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Abstract

Lack of CFTR (cystic fibrosis transmembrane conductance regulator)
affects the transcriptome, composition, and function of large and
small airway epithelia in people with advanced cystic fibrosis (CF);
however, whether lack of CFTR causes cell-intrinsic abnormalities
present at birth versus inflammation-dependent abnormalities is
unclear. We performed a single-cell RNA-sequencing census of
microdissected small airways from newborn CF pigs, which
recapitulate CF host defense defects and pathology over time. Lack of
CFTR minimally affected the transcriptome of large and small
airways at birth, suggesting that infection and inflammation drive
transcriptomic abnormalities in advanced CF. Importantly, common
small airway epithelial cell types expressed a markedly different
transcriptome than corresponding large airway cell types.
Quantitative immunohistochemistry and electrophysiology of small

airway epithelia demonstrated basal cells that reach the apical
surface and a water and ion transport advantage. This single cell
atlas highlights the archetypal nature of airway epithelial cells
with location-dependent gene expression and function.
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regulator

The airways of humans and other large
mammals can be classified into “large” or
proximal, which contain submucosal glands
and cartilage, and “small” or distal

(nonrespiratory and respiratory bronchioles),
which are devoid of submucosal glands and
cartilage and are,2 mm in diameter in
humans; the early events in the pathogenesis

of many respiratory diseases, including cystic
fibrosis (CF), asthma, and chronic
obstructive pulmonary disease (COPD), may
occur in the small airways (1–7).

Clinical Relevance

Most chronic inflammatory airway diseases affect the small
airways, yet the composition and function of cells in the
small airways is not well known. This study explores the
contribution of small airway epithelial cells to lung biology.
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The cellular composition and structure
of the epithelium of large airways is well
known (8–11); large airways have a
pseudostratified columnar epithelium
consisting of basal progenitor cells (12–15),
secretory (including club and goblet) cells
(16–22) with various immune and
nonimmune functions, and ciliated cells that
clear the airways of particles and pathogens
(23, 24). Airway epithelia also contain rare
cell types, including pulmonary
neuroendocrine cells, tuft or brush cells, and
CFTR (cystic fibrosis transmembrane
conductance regulator)-rich ionocytes
(9, 11, 25–29).

Compared with large airways, less is
known about the origins, function, and role
in disease of small airway epithelia
(22, 30–38). Measurement of small airway
resistance in pulmonary function testing is
inaccurate (1, 3, 5–7), and sampling small
airways in vivo in living subjects is
challenging given their small diameter
(,2 mm). Other limitations to the study of
small airway epithelia include interspecies
differences between large mammals and
small animal models; mice express different
disease-relevant airway ion transporters (39),
and their airway cells may follow different
developmental lineages than those of
humans (18, 40, 41). In addition, airway cell
types vary between species: club cells are
present in the trachea and bronchi of mice
but only in bronchioles in humans (42), and
basal cells are only present in trachea of mice
but extend to both large and small airways in
humans (14, 43). The role of rare cells in
small airway epithelial function is also
unclear; for example, ionocytes may be
absent in the small airways (10).

Recent studies of human lungs with
advanced CF have generated single-cell
RNA-sequencing (RNA-seq) data that
included large and small airway cells; these
data suggest abnormal gene expression and
cell lineages (10, 44); however, whether small
airway epithelial cells in CF have an
intrinsically abnormal transcriptome
requires studying them at birth, prior to the
onset of chronic inflammation and infection.

The porcine lung is a compelling model
to study the composition and function of
small airway epithelia. Pig and human airways
have similar lung anatomy (45) and similar
distribution of basal, ciliated, secretory
(including club) cells along the airway tree
when assessed by histopathology (42). In
addition, the pig and human immune systems
are closer in function and structure than that

of mice (reviewed in Reference 46). Finally,
CFTR-deficient pigs develop lung disease
mimicking human CF (47–50).

