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Abstract

Herein we disclose an iron-catalyzed method to access skeletal rearrangement reactions akin 

to the Dowd-Beckwith ring expansion from unactivated C(sp3)-H bonds. Photoinduced ligand-

to-metal charge transfer at the iron center generates a chlorine radical, which abstracts electron-

rich C(sp3)–H bonds. The resulting unstable alkyl radicals can undergo rearrangement in the 

presence of suitable functionality. Addition to an electron deficient olefin, recombination with a 

photoreduced iron complex, and subsequent protodemetallation allows for redox-neutral alkylation 

of the resulting radical. Simple adjustments to the reaction conditions enable the selective 

synthesis of the directly alkylated or the rearranged-alkylated products. As a radical clock, these 

rearrangements also enable the measurement of rate constants of addition into various electron 

deficient olefins in the Giese reaction.

Graphical Abstract

Keywords

LMCT; primary C(sp3)-H alkylation; iron catalysis; skeletal rearrangement; Dowd-Beckwith; 
photocatalysis

Carbon skeleton rearrangements in which C-C sigma bonds are broken provide powerful 

bond disconnections in organic synthesis.1,2 Due to the largely inert nature of C-C 

sigma bonds, formation of high energy intermediates like carbocations or radicals is 

Corresponding Author: Tomislav Rovis – Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027; 
tr2504@columbia.edu. 

The authors declare no competing financial interests.

Supporting Information
Experimental details and compound characterization data. The Supporting Information is available free of charge on the ACS 
Publications website.

HHS Public Access
Author manuscript
ACS Catal. Author manuscript; available in PMC 2022 June 18.

Published in final edited form as:
ACS Catal. 2021 June 18; 11(12): 7442–7449. doi:10.1021/acscatal.1c02285.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



usually necessary to generate sufficient thermodynamic driving force for their scission. 

While carbocation-mediated transformations like the Wagner-Meerwein and pinacol 

rearrangements have been widely studied and utilized in organic synthesis,3–5 there has 

been less focus on their radical-mediated counterparts.6–8

The Dowd-Beckwith rearrangement is a radical-mediated skeletal rearrangement that has 

found synthetic applications in ketone ring expansions.9–17 Typically, a primary alkyl 

radical is generated by halogen abstraction with a stannyl radical. This then adds to a 

carbonyl, forming a cyclopropyloxy radical which subsequently undergoes β-scission to give 

a more stable radical that is then quenched with tributyltin hydride (Scheme 1A). Current 

limitations of the rearrangement include the necessity for preinstallation of a functional 

handle and the use of stoichiometric tin reagents.

The key skeletal rearrangement step in the Dowd-Beckwith ring expansion is related to a 

family of radical 1,2-rearrangements wherein a primary radical β to a π-system adds to it, 

forming a transient cyclopropyl intermediate that then undergoes β-scission to form a more 

stable tertiary radical.18–20 The rate constants of these rearrangements have been measured 

with various π-systems like alkenes, alkynes, arenes, carbonyls and nitriles, and several have 

been used as radical clocks.21–25

Hydrogen atom transfer (HAT) has emerged as a powerful mechanism for direct 

functionalization of C(sp3)-H bonds.26–30 Various reagents and catalysts have been 

developed to exhibit excellent HAT regioselectivity despite the high energy intermediates 

required to abstract strong unpolarized C(sp3)-H bonds.31–34 Although much attention has 

been paid towards the functionalization of C(sp3)-H bonds adjacent to heteroatoms or other 

radical stabilizing functional groups, less work has focused on the functionalization of 

compounds bearing electron withdrawing moieties.35 Previous investigations have shown 

that hydrogen atoms adjacent to electron withdrawing groups are recalcitrant to HAT due 

to a polarity mismatch,36–41 despite their lower bond dissociation energies compared to 

unactivated C(sp3)-H bonds.42 We postulated that the directing effect of carbonyls or other 

electron-withdrawing groups could enable HAT selectively at the beta-position to enable 

a skeletal rearrangement analogous to the Dowd-Beckwith ring expansion directly from 

C(sp3)-H bonds (Scheme 1B).

