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A B S T R A C T   

Learning is fundamental to animal survival. Animals must learn to link sensory cues in the environment to ac
tions that lead to reward or avoid punishment. Rapid learning can then be highly adaptive and the difference 
between life or death. To explore the neural dynamics and circuits that underlie learning, however, has typically 
required the use of laboratory paradigms with tight control of stimuli, action sets, and outcomes. Learning curves 
in such reward-based tasks are reported as slow and gradual, with animals often taking hundreds to thousands of 
trials to reach expert performance. The slow, highly variable, and incremental learning curve remains the largely 
unchallenged belief in modern systems neuroscience. Here, we provide historical and contemporary evidence 
that instrumental forms of reward-learning can be dissociated into two parallel processes: knowledge acquisition 
which is rapid with step-like improvements, and behavioral expression which is slower and more variable. We 
further propose that this conceptual distinction may allow us to isolate the associative (knowledge-related) and 
non-associative (performance-related) components that influence learning. We then discuss the implications that 
this revised understanding of the learning curve has for systems neuroscience.   

Introduction 

Modern systems neuroscience is going through a methodological 
revolution that now provides unprecedented access to neural compu
tations during behavior. Large-scale neural recordings, optogenetic 
perturbation of molecularly-defined circuit elements, and sophisticated 
computational approaches are being used to reveal how the brain begets 
behavior—a fundamental goal of neuroscience (Gomez-Marin et al., 
2014; Krakauer et al., 2017; Sejnowski et al., 2014). These cutting-edge 
tools and expanding behavioral repertoires go hand-in-hand as drivers of 
conceptual and technical innovation in the field. 

One particularly holy grail for neuroscience is the ability to under
stand how neural activity evolves during learning and the underlying 
circuits that are causally involved. Here, we focus on one area of 
learning – reward-based instrumental conditioning, a form of associative 
learning. ‘Instrumental’ (Skinner, 1938) refers to the formation of an 
association between a behavior and its consequence and it requires the 
presence of reinforcement (Colwill and Rescorla, 1986; Dickinson, 1994; 
Staddon and Cerutti, 2003). Traditionally, instrumental forms of 

learning focus on the relationship between a behavioral response (R) 
and a biologically relevant outcome (O). Behaviors, however, often 
occur in the presence of, or are preceded by, stimuli (S) that signal the 
relevant outcomes. The relationship between stimuli, behaviors, and 
outcomes (S-R-O) blends stimulus and response learning (e.g., S signals 
the R-O relationship, S is directly connected to R) (Herrnstein, 1970; 
Thorndike, 1905; Tolman, 1948). While this framework has evolved 
over the past 100 years, the core idea that the brain can be understood 
through learned behaviors (versus reflexes, inaccessible mental pro
cesses, or introspection) motivates much of systems neuroscience today. 
Some of these learned behaviors have been empirically observed to rise 
rapidly (e.g., conditioned fear) (Blanchard and Blanchard, 1969; Maren, 
2001), nevertheless, the formation of reward-based instrumental asso
ciations has historically been described as a slow, gradual process 
despite evidence that there may be faster, step-like improvements 
(Gallistel et al., 2004). As we will discuss, how we conceptualize the 
speed of learning, however, has major implications for our under
standing of the nature of associative formation and the underlying 
neural code. A comprehensive review of animal learning theory is 
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beyond the scope of this mini-review but has been covered elsewhere 
(Bouton, 2016). 

