg,
GM-CSF, G-CSF, KC, MCP1, IL12p70, IL1a,
IL1b, RANTES, and IL6 protein at 24 hours
p.i. relative toWTmice (Figure 2A); these
differences between genotypes were no
longer apparent at 48 hours p.i., when these
mediators are decreasing. Expression of
TNFa and the chemokines MIP-1a and
MIP-1b was not different betweenWT and
TBK1 KO (Figure 2A and Table E1) or the
cytokines IL2, IL17A, and IL10 (Table E1).
Mice that did not undergo instillation or that
received PBS instillation had BAL cytokine
concentrations below the assay range for
nearly all the cytokines in this 23-plex panel,
indicating induction in the setting of
S. pneumoniae infection (Table E1).

Because multiple lung macrophage
populations and recruited monocytes
contribute to lung cytokine expression, we
examined BAL cytokine concentrations in
LysMCre/TBKflox mice, in which TBK1 is
efficiently deleted in macrophages but not in
neutrophils (Figure E1 and Reference 14).
No difference in BAL cytokine expression
was observed between LysMCre/TBK1flox
mice and littermate Cre(2)/TBK1flox mice
at 24 hours p.i. (Figure 2B). These data
suggest that at this time point, macrophage
TBK1 is not required for the bulk of BAL
cytokine expression. Taken together, these
data suggest that TBK1 in nonmacrophage
cells contributes significantly to the
elaboration of cytokines in the alveolar space
in the early response to S. pneumoniae.

Measurement of type I IFN expression
in the BAL showed that IFNb protein was
not increased in the alveolar space of S.
pneumoniae–infected mice relative to PBS-
treated mice (Figure 2C), and we could
detect no difference in TBK1 KO or
LysMCre/TBK1flox mice compared with
control mice. mRNA concentrations of
IFNa, IFNb, and the coregulated chemokine
CXCL10 in whole-lung homogenates were
induced by S. pneumoniae, but TBK1 KO
mice showed only nonsignificant trends
toward lower expression of type I IFN and
CXCL10 24 hours after infection
(Figure 2D). At 12 hours after infection,
there is actually more IFNa4 and CXCL10
mRNA in the KO lung compared with the
WT. By 48 hours, this difference is gone, and
expression of IFNa4 and IFNb1 mRNAs has
returned to preinfection concentrations
(Figure 2E).

TBK1 Is Activated in Neutrophils by
Bacterial Ligands and Bacteria
Because of the defect in many neutrophil-
associated cytokines in TBK1 KOmice
(Figure 2A), we examined TBK1 activation
in neutrophils. TBK1 kinase activity
correlates closely with phosphorylation
of serine 172 (S172) in the kinase
domain (17). When BAL neutrophils of
S. pneumoniae–infected mice were purified
with anti-Ly6G beads at 24 hours p.i., TBK1
S172 phosphorylation was clearly observed
by immunoblot (Figure 3A). We next asked
whether purified TLR ligands representative
of gram-negative or gram-positive bacteria
could activate neutrophil TBK1 in vitro.We
observed TBK1 S172 phosphorylation in
bead-purified neutrophils stimulated in vitro
with either the TLR4 ligand LPS or TLR2
ligand PAM3Cys (Figure 3B).