We performed a single-cell resolution
census of large and small airways in a porcine
model of CF to determine the effect of CFTR
on epithelial composition and gene expression.
We obtained tissues at birth, before the onset
of airway infection and inflammation
characteristic of CF lung disease, and used
airwaymicrodissection to accurately isolate
small airway tissue (51), which in newborn
pigs corresponds to those of,200 μm
diameter. Importantly, we found that the
transcriptome of epithelial cells is not directly
affected by lack ofCFTR. Finally, we found
that although the small and large airways share
similar common cell archetypes (52, 53), their
transcriptional state is highly determined by
location and showsmajor differences that have
important implications to understand cellular
function and for gene therapy.

Some of the results of these studies have
been previously reported in preprint form
(https://doi.org/10.1101/2021.03.16.435690).

Methods

All data are available in GEO (Accession
GSE150211). The aggregateBioVar analysis
package is available in Bioconductor (54).

Large and small airway tissue cells from
lungs of multiple newborn CFTR1/1 and
CFTR2/2pigs were sequenced; single-cell
RNA-seq differential expression analysis was
performed accounting for subject-level
variation to increase statistical rigor and
decrease the false-positive rate (55).

For details regarding tissue sources,
processing, single-cell RNA-seq library prep
and analysis, statistical methods, imaging
methodology, cell culture, and
electrophysiology, please refer to the
EXTENDED MATERIALS AND METHODS in the data
supplement.

Results

Lack of CFTR has Minimal Effects on
the Transcriptome of Large and Small
Airways at Birth
We sequenced 8,928 large and 17,773 small
airway cells (Figure 1) that clustered into
10 major cell types (Figures 1A and 1B),
including epithelial and nonepithelial cells
(Table E1 in the data supplement). Common
epithelial cell types including basal, secretory,

and ciliated cells were detected in both large
and small airway samples and were validated
by immunofluorescence confocal
microscopy (Figure E1); nonepithelial cells
(Figure 1C) included fibroblasts, endothelial
cells, immune cells, and smooth muscle cells
in both large and small airway samples. The
presence of abundant nonepithelial cells in
both large and small airway tissues shows
that the full thickness of the epithelium was
sampled. Moreover, we detected enough cells
from each common cell type to perform
statistically robust comparisons.

The altered transcriptome of airway
epithelial cells in people with advanced CF
suggests abnormal cellular development in
the presence of bacterial infection and
chronic inflammation (44, 56); the
transcriptome abnormalities partially persist
in vitro. In contrast, we have previously
shownminimal large airway bulk RNA-seq
gene expression differences in newborn wild-
type versus CFTR2/2 pigs (48, 57); however,
the epithelial transcriptomemay be
underrepresented in whole tracheal tissue,
potentially leading to a high false-negative
rate. We hypothesized that lack of CFTR
would affect epithelial gene expression at
birth only in epithelial cells that express
CFTR, particularly in the small airways.

We compared large and small airways
from wild-type (CFTR1/1) and CFTR2/2

pigs. We stratified common epithelial cells by
cell type (basal, secretory, and ciliated) and
airway type (large and small) and performed
differential gene expression analysis
accounting for the effects of both individual
cells and sample donors on gene expression.
Importantly, differential expression analysis of
single-cell RNA-seq data is often performed
aggregating all cells from all biological sample
donors according to condition (each cell is a
sample, “cells as n”), which results in an
inflated false-positive rate (55). We have
previously shown that when single-cell RNA-
seq data is analyzed accounting for biological
sampling at the subject level as is standard in
most biological research (each subject is a
sample, “subject as n”), the false-positive rate
decreases substantially with minimal effects
on the false-negative rate (55). For a given cell
type, gene counts were aggregated across all
cells from individual biological samples to
account for variation in gene expression
between subjects using the Bioconductor
package aggregateBioVar (54, 55) before the
differential expression test.

