
HySec-Flow: Privacy-Preserving Genomic Computing with SGX-
based Big-Data Analytics Framework

Chathura Widanage1, Weijie Liu1, Jiayu Li1, Hongbo Chen1, XiaoFeng Wang2, Haixu Tang2,
Judy Fox3

1Indiana University

2Indiana University

3University of Virginia

Abstract

Trusted execution environments (TEE) such as Intel’s Software Guard Extension (SGX) have been

widely studied to boost security and privacy protection for the computation of sensitive data such

as human genomics. However, a performance hurdle is often generated by SGX, especially from

the small enclave memory. In this paper, we propose a new Hybrid Secured Flow framework

(called “HySec-Flow”) for large-scale genomic data analysis using SGX platforms. Here, the

data-intensive computing tasks can be partitioned into independent subtasks to be deployed

into distinct secured and non-secured containers, therefore allowing for parallel execution while

alleviating the limited size of Page Cache (EPC) memory in each enclave. We illustrate our

contributions using a workflow supporting indexing, alignment, dispatching, and merging the

execution of SGX- enabled containers. We provide details regarding the architecture of the

trusted and untrusted components and the underlying Scorn and Graphene support as generic

shielding execution frameworks to port legacy code. We thoroughly evaluate the performance of

our privacy-preserving reads mapping algorithm using real human genome sequencing data. The

results demonstrate that the performance is enhanced by partitioning the time-consuming genomic

computation into subtasks compared to the conventional execution of the data-intensive reads

mapping algorithm in an enclave. The proposed HySec-Flow framework is made available as

an open-source and adapted to the data-parallel computation of other large-scale genomic tasks

requiring security and scalable computational resources.

Keywords

Privacy-preserving Computing; Software Guard Extension (SGX); Reads mapping

I. Introduction

Security and privacy issues have received increasing attention in big-data analytics

performed on public or commercial clouds. In particular, personal genomic data contain

identifiable information concerning human individuals: it has been shown that the identity of

cdwidana@iu.edu .

HHS Public Access
Author manuscript
IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

Published in final edited form as:
IEEE Int Conf Cloud Comput. 2021 September ; 2021: 733–743. doi:10.1109/CLOUD53861.2021.00098.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

a participant in a human genome study could be revealed from her genetic profile through

searching online genealogy databases [1]. As a result, biomedical researchers are cautious

of moving the intensive computation involving personal human genomic data onto the

commercial cloud.

Cryptographic techniques are available to protect data privacy on the cloud. Homomorphic
encryption (HE) [2] allows users to perform computation directly on encrypted data.

However, HE introduces several magnitudes of computational overheads. A promising

alternative has recently been presented by a new generation of hardware supporting a

trusted execution environment (TEE), in which sensitive data are kept on secure storage and

processed in an isolated environment, called the enclave. A prominent example is the Intel

Software Guard Extension (SGX) [3], which has a set of instructions for establishment and

management of an enclave on Intel’s mainstream processors, which are available in major

cloud service providers such as Microsoft Azure [4]. Current benchmark experiments on

data-intensive computing tasks [5] demonstrate that SGX provides data protection against

attacks from the host operating system or even system administrators while introducing only

moderate computation overhead; therefore, it is widely considered to be suitable for data-

intensive computation, including the computing tasks involving personal human genomic

data.

Privacy-preserving algorithms have been developed for several genomic analysis tasks,

including genetic testing and variant searching using human genomic profiles [6]–[8]. These

tasks are relatively lightweight and do not require extensive memory that exceeds the limited

Page Cache (EPC) available in an enclave. Hence, the efforts of these implementations

were focused on the data encryption/decryption and the protection of the data from

side-channel information leaks (e.g., using data oblivious algorithms [9]). More recently,

privacy-preserving algorithms [10], [11] were developed for Genome-wide Association

Studies (GWAS), a common computational approach to identifying the associations between

phenotypes and genetic variants [12]. These methods exploited sketching algorithms to

reduce the memory usage of GWAS computation to be executed inside the enclave within

the limits of EPC memory. However, the sketching algorithms were customized for the

specific computing task (i.e., GWAS) and cannot be generalized to other tasks. Furthermore,

privacy-preserving approaches are still lacking for parallel data-intensive computation using

multiple enclaves enabled by SGX.