The STING pathway activates TBK1 in
response to cytosolic DNA or cyclic
dinucleotides produced by bacteria or the
host enzyme cGAS (reviewed in Reference
18). To compare TBK1 phosphorylation
upon activation of TLR or STING pathways,
we stimulated mouse bone marrow cells
in vitrowith the TLR2 ligand PAM3Cys or
the STING activator DMXAA and assessed
TBK1 phosphorylation by flow cytometry.
We used TBK1 KOmice as a negative
control for both background fluorescence
and cross-reactivity with S172 on the related
kinase IKKe (IKK epsilon). Relative to mice
lacking TBK1, we observed measurable
phospho-S172 TBK1 in unstimulated bone
marrow neutrophils (Ly6G11/Ly6C2 cells)
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Figure 1. TBK1 (TANK-binding kinase 1) deletion decreases survival and impairs bacterial clearance in Streptococcus pneumoniae
pneumonia. (A) Survival and (B) body weight curve for wild-type (WT) or TBK1 knockout (KO) mice infected intratracheally with S. pneumoniae.
(C) Bacterial clearance was measured at 24, 48, and 96 hours post inoculation (p.i.) from lung homogenates of WT or TBK1 KO mice or (D) of
WT and M-TBK1 KO mice. (E) Measurements of BAL fluid protein concentration and (F) BAL cell counts measured at 0, 24, and 48 hours p.i.
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andmonocytes (Ly6G2/Ly6C1) (Figure 3C).
Stimulation with PAM3Cys caused marked
upregulation of pTBK1 signal in neutrophils
andmonocytes (Figure 3C; gating strategy
shown in Figure E2). The STING ligand
DMXAA only modestly activated TBK1
phosphorylation in bone marrowmonocytes
in vitro and did not significantly increase
TBK1 phosphorylation in neutrophils. When
WT bone marrow was stimulated with live
S. pneumoniae in vitro or PAM3Cys, we
observed no induction of TBK1
phosphorylation by S. pneumoniae in
neutrophils and only modest
phosphorylation in monocytes compared
with unstimulated and PAM3Cys treatment
(Figure 3D).

We examined the necessity for STING in
activation of TBK1 in vivo using STINGKO
mice, because STING is believed to be
required for TBK1/IRF3 activation in
S. pneumoniae pneumonia (19). The
percentage and number of neutrophils in the
lung digest were lower in the STINGKOmice
relative toWTC57Bl/6 mice (Figures 3E and
3F). Surprisingly, lungmacrophages and
neutrophils from infected STINGKOmice
showed elevated phosphorylation of TBK1
S172 at 24 hours p.i., suggesting that the
STING pathwaymay repress rather than
promote TBK1 activation in this specific
setting (Figure 3G). Taken together, these data
suggest that bacterial ligands and bacterial
infection lead to the activating
phosphorylation of TBK1 in neutrophils and
that STINGmay contribute to the regulation
of this phosphorylation in unexpected ways.

TBK1 Is Required for Neutrophil IFNg
and ROS Production
Because multiple BAL cytokines are
decreased in TBK1 KOmice despite
unaltered neutrophil recruitment, we
examined the contribution of TBK1 to
neutrophil functions relevant to cytokine
expression. We used intracellular cytokine
staining and flow cytometry to assess IFNg
expression in neutrophils and macrophages.
At 24 hours p.i., only a very small percentage
of lung macrophages had observable IFNg
expression (,2%), and no difference was
seen between TBK1 KO andWTmice (data
not shown). In contrast, 20–40% ofWT
neutrophils expressed IFNg protein.

Importantly, TBK1 KO neutrophils had
impaired expression of IFNg after
S. pneumoniae infection, as evidenced by
both a lower percentage of IFNg1 cells and a
lower degree of expression (measured by
median fluorescence intensity) (Figure 4A).
TBK1 was also required for expression of
IL12p40 in neutrophils (Figure 4A). Of note,
this expression of IFNg seems to require
multiple or tissue-derived signals, because
bone marrow neutrophils exposed to live
S. pneumoniae in tissue culture did not
require TBK1 for IFNg expression
(Figure 4B). When we examine M-TBK1 KO
mice andWT littermates, there was no
difference in the percentage of IFNg-
expressing neutrophils in the lung and only a
nonsignificant trend toward decreased IFNg
median fluorescence intensity (Figure 4C).

