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Abstract

Phantoms are essential tools for assessing and verifying performance in computed tomography 

(CT). Realistic patient-based lung phantoms that accurately represent textures and densities are 

essential in developing and evaluating novel CT hardware and software. This study introduces 

PixelPrint, a 3D-printing solution to create patient-specific lung phantoms with accurate contrast 

and textures. PixelPrint converts patient images directly into printer instructions, where density 

is modeled as the ratio of filament to voxel volume to emulate local attenuation values. 

For evaluation of PixelPrint, phantoms based on four COVID-19 pneumonia patients were 

manufactured and scanned with the original (clinical) CT scanners and protocols. Density 

and geometrical accuracies between phantom and patient images were evaluated for various 

anatomical features in the lung, and a radiomic feature comparison was performed for mild, 

moderate, and severe COVID-19 pneumonia patient-based phantoms. Qualitatively, CT images 

of the patient-based phantoms closely resemble the original CT images, both in texture and 

contrast levels, with clearly visible vascular and parenchymal structures. Regions-of-interest 

(ROIs) comparing attenuation demonstrated differences below 15 HU. Manual size measurements 

performed by an experienced thoracic radiologist revealed a high degree of geometrical correlation 

between identical patient and phantom features, with differences smaller than the intrinsic 

spatial resolution of the images. Radiomic feature analysis revealed high correspondence, with 

correlations of 0.95–0.99 between patient and phantom images. Our study demonstrates the 

feasibility of 3D-printed patient-based lung phantoms with accurate geometry, texture, and 

contrast that will enable protocol optimization, CT research and development advancements, and 

generation of ground-truth datasets for radiomic evaluations.
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1. INTRODUCTION

Anthropomorphic phantoms, geometric image quality phantoms, and mathematical 

phantoms are fundamental tools for developing, optimizing, and evaluating novel methods 

in computed tomography (CT) research and clinical practice. While many different 

phantoms are available commercially and in research laboratories, there is a lack of patient-

based phantoms that fully represent attenuation profiles and textures seen in clinical CT 

acquisitions, for example, for healthy and diseased lungs. Additionally, the academic and 

clinical CT community would benefit from a rapid and inexpensive manufacturing process 

compared to current commercial solutions. Over the last decade, fused deposition modeling 

(FDM)-based three-dimensional (3D) printing of various tissue-mimicking phantoms has 

been widely explored for validation and evaluation of CT imaging technology1–4. Studies 

have focused on several areas, including manufacturing geometrically correct models 

of organs5–9, generating realistic texture samples10,11, and creating accurate attenuation 

profiles12–15. The general procedure to 3D-print an anthropomorphic phantom from CT 

image data includes: (i) segmentation of regions/organs of interest in CT images, (ii) 

conversion of selected regions from volumetric data to triangulated surface geometry models 

(e.g., STL or SLA files), and (iii) use of printer-specific slicing software to apply proper 

parameters (e.g., extrusion rate, print speed, infill ratios, etc.) to generate instructions for 

printers to create 3D products. While this approach produces phantoms that resemble true 

anatomical structures, it still has shortcomings. First, spatial resolution is largely lost due to 

segmentation of regions and conversion to surface models. Second, for each region/surface 

model, the slicer software assigns unique infill and exterior walls (or perimeter), creating 

abrupt, unrealistic transitions between regions of different densities in the final product. 

Third, due to its reliance on segmentation, this method is susceptible to boundary placement 

errors.

A promising alternative is to directly translate DICOM image data into printer 

instructions16,17, usually referred to as geometric code or G-code. To generate different 

densities in 3D-printed CT phantoms, these methods utilize a pixel-by-pixel change in 

the filament extrusion rate, while maintaining a constant printing speed. Although this 

approach enables generation of sophisticated phantoms with realistic attenuation profiles, 

it falls short when printing high-resolution features. The reduction in spatial resolution 

is an important concern when generating natural image textures. Therefore, there is an 

unmet need for a rapid and inexpensive process for generating patient-based phantoms with 

accurate organ geometry, image texture, and attenuation profiles. We propose a 3D-printing 

solution that can achieve accurate organ geometry, image texture, and attenuation profiles, 

while eliminating the complexities and limitations of previous methods. Our solution is a 

one-step method for translating CT images into printer instructions (G-code) that can be 
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used by any FDM 3D-printer. It combines varying printer speeds with a constant filament 

extrusion rate to control the density of each printed voxel.