This paper presents a generic privacy-preserving data analytics framework for developing

large-scale genome computing tasks using SGX. A key challenge here is that only limited

resources are directly accessible by the code running inside the enclave. Therefore, it

is critical to devise a sophisticated method to partition the target computation task into

subtasks so that each subtask can be executed efficiently using the enclave when necessary.

It is worth noting that HySec-Flow distinguishes itself from the current approaches (e.g.,

Scone [13] and Graphene-SGX [14]) that provide runtime environments to run existing

programs inside the enclave. As shown in our benchmark experiments, these approaches

do not support either a hybrid enclave/non-enclave architecture or the use of parallel

computation with multiple enclaves and so are not scalable for large data-intensive genome

Widanage et al. Page 2

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

computing tasks. Furthermore, the efficiency of running specific algorithms is not optimized

inside the enclave in the original applications. As well as subtasking, other contributions of

the paper include:

• We design a hybrid task scheduler to integrate secure and non-secure containers

into HySec-Flow for performing the subtasks in enclaves to address scaling

issues of SGX.

• We demonstrate the design strategy of our analytics framework using the

implementation of the reads mapping task (i.e., the alignment of millions of short

(≈ 100 bases long) DNA sequences (reads) acquired from a human individual

onto a reference human genome).

Reads mapping serves as a prerequisite step for many downstream analyses in human

genome computing (e.g., genome variation calling, genotyping, gene expression analysis),

and thus many software tools (e.g., BWA [15], Bowtie [16]) have been developed for this

fundamental task. Notably, the reads acquired from a human individual contain identifiable

information about the donor and should be protected in a public cloud environment.

Previously, customized algorithms were proposed for privacy-preserving reads mapping

using cryptography approaches [17], which introduced significant computing overheads and

did not scale well with massive demands.

To the best of our knowledge, HySec-Flow is the first SGX-based privacy-preserving

solution of reads mapping that introduced reasonable computing overhead while is highly

parallelizable and scalable. Our novel hybrid task scheduler with secure containers enables a

workflow for complex analysis such as a modified reads mapping and alignment algorithm.

The end-to-end secure analysis framework, as shown in Fig. 1 is released as open-source

software at [18].

II. Background

A. Intel SGX

Intel SGX is a set of x86 instruction extensions that offer hardware-based memory

encryption and isolation for application code and data. The protected memory area (called

an enclave) resides in an application’s address space, providing confidentiality and integrity

protection. SGX is a user-space TEE characterized by flexible process-level isolation:

a program component can get into an enclave mode and be protected by execution

isolation, memory encryption, and data sealing against the threats from the untrusted OS

and processes running in other enclaves. More specifically, the memory of an enclave is

mapped to a special physical memory area called Enclave Page Cache (EPC). It is encrypted

by Memory Encryption Engine (MEE) and cannot be directly accessed by other system

software. Such protection, however, comes with in-enclave resource constraints. Particularly,

only 128 MB (256 MB for some new processors) encryption-protected memory (called

Enclave Page Cache or EPC) is reserved. Although virtual memory support is available, it

incurs significant overheads in paging.