Slow or sudden: empirical observations and interpretation 

Early studies of discrimination learning focused on individual ani
mals while also exploring behavior before asymptotic performance, 
sometimes referred to as the ‘pre-solution’ period. This debate centered 
on whether animals were engaging in ‘trial-and-error’ learning (Spence, 
1936, 1945) or were, instead, testing ‘hypotheses’ (Krechevsky, 1932a; 
Lashley, 1929) during this pre-solution period. This question endures 
but has been understudied as the majority of learning research quickly 
moved away from individual-centered analysis and towards higher 
throughput approaches in small animals. This latter shift in approach 
has led to thinking of instrumental learning as a slow, gradual process 
with high inter-subject variability. There were at least three methodo
logical drivers of this observation. First, individual animals were 
grouped and learning curves were averaged. The challenges with group 
averaging were noted as early as the 1930’s, with observations from 
Krechevsky: “[…] real and valid information in reference to the behavior of 
organisms can be obtained only by studying the actual individual as an in
dividual […]” (Krechevsky, 1932b). This topic was resumed by Estes in 
the 1950’s (Estes, 1956) and then explicitly analyzed nearly 50 years 
later (Gallistel et al., 2004; Papachristos and Gallistel, 2006). Group 
averaging across animals masks the variety of individual learning speeds 
and obscures the rapidity by which many animals transition from naïve 
to expert (Fig. 1A). Second, even within individual animals, analytical 
approaches favored temporal smoothing, binning or fitting across trials. 
The simplest of these—averaging performance within a ses
sion—became modus operandi in behavioral literature and continues to 
dominate the analysis of learning speeds (Guo et al., 2014). Rapid per
formance improvements within a session, as those observed in (Arican 
et al., 2019; de Hoz and Nelken, 2014; Gutierrez et al., 2010; Interna
tional Brain Laboratory et al., 2021; Komiyama et al., 2010; Mazziotti 
et al., 2020; Rosenberg et al., 2021; Stoilova et al., 2019), became 
obscured (Gallistel et al., 2004) and thus, understudied (Fig. 1B). Third, 
laboratory animals have been put on water or food restriction protocols 

with externally driven trial schedules (Goltstein et al., 2018; Guo et al., 
2014), despite early concerns that thirst is an ‘arbitrary drive’ (Skinner, 
1936). The modern approach of both metabolic restriction and fixed 
trial scheduling has likely led to a ‘ceiling effect’ of over-motivation 
early in a session and a ‘floor effect’ of under-motivation late in a ses
sion (Berditchevskaia et al., 2016; Groblewski et al., 2020; van Swieten 
and Bogacz, 2020) (Fig. 1C). When combined with temporal smoothing 
within a session, these ‘non-learning’ effects may cloud learning-related 
changes. Furthermore, excessive motivation early in a session may 
impact the animal’s behavioral strategy – incentivizing exploratory er
rors in impoverished environments. In fact, recent studies demonstrate 
how ‘errors’ in a rodent decision-making task are more likely due to 
exploratory strategies than lapses in judgement (Ashwood et al., 2022; 
Carandini and Churchland, 2013; Pisupati et al., 2021). 

These three factors (Fig. 1) have conspired to paint a picture of 
instrumental learning as slow and variable. This is not to say that the 
field has been blind to this issue; rather, the purpose of many learning 
studies, particularly those interested in neural mechanisms, has moti
vated these approaches. For example, lesion or mutation studies aim to 
isolate the brain regions involved in learning, and thus necessitate group 
comparisons (Bey et al., 2018; Cheung and Cardinal, 2005; Corbit et al., 
2001, 2003; Featherstone and McDonald, 2004; Lintas et al., 2021). The 
desire for reproducibility and reduced variability in such comparisons 
has likely driven the usage of group and session-based averaging of the 
learning curves. With that said, deciphering the neural code underlying 
the formation of associations, will require a more nuanced view of 
learning within individual animals linking trial-by-trial fluctuations in 
neural activity with behavioral performance. Pinpointing the precise 
timing of when animals learn the task contingencies will be crucial as we 
aim to identify its neural basis. The low-pass filtering of behavioral 
performance during learning may inadvertently focus neural in
terrogations on mechanisms unrelated to core contingency learning. 

Sudden and slow: distinct timescales for acquisition and expression of 
instrumental learning 

In most studies, performance is measured during instrumental 

Fig. 1. Methodological drivers of a slow 
learning curve. A) The effect of group aver
aging across animals. Left, schematic of indi
vidual animal learning curves (gray lines), 
defined learning criterion (dotted line), and 
threshold crossings (red circles). Middle, aver
aging individual learning curves aligned to the 
start of training creates the appearance of a 
slow and gradual process. Right, aligning 
learning curves to a defined learning criterion 
identifies a more rapid, and shared, dynamic 
across animals (within the red dotted box) and 
may provide better group averaging for use in 
neural data analysis. B) The effect of session 
averaging within an animal. Schematic of 
learning curve across training sessions shows a 
smooth gradual increase in performance. Early 
(left inset) and late (right inset) in learning, the 
session averaged performance provides a 
reasonable description of the behavior. At the 
‘slope’ of the learning curve, however, the 
within day change (middle inset) can be dra
matic with fast transitions in performance that 
are obscured by session-based averaging. C) 
The effect of motivation on within day perfor
mance. Expert performance can be influenced 
by an animals’ internal state. Motivation can 
change over the course of an expert session, 