We found that hundreds of genes were
differentially expressed when not accounting

ORIGINAL RESEARCH

Thurman, Li, Villacreses, et al.: Novel Cell Archetypes in Newborn Small Airways 613

https://doi.org/10.1101/2021.03.16.435690


Smooth
muscle

Ciliated

Fibroblast
10

–10 0 10

A

E

Alveolar
progenitor

Endothelial 

Secretory

lonocyte

Rare

Immune

UMAP_1

0

–10

U
M

A
P

_2

D

–10

0

10

0–10 10

Wild type
CFTR –/–

UMAP_1

U
M

A
P

_2

Basal

6

DLK2
COMP
KRT13
KRT15
KRT5

SCGB3A1
SCGB1A1

SFTPA1
SFTPB

LGALS13
LOC110260191

DNAH5
ROPN1

LOC100158003
RIBC2
FOXI1

CLCNKA
ATP6V1G3

NEB
TTR

SH2D7
SPIB
ST18

POU2F3
CD79B

COL4A4
COL4A3

PLA2G1B
LOC110256950

TYRP1
MMRN1
CLDN5
APOA1

ECSCR
SCG3

DCN
MFAP5

LUM
DPT

COL3A1
CTSW
CCL5
CD52
GNLY

LOC102160313
ACTG2
MYH11
RGS5
ITGA7

DES

B

Expression

4

2

0

C Large Small

Epithelial

Non-epithelial

Basal
Secretory

Ciliated
lonocyte

Rare
AP

Endothelial

Fibroblast

Immune

SM

0 40 80 40 800

% of cells % of cells

Epithelial

Non-epithelial

Large

Small

800

 #
 D

E
G

 C
F

 v
s.

 n
on

-C
F

600

400

200

0

SM
Im

m
un

e
Fibr

ob
.

End
ot

h.
Cilia

t.
Sec

re
t.

Bas
al

Large

Small

Cell as n F

 #
 D

E
G

 C
F

 v
s.

 n
on

-C
F

800

600

400

200

0

SM
Im

m
un

e
Fibr

ob
.

End
ot

h.
Cilia

t.
Sec

re
t.

Bas
al

Subject as n

Bas
al

Sec
re

t.

Cilia
t.

Ion
oc

.

Rar
e

AP End
oth

.

Fibr
ob

.

Im
mun

e

SM

Figure 1. Lack of cystic fibrosis transmembrane conductance regulator (CFTR) does not affect the large and small airways single cell
transcriptome in newborn piglets. (A) UMAP cluster visualization. (B) Marker genes heatmap. (C) Cellular composition in large and small
airways. n=10 large (5 CFTR1/1 and 5 CFTR2/2) and 7 small (4 CFTR1/1 and 3 CFTR2/2) airways. (D) UMAP genotype visualization. (E and F)
Number of differentially expressed genes between CFTR1/1 and CFTR2/2 piglets when cells (E) or subjects (F) are considered a sample/unit of
analysis (“n”). AP = alveolar progenitor; CF = cystic fibrosis; Ciliat. = ciliated; Endoth. = endothelial; Fibrob. = fibroblast; Ionoc. = ionocyte;
Secret. = secretory; SM = smooth muscle; UMAP = uniform manifold approximation and projection.
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for subject-level variability. A large
proportion of these are expected to be false
positives (55). In contrast, we found fewer
than four differentially expressed genes
between CFTR1/1 and CFTR2/2pigs for any
cell type or region when subject-level
variation was accounted for (Figures 1D–1F
and Supplementary figure E2). The only
consistent difference in gene expression
across multiple cell types and airway regions
was CFTR itself, as expected in a comparison
of CFTR2/2 and wild-type animals. These
data suggest that, in line with previous
observations, lack of CFTR activity
minimally modulates expression of other
genes in airway epithelial cells. Moreover,
the data show that small airway epithelial
cell–intrinsic gene expression is not affected
by lack of CFTR at birth.

Ionocytes Were Not Detected in the
Small Airways
Ionocytes are a rare airway epithelial cell type
resembling renal intercalated cells (9, 11, 29)
and likely participate in transepithelial ion
and fluid transport. Airway ionocytes express
the transcription factor FOXI1, high amounts
of CFTR, and genes for vacuolar-type ATPase
subunits; based on these markers, we found a
small cluster of ionocyte-like cells in our
single-cell RNA-seq data.