Widanage et al. Page 3

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

B. SGX-based Data Sealing

SGX remote attestation allows a remote user to verify that the enclave is correctly

constructed and runs on a genuine SGX platform. In Intel’s attestation model, three parties

are involved: (1) The Independent Software Vendor (ISV) who is registered to Intel as the

enclave developer; (2) The Intel Attestation Service (IAS) hosted by Intel which verifies

the enclave; and (3) The SGX platform, which operates the SGX enclaves. The attestation

begins with the ISV sending an attestation request challenge, which can be generated by an

enclave user who wants to perform the attestation of the enclave. The attested enclave then

generates a verification report including the enclave measurement, which can be verified by

an Intel-signed quoting enclave (QE) through local attestation. The QE signs the report using

the attestation key, and the generated quote is forwarded to the Intel Attestation Service

(IAS). The IAS verifies the quote and signs the verification result using the Intel private key.

The verification result can convince the ISV or the enclave user by verifying the signature

and comparing the enclave measurement. When an enclave is instantiated, it protects the

data by keeping it within the enclave boundary. In general, the secrets provisioned to an

enclave are lost when the enclave is closed. However, if the private data must be preserved

during one of these events for future use within an enclave, it must be stored outside the

enclave boundary before closing the enclave. To protect and preserve the data, a mechanism

is in place which allows enclave software to retrieve a key unique to that enclave that the

enclave can only generate on that particular platform. Using that key, the enclave software

can encrypt data, store them on the platform, or decrypt the encrypted data are stored on the

platform. SGX refers to these encryption and decryption operations as sealing and unsealing,

respectively. When data needs to be encrypted and stored outside the enclave, sealing and

unsealing are needed. Using sealing, the data within the enclave is encrypted using an

encryption key derived from the CPU hardware.

Intel SGX provides two policies for encryption keys: MRENCLAVE (enclave identity) and

MRSIGNER (signing identity). These policies affect the derivation of the encryption key

and are described in the documentation of Intel SGX [19]. Developers can take advantage

of sealing based on the Signing Identity policy to share sensitive data via a sealed data

blob between multiple enclaves initiated by a single application and/or those by different

applications. To utilize Intel SGX’s data sealing feature, we use the set of keys generated

and stored in the processor’s fuse array. There are two identities associated with an enclave.

The first is the Enclave Identity and is represented by the value of MRENCLAVE, which is

a cryptographic hash of the enclave log (measurement) as it goes through every step of the

build and initialization process. MRENCLAVE uniquely identifies any particular enclave, so

using the Enclave Identity will restrict access to the sealed data only to instances of that

enclave. Therefore, we use the other key policy provided by SGX - MRSIGNER, which

generates a key based on the value of the enclave’s MRSIGNER and the enclave’s version.

Specifically, we encapsulate the sgx_seal_data() function, to better leverage the key

derived from the instruction EGETKEY. We also implement utility codes for encrypting the

initial genome data.

Widanage et al. Page 4

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C. Bloom filter

A Bloom filter is a space-efficient probabilistic data structure. It provides membership

queries over dynamic sets with an allowable false positive rate. An ordinary Bloom filter

consists of a bit array B of m bits, which are initially set to 0, and k hash functions, h1, h2,

…, hk, mapping keys from a universe U to the bit array range {1, 2, …, m}. In order to insert

an element x from a set S = {x1, x2, …, xn}into the filter, the bits at positions h1(x), h2(x),

…, hk(x) are set to 1. To query if an element q is in the filter, all of the bits at positions h1(q),

h2(q), …, hk(q) are examined. If at least one bit is equal to 0, then q is not in S. Otherwise,

q likely belongs to the set. The false positive rate F = 1 − 1 − 1
m

kn k
≈ (1 − exp(− k/r))k,

where r = m/n is the number of bits per element.

D. Threat Model

For HySec-Flow, we follow the classical SGX threat model. Denial-of-Service (DoS), side-

channel attacks, and physical attacks against the CPU are out of scope [20], [21] and can be

tackled by different techniques (e.g., mitigating the negative effect of Hyper-threading [22],

[23]). Similarly, enclaves are trusted and free of vulnerabilities.