2. METHODS

2.1 PixelPrint

Conventional 3D-printing utilizes slicing software to convert 3D-models to printer 

instructions written in G-code, a widely used machine language defining 3D-printing 

parameters (e.g., layer height, retraction, print speed, etc.). We present a solution that 

converts volumetric CT DICOM images directly into G-code without segmentation or 

intermediate 3D-models. Applied to common FDM 3D-printers, PixelPrint produces 

multiple 2D layers, one layer at a time, to create phantoms. Each printed layer is mapped 

from a corresponding DICOM slice, with the physical scale controlled to ensure that the 

resulting phantom has the same dimensions as the scanned patient. For each printed layer, 

PixelPrint generates an array of spaced parallel filament lines at fixed spacing but of varying 

widths, creating a partial volume effect to form varying densities. PixelPrint computes the 

density of the input image at closely spaced intervals along each line and maps it into 

appropriate extrusion and printhead speeds over each interval. It then records one G-code 

command that defines a starting point, an end point, the filament extrusion, and speed for 

that interval. This process is repeated for every interval over every line, in every layer, until 

the entire volume is encoded in a G-code file. Since layers are deposited in alternating 

directions, the varying line widths create a matrix of high- and low-density regions that 

correlate with the original input image volume. The matrices are shifted in angle and 

location at each layer, and the printed layer height is much smaller than the typical CT slice 

thickness. Each CT slice of the printed phantom therefore contains multiple shifted layers, 

ensuring that reslicing of the CT image data does not result in sampling or moiré patterns. 

In our experiments, we found that altering the line width by varying the extrusion rate alone 

does not provide sufficient spatial resolution due to the inherently slow response time of 

the extrusion process. Instead, we maintain a constant filament flow rate while changing the 

speed of the printhead to control the extrusion width.

2.2 Patient-based phantoms

Phantoms were printed on a fused-filament 3D-printer (Lulzbot TAZ 6 with M175 tool head, 

Fargo Additive Manufacturing Equipment 3D, LLC Fargo, ND, USA) using a 0.25 mm 

brass nozzle. Polylactic Acid (PLA) filament with a diameter of 1.75 mm (MakeShaper, 

Keene Village Plastics, Cleveland, OH, USA) was extruded at a nozzle temperature of 

210 °C. To improve adhesion, the build plate was heated to 50 °C. Printing speed varied 

from 3.0 to 30 mm/s, producing line widths from 1.0 to 0.1 mm. An institutional review 

board (IRB) approved this retrospective study. CT images of four patients who had been 

diagnosed with COVID-19 pneumonia and acute respiratory distress syndrome (ARDS) 

were selected from the PACS system at the Hospital of the University of Pennsylvania 

and anonymized. Depending on the disease severity, the images demonstrate isolated or 

wide-ranging regions with extensive fibro-proliferative changes, with both interstitial and 

alveolar components within the lung parenchyma. A 20 cm diameter ring surrounding the 

lung was added for better positioning of the phantom within the bore of an oval phantom 
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representing a medium-sized patient (see details below). HU values were converted into 

filament line widths using a HU-to-density mapping calculated from a calibration phantom. 

A lower cut-off value of 10% and an upper cap of 100% material density were applied.

2.3 Data Acquisition & Analysis

For imaging, printed phantoms were placed inside the 20 cm bore of a technical phantom 

(Gammex MECT) to mimic attenuation profiles of an average-sized patient (300 × 400 

mm2). For each patient-specific phantom, imaging was performed with the same CT scanner 

and protocol as the clinical acquisition (GE Revolution CT, Siemens Sensation-64/Edge/

Drive). The resulting images were registered to the original patient image using simple-ITK. 

For three patients who were diagnosed with findings that are attributed to mild, moderate, 

and severe COVID-19 pneumonia, we extracted radiomics features from manually placed 

ROIs using the pyradiomics library18. Using the calculated radiomic feature vectors, we 

performed patient-phantom comparisons of textural and statical descriptors. In addition, 

regions-of-interest (ROIs) of different sizes in varied locations were manually placed in 

vessels and parenchyma of images from a fourth patient by an experienced thoracic 

radiologist (L.R., four years of experience) for mean HU values and standard deviations 

comparisons. Finally, size measurements of three small oval structures (two bronchi and one 

pulmonary artery) were performed by the radiologist on both patient and phantom images.

3. RESULTS

Printing each patient-based phantom required approximately 24 hours of printing time. A 

CT image of a phantom, shown in zoomed-in regions in the lower panels in Figure 1, 

closely resembles the original CT image in both texture and contrast levels, with clearly 

visible vascular and bronchial structures. Figure 2 shows the identical regions in patient 

and phantom data selected for density measurements. Although the patient image appears 

noisier than the phantom image, due to higher attenuation from the patient body, five ROIs 

show very similar mean values, with differences that are below 15 HU. Figure 3 presents 

three manually measured anatomical features. Manual size measurements performed by 

an experienced radiologist illustrate a high degree of geometrical correlation of details 

between the patient image and the phantom images, with differences that are smaller than 

the intrinsic spatial resolution of the scans.