Because single-cell RNA-seq detection
of ionocytes in small airway samples could be
limited by uncharacterized sampling biases,
we first measured ionocytes in situwith
immunohistochemical staining of Barttin
(BSND) (58) and FOXI1 protein expression,
and for RNA expression of FOXI1. We
identified cells expressing BSND and FOXI1
in large but not in small airways in newborn
pigs (Figures 2A and 2B).

We then determined the abundance of
cells coexpressing CFTR and FOXI1
(forkhead box I1) in wild-type pig single-cell
RNA-seq data (Figure 2C) from large and
small airways. We found 2 to 6 ionocytes per
1,000 cells in large airways and none in the
small airways; using a Bayesian model, we
computed a 95% posterior probability of
fewer than 1.49 ionocytes per 1,000 cells in
the small airways. Given the absence of
CFTR-rich ionocytes in small airways, we
expected CFTR expression in other epithelial
cells compensating for the lack of ionocyte
CFTR. We determined the fraction of cells
with detectable CFTR (Figure 2D) and the
average degree of CFTR expression (Figure 2E
and Table E1) for each cell type; because
CFTR is expressed at low amounts in most

cell types, yet background transcripts may
contaminate single-cell RNA-seq data, we
show endothelial cells, which rarely contained
CFTR transcripts, as comparison. CFTR was
detected most often in ionocytes (100%, by
definition), secretory cells (50–70%) followed
by ciliated, and lastly basal cells. We
measured increased detection of CFTR in
secretory and ciliated cells in small airways
compared with large airways (secretory:
72%6 4.9% vs. 55%6 3.5% respectively;
ciliated: 61%6 2.3% vs. 49%6 1.8%
respectively). We also detected increased
CFTR expression in small airway secretory
cells compared with large airways (4.66 0.12
vs. 3.66 0.4 log2CPM, respectively). The
measured detectability is similar to that
observed using single-cell RNA in situ
hybridization and single-cell quantitative PCR
in human cells, suggesting our sequencing
depth allowed precise estimates of CFTR
expression (10). These data show that CFTR
expression in both the large and small airways
occurs in a majority of secretory and ciliated
cells, in addition to higher degrees of CFTR
expression in ionocytes in the large airways.

Cell Type–Specific Gene Expression
Varies Geographically in
Airway Epithelia
Cells with similar morphology and canonical
gene expression biomarkers are generally
assigned the same cell identity, but their gene
expression profile and physiology may vary
owing to regulation by the cellular
microenvironment or because of
developmental origin and history (59–61).
We therefore compared the transcriptional
profile of cell types identified in the large
airways to their corresponding cell types in
small airways, accounting for subjects as the
unit of analysis, as in our CFTR2/2 versus
wild-type comparison. We expected few
differentially expressed genes between large
and small airways on the basis of prior data
(51) including AQP4 (aquaporin 4), SFTPD
(surfactant protein D), and ITGA9 (integrin
a 9) expected to be expressed in small
airways. We were surprised by the large
number and magnitude of differences
between corresponding cell types in small
and large airways even when using our
statistical framework. Figure 3A shows the
results of differential expression analysis
(Table E2). We discovered 406 differentially
expressed genes (Adjusted P value, 0.05 and
log2 fold change,21 or.1) between small
and large airways in basal cells, 746 in
secretory cells, and 2,546 genes in ciliated

cells. Although we found large expression
differences in common cell types in the large
versus small airways, this was not the case for
cell types localized deeper from the epithelial
surface, such as endothelial and smooth
muscle cells (Figure E3). Only 113 shared
genes were differentially expressed among all
three common epithelial cell types (Table E2,
epithelial intersection). Genes expressed at
higher degrees in all large airway
epithelia–common cell types included well-
characterized genes involved in goblet cell
metaplasia including AGR2 (anterior gradient
2), which is a protein disulfide isomerase
involved in the epithelial allergic response
and mucin production (62), and CLCA1
(chloride channel accessory 1), which
participates in MAPK signaling driving
mucus expression and in TMEM16A-
mediated chloride transport (63).