driving errors typically ascribed to perceptual judgements. Early in the session (1), over motivation might be the driver of a high false alarm rate, while by the end, 
satiety might drive an animal to miss. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)   
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learning when reinforcement is available. Reinforcers and rewards can 
lead to a variety of paradoxical effects. One such effect was initially 
referred to as a ‘frustration’ response (Amsel and Roussel, 1952; Wag
ner, 1959). When expert rats trained to run a double runway for a water 
reward are exposed to reward omission, they surprisingly start running 
faster (Amsel and Roussel, 1952). Thus, a non-reinforced trial seemed to 
strengthen the instrumental action. Non-reinforced trials have also 
played an important role in other forms of learning – notably, fear 
conditioning, where ‘test’ trials in the absence of the reinforcer (no 
shock) are the standard way to measure whether a conditioned stimulus 
has gained control of a freezing response (Britton et al., 2014). 
Non-reinforced trials, rarely used during reward-based learning, may 
hold a key to unlocking the true learning curve. 

Recently, we reasoned that non-reinforced trials would provide a 
more juridical measurement of the acquisition of task contingencies if 
interleaved during behavioral training (Kuchibhotla et al., 2019). We 
trained head-fixed mice to respond to one tone (S+) for a water reward 
and withhold responding to another (S-) to avoid a timeout. We inter
leaved reinforced trials with those without available reinforcement 
(‘probe’ trials). Surprisingly, early in learning, animals discriminated 
between S+ and S- better in probe trials than in reinforced trials. Thus, 
this task design unmasked the acquisition phase of S+ and S- discrimi
nation learning, shown only in probe trials, that occurred quickly and 
was stereotyped across animals. This underlying learned discrimination 
was then revealed during reinforced trials in a slower, more variable 
phase, termed ‘expression’ (Fig. 2). We expanded our studies to freely 
moving rats and head-fixed ferrets and found a nearly identical 
distinction across a wide range of tasks, including Pavlovian, instru
mental, and occasion setting tasks (Kuchibhotla et al., 2019). These 
experiments provide evidence supporting a learning framework in 
which there are two parallel learning processes: one more rapid and 
stereotyped (the core contingency learning, acquisition) and one slower 
and more variable (expression). One subtlety that arises is that assaying 
task knowledge in non-reinforced probe trials still relies on a behavioral 
output that is learned when the reinforcer is available. Regardless, the 
implication of this study for the timing of associative learning is clear: 
the contingencies are learned early and lead to rapid improvements 
within a tight temporal window. Performance in non-reinforced trials, in 
turn, provides a practical tool for criterion-based alignment (Fig. 1A, 
right) to more precisely link behavior during learning with its 

underlying neural drivers. 
Another implication is that animal performance during learning can 

sometimes mask their underlying knowledge. Behavioral expression in 
the presence of reinforcement (performance) may reflect other factors, 
including exploration or over-motivation, that obfuscate the measure
ment of the learned association (knowledge). This dissociation between 
knowledge and performance relates to a classic distinction made in 
experimental psychology and linguistics, which differentiates the per
formance of a system from its underlying competence (Chomsky, 1969; 
Feigenson et al., 2004; Spelke et al., 1992). Put more simply, what you 
know can be very different from what you show. For example, infants do 
not tend to reach for hidden objects until they are ~8 months old 
(Baillargeon et al., 1990), leading Piaget to infer that younger infants 
lack object permanence: they do not know that objects continue to exist 
when they are hidden (Piaget, 1954). Pioneering studies, however, 
exploited the discovery that infants will look longer at events that are 
surprising (Stahl and Feigenson, 2015). They demonstrated that if an 
object is hidden by an occluder and subsequently the occluder is lifted 
and the object is now gone, infants will look longer at this surprising 
disappearance (Baillargeon et al., 1985). This revealed a hidden 
competence at 5-months of age that was masked by a motor confound in 
Piaget’s original studies. 

Here, we argue that animals exhibit a similar distinction between 
performance and competence during learning. Competence reflects the 
animal’s underlying knowledge of the task contingencies. Performance, 
on the other hand, refers to how animals express their knowledge and is 
subject to non-associative factors that may relate to internal state or 
external context. We argue that to uncover the neural basis of learning 
requires re-interpreting the learning curve as incorporating both 
processes. 