We recently reported the photocatalytic C(sp3)–H alkylation of alkanes using copper (II) 

chloride. This system mediates intermolecular HAT via the formation of chlorine radical 

which is readily generated by photoinduced ligand to metal charge transfer (Scheme 1C).43 

Herein, we report a redox-neutral, photocatalytic alkylation of unactivated C(sp3)–H bonds 

distal from electron-withdrawing moieties using an iron (III) chloride catalyst44–49 to 

enable access to divergent products (Scheme 1D) via a skeletal rearrangement (Scheme 

2). Of practical interest is that iron is the most abundant transition metal in the Earth’s 

crust,50 making it inexpensive and well-suited for use in large-scale syntheses.51 Simple 

changes to the temperature and concentration of the reaction, as well as the choice of the 

electron-deficient olefin partner allow for control of the ratio of unrearranged and rearranged 

products.
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Initial optimization of the reaction was conducted using pinacolone and benzyl acrylate 

(Table 1). Early investigations found a catalyst loading of 25 mol% FeCl3 and the use 

of benzyl acrylate in limiting quantities to be effective. At room temperature and a 

concentration of 0.3 M, we obtain an isomeric ratio (ir) of unrearranged to rearranged 

product (3a:3b) of 1:1.4. Hypothesizing that an increase in temperature would reduce the 

rate of intermolecular radical trapping relative to the intramolecular skeletal rearrangement, 

we performed the reaction at 60 °C, and found that the ir indeed increases to 1:4 in favor 

of the rearranged product. Decreasing the reaction concentration to 0.1 M also promotes 

the 1,2-migration, increasing ir to 1:10. Given that reaction yields remain comparable 

under these conditions, we selected these conditions as optimal for promoting either the 

unrearranged product (Entry 1 – Conditions A) or the rearranged product (Entry 3 – 

Conditions B). UV-vis studies of FeCl3 in acetonitrile reveal a peak with λmax = 361 

nm, with a tail into the visible region, along with two other maxima in the ultraviolet 

region (see SI). These peaks closely match the reported absorption spectrum of FeCl4− 

in acetonitrile, indicating that this is likely to be the photoactive species in our system.52 

Addition of lithium chloride to the solution does not change any of the observed λmax 

values, further supporting this possibility. However, unlike with CuCl2,43 we found that 

exogenous chloride proved slightly detrimental to the efficiency of the reaction (Entry 4). 

Control reactions reveal the necessity for light and FeCl3 in order to furnish the desired 

product. Moreover, irradiating the reaction for 1 hour and continuing the reaction in the dark 

leads to dramatically reduced yields, disfavoring a radical chain mechanism where FeCl3 

acts as an initiator, although we cannot completely rule out short chain processes. 427 nm 

irradiation is inefficient at promoting the reaction. Finally, we found that the reaction may be 

performed under air without significant loss in efficiency.

The scope of substrates which undergo this 1,2-migration is summarized in Scheme 3 (see 

SI for additional substrates). A variety of ketones other than pinacolone were found to be 

amenable to the transformation. Ketone 4 demonstrates a reduced propensity to undergo 

the 1,2-migration (12:1 ir), which we propose is due to a smaller Thorpe-Ingold effect 

compared to pinacolone.19,53–57 As expected, the ir is shifted towards the rearranged product 

(1.6:1) by performing the reaction under conditions B. Pivaloyl chloride was also observed 

to undergo 1,2-migration to a small extent, with an ir of 4:1 (5). The product was isolated 

as the ethyl ester after workup in alkaline ethanol. Aromatic substituents also participate 

in this 1,2-migration, albeit less efficiently than carbonyl substituents. Tert-butylbenzene 

gives an ir of 16:1 under conditions A (6), likely because the formation of the cyclopropyl 

intermediate disrupts aromaticity. The rate constant of this rearrangement is known to be 

4 ×102 s−1 (298K),58 which provides a lower limit for the rate of radical addition to ethyl 

acrylate under our reaction conditions. We found that substituent effects can exert a strong 

influence on the propensity of the substrate to undergo migration. Electron-withdrawing 

substituents (-Ac, -CN) in the para-position lead to a complete inversion in ir. Under 

conditions A, the rearranged products predominate, and under conditions B they are formed 

exclusively (7–8). As expected, weakly electron-donating substituents such as acetoxy 