III. Architecture

In the framework shown in Fig. 1, the driver (task scheduler) runs on the central control

node where a computing task first splits into subtasks, and the subtasks are then deployed to

worker nodes for execution. Subtasks are deployed with APIs of existing orchestration tools

on their distributed platforms (e.g., Kubernetes and Docker Swarm) and the framework-

specific communication mechanism between the workers (secure/non-secure containers). In

this paper, we implement the reads mapping algorithm using the proposed framework.

We’ve devised a workflow-based approach to address the privacy issues in the existing

read mapping software tools while adding the capability to parallelize the computation

workload across a cluster of Intel SGX-enabled nodes. The DIDA framework [24] for

parallel execution inspires our implementation of reads mapping on high-performance

computing platforms while designing the SGX-based implementation for the subtasks

involving sensitive data (i.e., input reads). It first partitions the reference genome into

multiple segments and then uses bloom filters to partition the input set of reads into subsets,

which is assigned to a segment that the reads are likely mapped onto. In the next step,

multiple subtasks are deployed and each substask involves a segment mapping to a subset of

reads. Notably, although Intel SGX provides hardware-assisted encryption and protection of

sensitive data, it comes with a performance cost due to the limited size of the EPC (Enclave

Page Cache) available for the computation inside the enclave. Hence, we have to be careful

only to move data that needs to be protected into the SGX enclaves and perform only the

computations involving sensitive data inside the SGX enclaves. This clear separation helps

to minimize the data that needs to be moved into the protected space and minimize the

computation overhead introduced by EPC swaps.

Widanage et al. Page 5

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4 shows the detailed workflow of our implementation for SGX-based secure reads

mapping. We have adapted four significant tasks from the DIDA framework that will be

executed to perform genome sequencing. The driver node accepts the job, while the worker

nodes are used for the data pre-processing and read alignment. The partitioning of the

reference genome into segments and their indexing is a one-time process. Furthermore, the

reference genome is public and such a step can be performed without using SGX.

However, the input reads need to be protected. Together with the partitioned reference

genome, inputs are fed into the dispatch process to get the same number of dispatched reads

as the partitioned reference genome. The partitioned reference genome and the dispatched

reads are then distributed to a cluster of nodes for the parallel running of the actual

alignment (or run sequentially on one node). The partial results are then merged to form

the final output, which will also be encrypted.

In Figs. 4–7, all the processes running within SGX are depicted in blue boxes. The

alignment process in the worker nodes uses Scone to minimize the source code revision,

which is required to handle sensitive data securely. The input and output SAM files are

stored in a protected folder. They are handled transparently by the Scone file protection

Widanage et al. Page 6

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

feature [25]. All nodes are from the same cluster and have access to a common shared file

system where the intermediate results between processes are all encrypted. Each process

within an SGX is undergoing the unsealing/sealing process to securely read the data and

write the output to the file system.

A. Trust Establishment

When the data owner wants to delegate a job to HySec-Flow, the owner needs to know

that the service provider truly provides the service on a trusted platform. Therefore, the

owner can initiate remote attestation to establish mutual trust. Since the source code of

HySec-Flow is public, the data owner can easily know whether the remote service is running

in a trusted control node enclave or not through verifying the measurement, which can be

derived from the enclave source code. The RA-TLS protocol can be integrated into our work

for trust establishment and key exchange. After mutual trust between the data owner and

service provider is established via remote attestation, a key KD can be generated by ECDH

key exchange to securely communicate and transfer data. It should be noted that the key

agreement step can be done using the attestation feature of Scone’s premium version or

using Graphene-SGX’s remote attestation plan, so we don’t implement it by ourselves.

The data owner can then transfer data files encrypted using this key, and these files can

then be decrypted in the work nodes’ enclaves at the server-side. Notice that the enclaves

between the control node and work nodes also need to establish mutual trust, and the key

KD to decrypt data files should also be passed through a secure channel. Yet intermediate

data files can be securely stored in untrusted storage, such as in a shared file system, and

be transferred via an untrusted channel since they are encrypted. Finally, the framework can

encrypt and return the result to the data owner.