Unlocking the neural code for instrumental learning 

The advent of large-scale neural recordings and manipulation tech
niques during learning opens up the possibility to determine exactly how 
the neural circuits form associations. To do so, we need to overcome at 
least two major challenges. One is the difficulty of gaining access to an 
animal’s core task knowledge during learning, which first requires to 
behaviorally identify when the knowledge is acquired versus expressed. 
Another is the challenge of catching a moving target: the brain and 
behavior are ‘ever-changing’ during learning. The possibility that the 
associative aspects of learning occur more quickly than previously 
thought has major implications for how we link learning processes with 
neural activity. Here we outline a framework for understanding neural 
data acquired during learning with the expressed intent of addressing 
the above challenges and avoiding misinterpretations due to biases in 
our analytical methods. 

Dissociating knowledge from performance using multi-dimensional 
behavioral metrics 

During learning, decision-making processes are in flux and are not 
only influenced by changes in associative strength between stimuli, 
actions, and reinforcers but can also be influenced by changes in 
behavioral strategy, internal state, or external context. Standard ap
proaches of using categorical outcomes (correct vs incorrect, hit vs miss) 
or binary action variables (go vs no-go, left vs right) may not allow for a 
distinction between the associative and non-associative influences on 
the decision process. This realization over the past decade has led to 
major shifts in our thinking of decision-making after learning. Emerging 
studies have used detailed analysis of behavioral microstructures to 
demonstrate that animals show different strategies based on hedonic 
state (Dwyer, 2012; Johnson et al., 2010) or exploratory drive (Luksys 
et al., 2009; Pisupati et al., 2021) and exhibit different types of errors 
based on their level of arousal (de Gee et al., 2014, 2020) or motivation 
(Berditchevskaia et al., 2016; Groblewski et al., 2020). For example, in 

Fig. 2. Behavioral dissociation of acquisition and expression. Mice were 
trained on an auditory go/no-go task in which they learn to lick to tone for a 
water reward (S+) and withhold licking to another tone to avoid a timeout (S-). 
Performance during learning in a reinforced context (top) has classically been 
equated to the ‘acquisition’ of task contingencies. In our data, we observe 
similar gradual acquisition trajectories in the reinforced context (top). We 
unmasked a more rapid acquisition trajectory by removing access to rein
forcement in a few trials (bottom), and argue for a second dissociable process, 
‘expression’, which reveals learned discriminations. 
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expert animals, it is possible to identify structured changes in perfor
mance as a function of motivation (Berditchevskaia et al., 2016) 
(Fig. 1C). Early in an expert session during a go/no-go task, 
water-restricted animals will tend to increase false alarms (responding 
to the S-) due to excessive motivation. Late in the same session, satiated 
animals will begin to reduce responding to the S+ (miss). These errors 
are not related to a perceptual judgement but are instead due to factors 
influenced by their internal state (Berditchevskaia et al., 2016; Gro
blewski et al., 2020). Such differences—though demonstrated in expert 
animals—likely serve as confounds for association formation during 
learning. Using novel approaches with the potential to modulate moti
vation (Reinagel, 2018; Urai et al., 2021) and more detailed behavior 
measurements, including movement (Musall et al., 2019; Salkoff et al., 
2020; Stringer et al., 2019), pupil fluctuation (de Gee et al., 2014, 2020), 
and orofacial movements (Bollu et al., 2021; Dolensek et al., 2020), will 
allow us to infer the animal’s state throughout the learning process and 
better identify the non-associative factors that influence performance 
during learning. 

Here, we argue that a detailed analysis of the evolution of behavioral 
microstructures will be critical to dissociate associative components of 
learning (i.e. knowledge) from non-associative factors that may influ
ence performance. To better isolate the formation of associations will 
also require moving beyond the binary categories in action or outcome 
variables. In the auditory go/no-go task described in Fig. 2, for example, 
a major component of discriminative learning is the ability for mice to 
withhold licking to the S-. Measuring response latency and response 
vigor on false alarm trials surprisingly reveals that animals begin to 
delay licking to the S- (longer lick latency) much earlier than if measured 
only as a categorical variable. Thus, by shifting from a ‘digital’ readout 
(lick vs. no lick) to an ‘analog’ readout (latency and vigor), we can 
identify behavioral correlates of associative formation that provide a 
better temporal window for identifying neural drivers. Integrating these 
analog measures of behavior during learning, with more standard digital 
measures of action outcomes, will be essential to identify exactly when 
associations begin forming and the underlying neural implementation. 