(9) exert only a minor effect on the rate of the 1,2-migration, yielding comparable ir 
values to the unsubstituted substrate 6. Ketone 10, containing both a phenyl and an acyl 

substituent adjacent to the site of initial radical formation, acts as a competition experiment 
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between cyclization onto the arene and the carbonyl moieties. We exclusively obtained 

the rearrangement product resulting from a 1,2-acyl shift (10b). This complete selectivity 

can be attributed to the fact that the rate of the 1,2-acyl shift is more than two orders 

of magnitude greater than that of the 1,2-phenyl shift.25 Ring-expansion products similar 

to the Dowd-Beckwith reaction can be obtained starting with completely unfunctionalized 

cyclic ketones (11). Complete selectivity for the ring-expanded rearrangement product 11b 
is observed regardless of the conditions used. Given that electron-deficient arenes (7–8) 

strongly promote the rearrangement, we wondered whether protonated heteroarenes could 

function similarly. Indeed, di-tert-butylpyridine 12 reacts in moderate yields, favoring the 

rearranged product relative to tertbutylbenzene. With benzothiazole 13, the rearranged 

product is formed exclusively under Conditions B.

We next examined how the choice of electron-withdrawing olefin would affect the amount 

of 1,2-migration observed (Scheme 4). Maleic anhydride and N-methylmaleimide react in 

moderate to good yields. We isolated roughly equimolar mixtures of unrearranged and 

rearranged product (14–15) under Conditions A, but mostly rearranged product (1:8) under 

Conditions B. To our surprise, despite being significantly weaker electrophiles than maleic 

anhydride and N-methylmaleimide in previous studies with closed-shell nucleophiles59,60, 

benzyl acrylate, acrylonitrile, and ethyl methacrylate react with comparable ir values under 

the two conditions (3, 16–17). Other electron-withdrawing groups on the olefin are also 

tolerated, including sulfones, amides and free acids (18–20). These acceptors generally give 

comparable to slightly higher ratios of rearranged product compared to benzyl acrylate. 

Reaction with fumaronitrile proceeds in good yields under both reaction conditions (21), 

with a similarly greater proportion of rearrangement product. Again, this was contrary 

to our expectations, since fumaronitrile is known to be a stronger electrophile than the 

acrylates based on previous studies of polar reactions.60 Dimethyl fumarate (22) gives a 

slightly higher ir in favor of the rearrangement compared to fumaronitrile, while the cis 
isomer dimethyl maleate (23) heavily favors the rearrangement under both conditions. Small 

proportions of cyclized rearranged product 22c are observed under conditions B but not 

under conditions A, suggesting a possible thermally-driven aldol-type reaction. Finally, 

benzylidenemalononitrile, which displays similar electrophilicity to maleic anhydride in 

polar reactions,61 also unexpectedly yields high proportions of rearrangement product (24). 

The alkylated product is isolated exclusively as a cyclized adduct, presumably formed from 

attack of the bis(cyano)-stabilized anion onto the ketone. The diastereoselectivity of the 

cyclization was unambiguously confirmed by X-ray crystallography.

In order to better understand these unexpected observations, we sought to benchmark the 

rate constants for the addition of radical nucleophiles to these acceptors. Initial experiments 

demonstrated a linear dependence of the ratio of unrearranged to rearranged product on 

the concentration of acceptor used (see SI). This linear dependence argues against a Curtin-

Hammett scenario62,63 wherein the primary and tertiary radicals are rapidly equilibrating 

and the product ratio is determined by the energy barriers for the trapping of the two 

radicals, since the ratio of products would be largely insensitive to acceptor concentration 

under that regime. Along with the effect of elevated temperature on the proportion of 

rearranged product, this finding led us to propose a mechanism in which the addition 
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of the initially formed primary radical to the acceptor is in direct competition with the 

1,2-migration to form the more stable tertiary radical. While the 1,2-migration is in principle 

reversible, two factors indicate that the reverse reaction is likely to be heavily outcompeted 

by trapping of the tertiary radical by the electron-deficient olefin. Tertiary radicals exhibit 

greater nucleophilicity compared to primary radicals,64 so trapping of the rearranged radical 

is likely to be significantly more rapid. Moreover, the initial formation of the cyclopropyloxy 

radical is significantly accelerated by a Thorpe-Ingold effect that is absent in the reverse 

reaction – the cyclization of 3-butenyl radical to cyclopropylcarbinyl radical is three orders 

of magnitude slower than the analogous reaction with the 2,2-dimethyl-3-butenyl radical.65 

Under this regime, the rate constant for the 1,2-migration can serve as a convenient radical 

clock to determine the rate constants for addition of the pinacolone primary radical to 

various acceptors.