B. Partition

This stage is performed to split the reference genome sequence into multiple partitions such

that each partition can be individually indexed and searched on different nodes of the cluster.

The partitioner takes the reference genome as the input and outputs p number of partitions as

shown in steps 1 and 2 of Fig. 4. The partition task works only on non-sensitive data and can

run on a single node for a simple pass through the reference genome sequence. For the same

p and same reference genome, partitioning will only execute once.

C. Indexing

The partitions generated are indexed using a popular read alignment tool like BWA. This

operation can be performed parallelly on each partition utilizing the available computing

resources of the cluster. Furthermore, this operation does not require to be running in a

secure environment. Hence this step reads and writes to the non-secure shared file system as

shown in steps 3 and 4 of Fig. 4.

D. Dispatch

The dispatch stage is performed to reduce the search space of an input DNA sequence within

each partition. This can be performed by utilizing many application-dependent techniques.

We adapt an approach based on the bloom filters from DIDA. We compute a bloom filter

Widanage et al. Page 7

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

for each partition by inserting sub-sequences of length ‘b’ of the reference genome partition

with overlaps of length ‘l’. Bloom filter generation works only on non-sensitive data. We

perform this part of the dispatch process entirely outside Intel SGX (step 5 of Fig. 4).

Furthermore, generated bloomfilters can be reused for future executions as long as ‘b’ and

‘l’ remain the same. Hence we persist generated bloom-filters to the disk as a binary file(6

of Fig. 4). Bloom-filters generated per each partition will be assigned with a uniquely

identifiable name generated based on the reference genome and the ‘b’ and ‘l’ arguments.

Having a separate binary file for each bloomfilter makes running dispatch inside the limited

enclave memory efficient.

We assume input DNA sequences are in the encrypted form when we receive them into the

framework. The next stage of the dispatch task is looking up the bloom-filters to determine

the membership of the subsequences of the input DNA sequence within each partition. Since

dispatch involves sensitive data, we have modified the DIDA framework to execute the

bloom filter lookup logic inside the SGX enclaves. Input partitioning is performed by first

loading the encrypted DNA sequence into the SGX enclave and then decrypting internally

to extract the unencrypted data. Then we create empty string builders within the enclave

(Line 6 of algorithm 2) to hold the input sequence for each partition. Finally, bloom filter

lookups are performed to determine the membership. In case of a positive lookup in the

bloom filter, we append the input subsequence to the corresponding string builder. As shown

in Fig. 3 and explained in section II-C, we expect false positive responses for some of

the lookups. But overall, this approach reduces the search space for the alignment step

significantly. Furthermore, the false-positive rate can be controlled by configuring the size

of the bloom-filter. We then persist input partitions into the disk by encrypting the files

transparently using the file protection features provided by Scone or Graphene.

The dispatch step can be parallelly run for each reference genome partition as depicted in

line 4–5 of Algorithm 2. The output will be saved back to the protected file system as shown

in step 9 of Fig. 4.

E. Alignment

Together with the corresponding index of the partitioned reference genome, the dispatched

reads file is assigned to the cluster’s worker nodes for the alignment process (Step 10 of

Fig. 4). This step could run sequentially on a single node or distribute over multiple nodes.