Catching a moving target: trial-by-trial alignment of behavioral and neural 
data 

We detailed above how group averaging produces slow, gradual 
learning curves despite evidence that individual animals often learn 
quickly, showing step-like improvements at discrete timepoints 
(Fig. 1A). Group averaging, however, offers major advantages when 
considering neural data as it provides an analytical approach to identify 
common neural processes across animals while reducing the possibility 
of spurious correlations. How can we account for individual differences 
in learning rate while also allowing for group averaging? To date, the 
most common way of averaging cohorts is aligning all animals to the 
onset of training. The onset of training, however, is defined by the 
experimenter rather than the underlying behavioral learning process 
used by the animal. To circumvent this, one possibility is to (1) identify 
key behavioral indicators of learning (e.g., trial block when performance 
reaches a criterion) and then (2) align animal learning trajectories based 
on these criteria (Fig. 1A). This criterion-based approach to alignment 
and group averaging will allow the behavior to drive the neural data 
analysis and has already proven valuable in understanding learning- 
related dynamics in the somatosensory cortex of mice (Chen et al., 
2015). More broadly, behavioral evidence of learning may not directly 
correlate with when associations are formed, but rather, provides a 
cutoff before which the associative processes may occur. By aligning 
behavioral data across animals that focuses on the learning process, it 
may be possible to uncover shared activity patterns across animals that 
point to common neurobiological mechanisms. The goal of dissociating 
the associative and non-associative components of learning will also be 
served by more advanced computational approaches of interpreting 
neural data on a trial-by-trial level and distinguishing single-neuron 

activity profiles from population codes. 

Outlook: constraining big neural data with a revised conceptual 
model of instrumental learning 

We have provided evidence that core contingency learning may 
occur more rapidly than previously thought, with improvements 
happening within a few dozens of trials (Kuchibhotla et al., 2019). 
Averaging trials, either across full sessions or in large trial bins, may 
obscure the neural activity changes that occur at precise timepoints that 
subserve the associative learning process. Synthetic trial-by-trial ap
proaches are now emerging that combine large-scale neural data 
acquisition with computational approaches that can be constrained by 
model-based predictions (Steinmetz et al., 2019; Urai et al., 2022). In 
addition, recent work that aims to explain trial-by-trial variability 
through the lens of changes in internal states will be a valuable guide as 
we try to pinpoint the neural processes related to behavioral expression 
on a slower and more variable timescale. Some of the heterogeneity in 
neural activity may reflect ongoing changes in performance-related 
(rather than knowledge-related) computations and these changes can 
be inferred by relating neural activity to ongoing changes in behavioral 
microstructures, including spontaneous movements. Computational 
modeling will be critical to distinguish between knowledge and perfor
mance drivers of neural activity. Descriptive models (Ashwood et al., 
2022; Deliano et al., 2016; Roy et al., 2021) may help identify drivers of 
performance variability during learning that reflect distinct strategies or 
motivational levels. In addition, normative decision-theoretic models 
(Dayan and Daw, 2008; Dayan and Niv, 2008; Niv et al., 2006; Pisupati 
et al., 2021; Rao, 2010) will help separate associative, policy-level and 
read-out computations underlying the dissociable components of 
behavioral learning. 

Large-scale neural recordings provide an opportunity to better un
derstand how the brain implements a variety of critical behavioral 
computations, including instrumental learning. Here, we argue that re- 
visiting our understanding of the shape of the learning curve and its 
underlying cognitive drivers is essential to interpreting big neural data. 
Rather than thinking about learning as either ‘slow’ or ‘sudden’; we 
argue that learning is better interpreted as a combination of the two. We 
provide evidence that instrumental forms of reward-learning can be 
dissociated into two parallel processes: knowledge acquisition which is 
rapid with step-like improvements and behavioral expression which is 
slower and more variable. We further propose that this conceptual 
distinction may allow us to isolate the associative (knowledge-related) 
and non-associative (performance-related) components that influence 
learning. The core idea, that underlying knowledge and the use of that 
knowledge, are distinct has been paralleled in experimental psychology 
and linguistics—famously introduced by Chomsky over 60 years ago 
(Chomsky, 1969). In an era of big neural data—where recording from 
thousands of neurons, across multiple brain regions and over many days 
is no longer a dream but a reality—it will be important to be guided by a 
rich behavioral understanding of how and when animals acquire and 
then express task knowledge. 
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