Working from the known rate constant for 1,2-migration for di-tert-butyl ketone,25 we 

determined the corresponding rate constant for pinacolone to be 2.9 × 104 s−1 (see SI). 

Initial rate experiments were then conducted using the 1,2-migration as a radical clock. The 

calculated rate constants for the addition of the pinacolone primary radical to the acceptors 

tested span slightly more than an order of magnitude (Scheme 5A). The values are also 

generally consistent with the ir values observed in our reactions, with the least reactive 

acceptors giving the greatest proportions of rearrangement product. Comparison of our rate 

constants to the known rate constants for methyl and tert-butyl radical addition to similar 

acceptors64,66–69 (see SI for a detailed table) shows that the pinacolone radical generally 

adds more slowly than both, reflecting its high steric hindrance and low nucleophilicity (as a 

primary radical). The fairly low spread of the rate constants is also consistent with literature 

data sets. Giese-type additions are known to be highly exothermic and therefore have early 

transition states that are less sensitive to the structure of the electrophilic alkene relative to 

analogous ionic additions.66 Rate constants for alkyl radical addition to 15, 18, 19, and 24 
were not previously known.

With substrates that only give moderate isomeric ratios, the selectivity can be tuned in 

either direction with further modifications to the reaction conditions (Scheme 5B). Under 

Conditions A, diisopropyl ketone 25 gives a moderate ir of 2.3:1. Performing the reaction 

at a higher concentration increases the ir to almost 4:1 (Entry 3). Similarly, the ir of 1:3.2 

under conditions B can be increased to 1:5.9 by addition of benzyl acrylate in five equal 

portions over 60 h (Entry 4). In line with our proposed mechanism, increasing or decreasing 

the effective concentration of the acceptor in the reaction mixture yields a correspondingly 

smaller or greater proportion of rearrangement product.

In conclusion, we report an iron-catalyzed, photocatalytic method for the divergent 

alkylation of C(sp3)–H bonds mediated by a 1,2-skeletal rearrangement. Unlike typical 

radical-mediated skeletal rearrangements, no prefunctionalization is required, and control 

over the ratio of unrearranged to rearranged product can be achieved by simple 

modifications to the reaction conditions or the choice of acceptor. The 1,2-rearrangement 

was also utilized as a radical clock to determine the rate constants for the addition of 

nucleophilic radicals to various electron-deficient olefins.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Radical rearrangement via FeCl3 ligand-to-metal charge-transfer (LMCT) provides access to 

divergent C(sp3)–H alkylation products.
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Scheme 2. 
Mechanism of the 1,2-rearrangement.
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Scheme 3. 
Scope of C-H pronucleophiles for the 1,2-migration. N.D.: not detected. *With 50 mol% 

FeCl3 and 5 equiv. CF3COOH as an additive. #With 5 equiv. CF3COOH as an additive.
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Scheme 4. 
Scope of acceptors for the 1,2-migration. *1 equiv. trifluoroacetic acid used as an additive.
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Scheme 5. 
(A) Rate constants of addition to various alkenes. (B) Modifications to the reaction 

conditions allow for further control of the isomeric ratio (ir). * Yields were determined 

by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard.
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Table 1.

Optimization and Control Studies

Entry Deviation from Standard Conditions Yield (%) ir (3a:3b)

1 none 64 1:1.4

2 60 °C 65 1:4

3 60 °C, 0.1 M 67 1:10

4 added LiCl (62.5 mol%) 52 1:1

5 0% FeCl3 0 -

6 in the dark 0 -

7 irradiate at 390 nm 1 h, then dark 2 n.d.

8 427 nm LED 3 n.d.

9 under air 47 1:1

a
Reactions were performed on a 0.3 mmol scale. Yields were determined by 1H NMR using 1,3,5-trimethoxybenzene as the internal standard. n.d.: 

not determined.
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