Given their importance for airway
physiology in health and disease, we
examined expression of mucin genes in large
and small airways (Figures 3B and E4 and
Table E1) (38). Expression of the secreted
mucinsMUC5AC andMUC5Bwas site
specific. In particular, we observed the
previously described transition of secretory
cells from goblet-like phenotype (e.g.,
MUC5AC-rich) proximally in large airways
to club-like phenotype (e.g.,MUC5AC-low)
distally in small airways (22, 64).MUC5B
expression was also higher in the large
airways. Small airway secretory cells
expressed higher amounts of tethered
mucinsMUC1 andMUC15 and lower
amounts ofMUC13 andMUC20 compared
with large airways. Together with differential
expression of goblet cell genes CLCA1 and
AGR2, these data suggest an upstream
site-specific expression program promoting
secreted mucins in the large airways.

Because large and small airways may be
exposed to different amounts and types of
bacteria, fungi, and viruses, we expected
expression of secreted antimicrobials to be
different in these two sites. Overall, secretory
cells expressed most antimicrobials (Figure
3C). Our data show that compared with
small airways, large airway secretory cells
express higher amounts of LYZ (lysozyme),
LTF (lactoferrin), and S100A8, S100A9, and
S100A12 (calprotectin genes). In contrast,
small airway secretory cells express high
amounts of SFTPD, SERPINE1 (plasminogen
activator-inhibitor 1), PGLYRP1
(peptidoglycan recognition protein 1),HP
(haptoglobin) and SPINK5 (serine peptidase
inhibitor kazal type 5). We also analyzed
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expression of genes associated with responses
to bacteria and viruses and found differential
expression between large and small airway
epithelial cells (Figure E5). Taken together,
these data suggest location-specific
regulation of secreted innate antimicrobial
molecules in large and small airways.
Surfactants are key regulators of epithelial
surface tension and are required to maintain
alveolar and airway patency (reviewed in
Reference 65). BPIFA1 (BPI fold containing
family Amember 1, also known as SPLUNC)
has antimicrobial, surfactant, and smooth
muscle signaling functions (66–69) and is
expressed at high amounts in secretory and
ciliated cells of the large airway. Expression
of BPIFA1 in small airway secretory cells is
decreased almost 50-fold compared with
large airways (Figure 3 and Table E2).
Instead, and perhaps as an alternative to
BPIFA1, small airway secretory cells
expressed high amounts of the surfactants
SFTPB (surfactant protein B) (500-fold
higher than large airways) and SFTPA1 and
SFTA2 (surfactant protein A1 and
surfactant-associated 2) (170- and 60-fold
higher, respectively); these three genes were

among the top six differentially expressed
genes with the criteria used.

Small Airway Basal Cells Express
Barrier-Forming Claudins and Apical
Membrane Ion Transporters and
Reach the Apical Epithelial Surface
Wewere surprised by the high degrees of
expression of transepithelial ion apical
transporter genes in small airway basal cells,
as basal cells are not believed to participate in
apical-basolateral ion transport. This was
particularly striking for genes such as the
amiloride-sensitive sodium channel (ENaC)
SCNN1B and SCNN1G, which are
considered apical surface sodium channels
in airway epithelia (70, 71), andCLDN1
(the barrier-forming claudin 1) (Tables E1
and E2) (72, 73); these 3 genes were among
the top 20 genes highly expressed in small
versus large airway basal cells.We therefore
hypothesized that basal cells in the small
airways reach both the basementmembrane
and the apical surface.