Because the generation of ROS has been
implicated in driving IFNg expression (10)
and in killing of bacteria, ROS production in
lung neutrophils and macrophages 24 hours
after S. pneumoniae infection was assessed
using flow cytometry. gp91phox is a critical
component of the nicotinamide adenine
dinucleotide phosphate (NAPDH) oxidase
complex and neutrophils and macrophages
from mice deficient in gp91phox have
markedly impaired ROS production and
bacterial killing (20, 21). Gp91phox-deficient
mice served as a negative control for ROS
production. TBK1 KO lung neutrophils had
�50% lower ROS intensity relative to WT
mice at 24 hours p.i. (Figure 4D). Lung
macrophages from TBK1 KOmice also
showed a significant, albeit smaller, reduction
in ROS intensity at this time point. When
M-TBK1 KOmice are examined, there is no
significant difference in lung neutrophil ROS
expression, suggesting that macrophage
TBK1 is not required for neutrophil ROS
production in this context (Figure 4E).
Similar to IFNg expression, bone marrow
neutrophils from TBK1 KOmice do not
show a significant impairment in ROS
production when stimulated with live S.
pneumoniae in vitro (Figure 4F).

TBK1 Regulates Neutrophil
Transcription Factor Expression
and Activation
Transcriptomic studies have shown that
activated neutrophils synthesize new mRNA

and regulate gene expression in response to
environmental and pathogenic stimuli
(8, 11). Because transcription factors
represent a point of regulation in this process,
and because TBK1 directly regulates
transcription factors such as IRF3, IRF7, and
p65/RelA NF-kB (reviewed in Reference 3),
we examined transcription factor activation
in lung neutrophils after S. pneumoniae
infection. Bead-purified lung neutrophils
from the BAL of infected TBK1 KOmice had
less phosphorylation of STAT1 pY701
relative to WT, as assessed by immunoblot
(Figure 5A). Protein concentrations of IkBa
were not perturbed in neutrophils of TBK1
KOmice (Figure 5A), suggesting that TBK1
does not regulate NF-kB via IkBa. When
STAT1 Y701 and p65/RelA S536
phosphorylation of neutrophils from lung
digests was measured by flow cytometry,
TBK1 KO lung neutrophils showed lower
phosphorylation of both transcription factors
(Figure 5B), suggesting that TBK1 regulates
activation of neutrophil NF-kB and STAT1.
Although STAT1 Y701 is typically directly
phosphorylated by Jak family tyrosine
kinases, TBK1 has been shown to
phosphorylate STAT1 at the nearby T749.
We suggest that TBK1-induced
phosphorylation at T749 indirectly regulates
phosphorylation at Y701 (22), although we
cannot test this hypothesis because there are
no antibodies specifically recognizing
STAT1 pT749.

Our prior transcriptomic analysis
showed that S. pneumoniae infection causes
lung neutrophils to upregulate mRNA for the
IRF family members IRF7 and IRF5, whereas
the IFNb-driving transcription factor IRF3 is
largely unaffected (8). IRF7 has defined
functions in antiviral responses, whereas IRF5
is believed to drive inflammatory and
antibacterial responses (23). Relative toWT
lung neutrophils, we observe a small
difference in concentrations of macrophage
IRF7 but no difference in neutrophil IRF7
protein at 24 hours p.i. (Figure 5C).
Surprisingly, we observe marked upregulation
of IRF5 in TBK1 KO lung neutrophils at 24
hours p.i., suggesting that TBK1 is dispensable
for the expression of IRF5 in this context and
may actually inhibit pathways important in
IRF5 expression or protein stability. These
data show that TBK1 is required for

Figure 1. (Continued). (G and H) Neutrophils and macrophages were identified in BAL by cytospin and Diff-Quik staining. (I) The number and (J)
percentage of CD451 leukocytes that were macrophages or neutrophils and (J) the number of lung macrophages and neutrophils per lung were identified
in single-cell lung digests by flow cytometry; macrophages were defined as CD451/CD641/Ly6G2; neutrophils were defined as CD451/CD642/Ly6G1/
CD11b1. n=6–8 mice per group in three replicates. *P, 0.05, **P, 0.01, and ***P, 0.005. CFU=colony-forming unit; NS=not significant.
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regulation of expression and activation of
multiple transcription factors in lung
neutrophils during S. pneumoniae
pneumonia.