Radiomic features were calculated from manually selected volumetric ROIs of mild, 

moderate, and severe COVID-19 pneumonia patient images (Figure 4). To account for 

the large range of radiomic feature magnitudes (10−3–1010), the extracted features were 

normalized using a n additional ROI which was positioned on the mild COVID-19 

pneumonia patient images and served as a standard radiomic feature vector. Figure 5 

presents the resulting mean absolute relative differences of radiomic features (relative to 

the standard feature vector) for each phantom or patient ROI. It demonstrates a good 

correspondence between 3D-printed phantom images and clinical images for the mild and 

moderate patients, and a clear separation between disease severity for all phantom or patient 

ROIs. Correlations of radiomic feature relative differences between clinical and 3D-printed 

were found to be 0.9468 for the mild patient, 0.9806 for the moderate patient, and 0.9979 
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for the severe patient, demonstrating the high degree of contrast and textural correspondence 

between clinical images and 3D-printed phantoms using PixelPrint.

4. CONCLUSIONS

Over the last decade, several approaches have been proposed to produce clinically applicable 

CT phantoms. Kairn et al. introduced a method to generate a patient-based lung phantom19. 

They segmented CT images of the lung into three different regions and produced a 

tissue equivalent lung phantom. However, their approach is unable to meet the resolution 

requirements to represent structures in the lung parenchyma. Giron et al. and Joemai et al. 
developed a printed lung for image quality assessment in CT; their prints contain vascular 

structures with limited realistic lung textures8,20. Okkalidis et al. proposed a pixel-by-pixel 

algorithm17,21, translating DICOM images to printer instructions and printed patient-specific 

skull and chest phantoms. Results showed a reliable match in HU; however, detailed 

structures and textures within the lung are not visible. Jahnke et al. also introduced an 

alternative approach22 of stacking radiopaque 2D prints to form patient-based 3D-phantoms.

Our method enables the creation of realistic phantoms from clinical CT data, that can 

readily serve as ground-truth datasets, opening opportunities in the clinical and research 

arena. For day-to-day operations, our phantom concept allows optimization of CT protocols 

with a focus on specific clinical tasks, for example, introduction of advanced non-linear 

reconstruction algorithms23 can be challenging due to the limited clinical value of technical 

phantoms and ethical difficulties of scanning patients twice for this purpose. With our 

phantoms, an ample parameter space can be evaluated to determine the optimal solution 

with respect to radiation exposure and diagnostic image quality. A positive effect could be 

achieved for CT research and development by accelerating clinical evaluations with patient-

based phantoms. Predominantly novel data-driven developments in artificial intelligence 

and radiomics can gain significantly from early access to realistic clinical data. One open 

challenge is the effect of differences in CT protocols and inter-vendor variabilities on 

radiomic features24–26. With a representative group of patient-based phantoms manufactured 

with PixelPrint, one would be able to evaluate this effect fully and determine a robust 

and rigorous operating space for radiomic feature extraction. Further, the same group 

of phantoms may assist as a tool to evaluate and validate harmonization strategies. In 

conclusion, the present study illustrates the possibility of creating 3D-printed patient-based 

lung phantoms with accurate organ geometry, image texture, and attenuation profiles. 

This may lead to a paradigm change for the development of novel CT hardware and 

software by enabling accelerated evaluation and validation with realistic patient-based data. 

Ultimately this will shape the clinical day-to-day routine and benefit patients with novel and 

standardized CT imaging.
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Figure 1. 
A patient-based lung 3D-printed phantom, with a high level of visual resemblance between 

the original CT images and the phantom CT images, both in texture and contrast levels. 

(a) Photograph of the printed patient-based phantom. (b) CT image of patient lung. (c) CT 

image of patient-based phantom. Blue, orange, and yellow boxes indicate zoomed-in regions 

of the patient DICOM image. Both CT images were acquired on the same scanner using the 

same (clinical) protocol. Window level/width: −500/1000 HU.
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Figure 2. 
Locations and size of selected regions of interest for density measurements in patient and 

phantom images. (a) CT image of the original patient scan (b) CT image of the patient-based 

phantom. Window level/width: −500/1000 HU.
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Figure 3. 
Locations and size measurements of selected anatomical features for size evaluations in 

patient and phantom data. (a) and (c) CT image of original (clinical) patient lung. (b) and (d) 

CT image of patient-based 3D-printed phantom. Window level/width: −500/1000 HU.

Shapira et al. Page 10

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
CT images of three patient and patient-specific 3D-printed phantom scans, together with 

the locations and sizes of the selected regions of interest (ROIs) for radiomic feature 

comparisons. Each ROI is spanned over five consecutive slices (only central slice presented 

here) and contains a total of 3750 pixels (5 × 25 × 30). Window level/width: −500/1200 HU.
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Figure 5. 
Comparison of mean absolute relative differences of radiomic features from the selected 

ROIs shown in Figure 4, demonstrating a correspondence between 3D-printed phantom 

and clinical images, and parametric response mappings demonstrating high patient-phantom 

correlations.
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