We performed a detailed examination of
the abundance and localization of basal cells
in small and large airway epithelia. p63

(tumor protein 63) is a well-characterized
basal cell marker (14, 61, 74–76). Figure 4A
shows that in the cuboidal monolayer of distal
respiratory bronchioles, there were p631 cells
that contact the lumen. Interestingly, some
p631 cells also appeared to have cilia
(Figures 4A and E6), which contrasts with the
prior evidence that basal cells first differentiate
into secretory cells before differentiation into
ciliated cells in the large airways. Using
quantitative immunohistochemistry
(Figure 4B), we found that although small
airway epithelia had less p631 cells per
surface unit, most small airway p631 cells
contacted both the basement membrane and
the airway lumen. In contrast, almost none of
large airway basal cells contact the lumen.

Small Airway Epithelia Have Distinct
Transepithelial Ion Conductance
Our data show that the expression of the
anion transporter CFTR is markedly
different in small airway epithelia (devoid of
ionocytes) compared with large airway
epithelia and suggest distinct mechanisms of
transepithelial ion transport and water
movement in small airways. We therefore
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investigated the expression patterns of other
ion transporters, ion transporter regulators,
water channels, and barrier-forming claudin
genes in small airway epithelia.

The amiloride-responsive transepithelial
voltage of airway epithelia decreases in a
proximal-distal manner (32, 33, 77, 78).We
expected that expression of genes coding for
the amiloride-sensitive sodium channel could
be similar (based on our previous in vitro data
[51]) or differ (based on References 10 and 21)
in large and small airway epithelia. Small

airway epithelial cells expressed higher
amounts of the ENaC genes SCNN1B and
SCNN1G (Figures 5A and E7 and Table E2);
this correlated with lower concentrations of
BPIFA1 (SPLUNC), which inhibits ENaC
expression and function (67, 79) and suggests
that ENaCmight bemore active in small
airways. Next, we investigated expression of
transcellular water channels and tight junction
genes (80) (Figure 5B and Table E1). Only
AQP3, -4, and -5, respectively, were
consistently detected in at least one cell type.

AQP3 is the predominant aquaporin
expressed in large airway cells and was
expressed at lower amounts in small airway
secretory and ciliated cells which instead
expressed large amounts ofAQP4.AQP4was
a top differentially expressed gene at nearly
200-fold higher amounts in small airway cells
(Table E2). In addition, small airway secretory
cells expressed nearly twice as many total
aquaporin transcripts than any large airway
epithelial cell type (Table E1). These data
suggest that small airway epithelia are more
permissive to osmotic water movement than
large airway epithelia. Finally, we compared
the expression of claudins, which regulate
epithelial tight junction water permeability and
ion selectivity (72, 81, 82). In the large airways,
claudins are primarily expressed by surface
ciliated and secretory cells.We found that
small airway epithelial cells expressed the
barrier-forming claudins 1, 4, and 10 (isoform
10b) at higher amounts than large airway cells
(Figure 5C).CLDN18 (Claudin 18) was
detected only in type II alveolar progenitor
cells, consistent with the literature (83). The
differential expression of ion transporters and
claudins, and the different cellular architecture
of large and small airway epithelia suggest that
regulation of ion transport and barrier
function is site specific.

We have previously shown that small
airway epithelia cultured at the air–liquid
interface have higher CFTR conductance
than and similar ENaC current to large
airway epithelia. Based on our findings in
this study, we hypothesized that the
paracellular conductance of small airway
epithelia at the air–liquid interface in vitro
would be different than that of large airway
epithelia. We minimized transcellular ion
transport using epithelia from CFTR2/2

pigs and treated them with the apical ENaC
sodium channel blocker amiloride and
DIDS (4,49-diisothiocyanotostilbene-2,29-
disulfonic acid), which blocks most non-
CFTR Cl2 channels in the apical
membrane (Figure 5D). We then performed
Na1 and Cl2 dilution potential assays and
recorded the potential difference that arose
by diluting apical NaCl as previously
described (84). We found that contrary to
our hypothesis, large and small airway
epithelia had similar paracellular
conductance (Figure 5E). However, we
found that small airway epithelia had a
lower PCl/PNa compared with large airways
(Figure 5F); these data suggest that the
claudin channels in small airway epithelia
are more permeable to cations than to
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anions, whereas large airway epithelia
have similar paracellular permeability to
cations and anions.