Discussion

In responding to a pathogen, neutrophils and
macrophages must sensemultiple
extracellular signals, including pathogen- and
damage-associatedmolecular patterns
(PAMPs and DAMPs), integrate these signals,
and then execute a variety of antipathogen
functions such as phagocytosis, ROS
production, and cytokine secretion.
These functions promote pathogen clearance
as well as adaptive immunity. The signaling
kinase TBK1 represents the convergence
point of many PRR and DAMP receptors and
thus is a critical node for the cell’s decision to
activate various arms of the host defense
program. Studies in macrophages and
epithelial cells have defined TBK1’s
contribution to type I IFN expression,
particularly in response to viruses, TLR
ligands, and cytoplasmic DNA. TBK1 also
promotes mitophagy and in some cell types
drives activation-induced glycolysis. In this
study, we examine TBK1 function against the
common respiratory pathogen S. pneumoniae.
Our results show strikingly that TBK1
contributes significantly to bacterial clearance,
inflammatory cytokine expression, and ROS
production in the S. pneumoniae–infected
lung. These functions appear unaffected when
TBK1 is deleted frommacrophages with
LysM-Cre, suggesting that other cell types
such as neutrophils or epithelial cells are using
TBK1 to express inflammatory mediators.
These functions also occur in a context where
type I IFN protein is not significantly induced
and is distinct from the phenotype of IFNAR
KOmice, suggesting that TBK1 executes these
functions independent of type I IFN.

Is TBK1 functioning primarily in
neutrophils or primarily in another cell
type, such as the respiratory epithelium?
Our data support at least two
nonexclusive models of how TBK1
promotes anti-Streptococcus defense
(Figure 6). In one model, neutrophil-
intrinsic TBK1 receives pathogen signals
from PRRs such as TLR2 or STING and

directly activates downstream
transcription factors that drive cytokine
and ROS production (Figures 3B and 6A).
In an alternative, neutrophil-extrinsic,
model, other cell types such as epithelial
cells and alveolar macrophages require
TBK1 to express cytokines that activate
their cognate receptors on neutrophils,
leading to activation of neutrophil JAK/
STAT pathway and downstream
transcription (Figure 6B). This model is
supported by our observation that TBK1 is
required for neutrophil IFNg and ROS
production in vivo (Figures 4A and 4D)
but not when TBK1 neutrophils are
stimulated in vitro with live bacteria
(Figures 4B and 4F). These data suggest a
role for TBK1-dependent signals from the
lung environment to promote neutrophil
function. In addition, the maturity of the
neutrophils may contribute to the
function of TBK1. These models are not
mutually exclusive, and parsing them will
require the development of mouse models
or other methods that allow for
transplantation or manipulation of TBK1-
null neutrophil precursors.

Is there a contribution of
macrophage TBK1 to the phenotype
seen in these mice? We observe a defect
in macrophage numbers in BAL and
total lung at 24 hours p.i., which may
reflect a defect in recruitment of
monocyte-derived macrophages similar
to the defect seen when TBK1 is deleted
from macrophages before influenza
infection (14). Lung macrophages also
have a defect in ROS production
(Figure 4D), which may also contribute
to the defect in clearance of S.
pneumoniae in the absence of TBK1.

Do TLRs and/or STING activate TBK1
in S. pneumoniae pneumonia? In bone
marrow–derived macrophages exposed
in vitro to live S. pneumoniae, TBK1
activation is driven by bacterial DNA that
enters the macrophage cytosol and is sensed
by DAI and STING (19). In contrast, STING
is completely dispensable for TBK1
activation in both neutrophils and
macrophages in vivo, suggesting that STING
is not the primary activator (and may in fact
be inhibitory to TBK1) in response to
S. pneumoniae.Our observation (Figure 3D)

that neutrophils and macrophages from
STING-null mice have increased TBK1
phosphorylation during pneumonia may
reflect loss of STING-dependent expression
of negative regulators of the TLR/TBK1
pathway, as has been observed in other
systems (24). TLR2 is activated by multiple
bacterial ligands and can activate TBK1
in vitro (25); TLR2 KOmice infected with
S. pneumoniae demonstrate no impairment
in bacterial clearance and no increase in
mortality, suggesting that TLR2 is not the
sole activator of TBK1 in this context (26).
In vitro, TLR2 ligands drive neutrophil TBK1
phosphorylation as potently as TLR4 ligands,
whereas the STING ligand DMXAA only
weakly promotes neutrophil TBK1
phosphorylation (Figure 3B), again arguing
that pathways other than STING activate
neutrophil TBK1 in this context.

Because neutrophil recruitment is not
impaired in infected TBK1 KOmice, we
examined activation of neutrophil
transcription factors from the STAT, IRF,
and NF-kB family. Neutrophils from TBK1
KOmice fail to activate STAT1 and p65
NF-kB but have largely intact concentrations
of IRF7. Although TBK1’s direct
phosphorylation of IRF3 and IRF7 is well
documented, TBK1 has been shown to
phosphorylate other transcription factors,
such as p65/RelA, cRel, STAT6, and STAT3,
only under specific circumstances and in
limited cell types (reviewed in Reference 3).
Intriguingly, TLR2 stimulation of
macrophages activates TBK1 but does not
promote IRF3 phosphorylation (25),
suggesting that TLR2 ligands direct TBK1
either to another transcription factor
(such as RelA) or to a non-transcriptional
output.

In examining cytokine expression by
neutrophils, we found that TBK1 is required
for neutrophils to produce IFNg and IL12.
The transcriptional regulation of IFNg
remains obscure, as multiple investigations
have failed to show that neutrophils express
measurable amounts of Tbx21/Tbet, the
transcription factor that drives IFNg in T
cells and NK cells (8, 11). As discussed above,
these results suggest that neutrophil TBK1
either activates an unknown transcription
factor that drives IFNg and IL12p40 mRNA
expression or that it regulates their

Figure 2. (Continued). genes from lung homogenates at 24 hours p.i. (E) RT-PCR of indicated genes from lung homogenates at 12 and
48 hours p.i. or in PBS-treated control mice. n=4–8 mice per infected group and n=2–3 mice per PBS group, and data are indicative of at
least three (A) or two (B–E) independent experiments. *P , 0.05, **P , 0.01, and ***P , 0.005.
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expression by nontranscriptional means. Of
note, our previous work has shown that ROS
production is required for neutrophil IFNg
expression in S. pneumoniae infection (10),
and as IFNg is required for bacterial killing,

the TBK1-ROS-IFNg axis may represent a
neutrophil-specific use of the TBK1
machinery.

In summary, we show that TBK1 is a
critical component of the response to

S. pneumoniae pneumonia and that deletion
of TBK1 impairs multiple host defense
functions in a manner distinct from deletion
of the type I IFN pathway. At the cellular
level, TBK1 is required for ROS and cytokine
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production and for phosphorylation of
neutrophil NF-kB and STAT1. At the
organism level, TBK1 contributes to bacterial
clearance and animal survival. These findings
point to as-yet undiscovered connections
between the noncanonical IKK family and

antibacterial defense. TBK1 is a critical
component of STING-independent
antibacterial responses in the lung, and TBK1
is necessary for multiple neutrophil
functions. These studies illuminate the
functions of TBK1 in different myeloid

populations and the uniqueness of host
defense mechanisms in bacterial compared
with viral infections.�

Author disclosures are available with the
text of this article at www.atsjournals.org.
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