Discussion

The transcriptome of a cell may be
determined by cell-intrinsic properties such as
its epigenome, or by the extracellular
environment (59–61). Understanding the
relative contribution of cell versus
environment is key to interpreting how a
transcriptomemay be affected by a disease.
Our previous work investigating the
transcriptome in a porcinemodel of CF
suggested that the transcriptional
abnormalities observed in airway epithelia
of adults with CF were secondary to chronic
infection and inflammation as they were
not present at birth in the large airways
(48, 56, 57); however, whether the small
airways were affected at birth remained
unclear. In this study, we performed a

single-cell RNA-seq census of large and small
porcine airway epithelia at birth, using
microdissection-based sampling techniques.
Our study provides key insights supported by
several methodological strengths.

CFTR Does Not Regulate Expression
of Other Airway Epithelial Genes
at Birth
CFTR coexpression with other genes in
humans and animal models varies by cell
type and inflammation or disease state (53).
But does CFTR itself regulate expression of
other genes via protein–protein interactions
or via ion transport-mediated transcriptional
regulation? Our data strikingly show that
knocking out CFTR does not modify gene
expression except for CFTR itself. This
finding was enabled by two methodological
advantages: 1) by sampling CFTR2/2 pigs at
birth, we were able to measure the cell-
intrinsic transcriptome of CFTR2/2 airway
epithelia before the onset of chronic
infection and inflammation; and 2) by

performing single-cell RNA-seq differential
expression analysis accounting for
interindividual variability (54, 55), we
optimize the false-positive rate. We conclude
that whereas lack of CFTR ultimately results
in chronic infection and epithelial
inflammation that modulate many genes,
CFTR itself does not directly regulate other
genes. However, we cannot exclude whether
mutant CFTR protein (e.g., the F508 del
mutation) induces aberrant gene expression
at birth through mechanisms related to
protein processing (e.g., aggresome
formation) (85).

CFTR Expression Varies in the Large
and Small Airways
We found that large and small airway epithelia
share similar common (basal, secretory/goblet,
and ciliated) cell types; in contrast, ionocytes
were absent in small airway epithelia at birth.
This conclusionwas enabled by including
in situ immunohistochemical imaging for both
RNAand protein ionocytemarkers in tissue.
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Because ion transport is critically important in
the airways both at birth and throughout life,
how does it differ in the absence of ionocytes?
The human large airway epithelium contains
approximately 40,000 lumen-reaching cells/
mm2 (86), of which 0.5% are ionocytes.
Assuming uniformdistribution of ionocytes
on the airway surface, we expect an estimated
average distance of approximately 70 μm
between ionocytes; this cell specializationmay
not be optimal in the fractal small airways, as it
may result in airways without ionocytes.We
speculate that 1) if ionocytes are primarily
secretory, small airways with ionocytes would
be prone to obstruction by secreted fluid; or
2) alternatively, if ionocytes primarily aid fluid
absorption, theymay be absent in small
airways given that lungs can continue to carry
out adequate respiration if a few small airways
are obstructed, but not if a large airway is.

Cell Type–associated Gene
Expression and Function Is
Topography Dependent
We found that cell types sharing the same
gene expression markers and morphology
may have very different gene expression
profiles when in two different locations; the
magnitude of hundreds of differentially
expressed genes between corresponding large
and small airway cell archetypes (52, 53) was
striking. These findings were enabled by the
use of microdissection of small airway tissues
and large airway epithelial scrapings, which
minimized sampling of cell types
overrepresented in gross tissue biopsies (e.g.,
alveolar cells) or that confound comparison
of surface epithelial cells (e.g., submucosal
gland cells), in addition to confirming results
with immunohistochemistry or
electrophysiology assays.

The branching pattern and anatomical
configuration of the mammalian airway tree
results in a very different environment in the
lumen of the large and small airways. Two
aspects of our findings led us to speculate that
location-dependent gene expression in airway
epithelial common cell archetypes depends on
the local luminal microenvironment: 1) the
types of genes upregulated in large airways
(secreted mucins and antimicrobial peptides)
are key for clearance of inhaled or aspirated
particles and microorganism to which the
large airways are constantly exposed, whereas
genes upregulated in small airways (ion
transporters, water channels, barrier-forming

claudins, and surfactants) are key for small
airway patency; and 2) cell types more likely
to interact with the epithelial apical surface
(epithelial cells, immune cells, and fibroblasts)
differed more in large versus small airways
than smooth muscle and endothelial cells.
Other microenvironmental factors may also
drive large versus small airway epithelial
archetypal differences. For example, large
airways are exposed to wider respiratory
cycle-driven fluctuations in CO2 and O2

concentration, humidity, and temperature
than the small airways. We detected higher
expression of mucin and antimicrobial genes
involved in responses to inhaled allergens and
pathogens in large airway epithelia; in
contrast, we detected higher expression of
various ion transporters, water channels,
barrier-forming claudin genes, and surfactants
in small airway epithelia.

We found important differences in the
configuration of cell types in small versus large
airway epithelia. Specifically, the ion
transporter and barrier-forming claudin gene
expression pattern of small airway basal cells
led us to discover that at least some small
airway basal cells reach the apical surface; we
speculate that they participate in
transepithelial ion transport. This finding has
important practical implications. Gene
therapy for lung diseases ideally targets
pulmonary stem cells. Airway epithelial basal
cells are important progenitor/stem cells and
were considered difficult to target via
aerosolization given their localization beneath
the airway surface. Our data suggest that some
small airway basal cells may be directly
targeted by gene therapy vectors via
aerosolization.

Finally, taken together, our data lead us
to speculate that ion and water transport in
large and small airway epithelia are mediated
by similar cell archetypes, but are finely
tuned by differences in gene expression: 1)
small airway epithelia express more
aquaporins, so changes in regulated ion
transport are followed by transcellular fluid
secretion or absorption; 2) higher expression
of CFTR, whose activation is regulated, and
lower paracellular anion conductance gives
small airways an advantage for fluid
secretion; and 3) higher expression and
function of ENaC allows higher Na1

absorption, whereas higher relative
paracellular cation conductance facilitates
paracellular reflux and secretion of Na1; this

would provide support for higher CFTR-
mediated secretion when CFTR activity is
high and higher ENaC-mediated absorption
when CFTR activity is low. Overall, the data
suggest that small airway epithelia have an
advantage over large airway epithelia for
both rapid absorption and secretion of ions
and water. This is consistent with the notion
that small airways need to be “wet enough to
be pliable” yet “dry enough to remain
patent” as described by Shamsuddin and
Quinton (33).

Limitations
Our study is limited by potential biases in
proportional sampling of various cell types
owing to differential isolation, viability, or
lysis sensitivity of specific cell types; however,
our conclusions do not depend on relative
proportions of cell types as determined by
single-cell RNA sequencing, and we only
directly compare cell type proportions by
using immunohistochemistry in situ (e.g.,
ionocytes and basal cells). Moreover, we
focused our analysis only on surface epithelial
cells from trachea (which may differ
transcriptionally from bronchial cells [87,
88]) and small airways; we did not include
submucosal gland cells, which contribute to
water and electrolyte transport in large
airways in vivo, and did not analyze immune
cells (which play a key role in inflammation
and development) included in our dataset in
depth. Finally, we do not perform a time
course to detect the first single-cell
transcriptomic changes in CF lung disease.

Our data show how the function and
gene expression profile of an airway epithelial
cell archetype varies depending on its cellular
microenvironment. Our study highlights that
important proximal–distal patterns of cellular
composition and gene expression observed in
gut and kidney analysis (89, 90) also apply to
the airways with important implications for
lung disease pathophysiology and for therapy
of lung disease.�
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