As a proof-of-concept, we use BWA for the actual alignment of the reads with the Scone

framework to leverage the SGX capability. Minor changes on the BWA code are needed

so it works with the Scone file protection [25] setup. It provides transparent file decryption

and encryption of the input and output files for the alignment setup. The code is compiled

within a docker image from Scone that provides a cross compiler toolset and run in a docker

container. This approach is generally applicable to other legacy applications, like BWA, to

run within SGX. While using the BWA tool for this step, other alternative tools could be

used, or even customized programs developed totally with SGX SDK, in which case Scone

would not be needed anymore. The results of this step are the partial SAM output (Step

11 of Fig. 4) from each dispatched reads and partitioned reference. Once all the results are

ready, they will be merged in the following step to form the final results. In the evaluation

Widanage et al. Page 8

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

experiment, we considered the input reads files containing either the paired-end reads, in

which two reads were sequenced from a short distance (i.e., 300–500 base pairs apart) in

the genome, or the single-end reads each read was sequenced independently. Thus, the reads

alignment task for these two types of input is referred to as the paired-end alignment and the

single-end alignment respectively.

F. Merge

This task expects multiple encrypted SAM files (Step 12 of Fig. 4) as the input and performs

merging techniques in the DIDA framework inside the SGX enclaves. The encrypted input

SAM files will be decrypted only within the SGX enclave. Once the merging is done, the

output will be sealed (Step 13 of Fig. 4) using the user’s shared key since this is the final

output expected by the user. Besides sealing the final output and unsealing the initial input,

we have delegated encryption and decryption of the intermediate inputs and outputs to the

transparent file system’s encryption mechanisms provided by Scone or Graphene.

G. Pipeline

Algorithm 1 shows how we can run the above stages in a distributed pipeline to leverage

the resources available across the cluster. For a given user query, the first task scheduled

will generate the bloomfilters. If the bloomfilters are already available in the disk for the

provided arguments, this stage completes immediately. The next task is to run the dispatch

in a secure environment. So the resource scheduler is configured to schedule dispatch tasks

into nodes having SGX hardware capabilities. Once the dispatched task is completed, the

alignment tasks can be parallelly scheduled on multiple SGX nodes as shown in Algorithm

1, lines 7–8. Once all the dispatch tasks are completed, the merge can be scheduled on a

secure node to generate the final output.

H. Data Sealing

All information that lies outside the trusted parts (enclave) in the workflow should be

in ciphertext state. Therefore we propose sealing/unsealing modules inside the enclave to

encrypt/decrypt intermediate data across nodes.

Assuming the remote attestation has been done before the data owner’s input is uploaded

to the framework, a session key can be retrieved to establish a secure channel between the

genomic data owner and the framework. HySec-Flow can accept file input in plaintext and

can do the initial encryption for the user. Besides, to protect the data transferring between

enclaves from the outside attacker, we seal the output data and unseal the input data with the

same key. To this end, secure channels can be built.

IV. Evaluation

A. Security Analysis

SGX Enclave can protect the code/data integrity even when the executable is loaded into

a library OS (e.g., Graphene-SGX can provide a measurement hash against the loaded

code/library for checking). Moreover, disk I/O has been safeguarded by Scone/Graphene’s

protected filesystem, which utilizes AES-GCM to encrypt user data and immediate data

Widanage et al. Page 9

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

during the computation. Under our threat model, the only security risk is key delivery,

which is protected by the secure channels we built after trust establishment. Therefore, file

tampering attacks can be defeated.

Side channels have been considered to be a threat to trusted execution environments,

including SGX. There is a line of research that identifies such security risks [20], [21],

[26], [27]. In the meantime, prior research also shows that most of the side channel risks

can be detected or mitigated using certain defense strategies [22], [23], [28]–[30]. Most prior

studies on SGX-based computing systems consider side channels to be outside their threat

models [13], [14], [31] with the continuous interest in the topic, as Intel assumes when

developing the TEE [32]. Our research follows this threat model and has not implemented

known protection (including those against a set of micro-architectural threats) in our

prototype. In future research, we will evaluate the impacts of side-channel leaks on our

computing frameworks and genomic data analysis tasks and build into our system a proper

protection when necessary.

B. Experimental setup & data sets

Our experiments are conducted on a 10-nodes SGX-enabled cluster, with each node has an

Intel(R) Xeon(R) CPU E3-1280 v5 @ 3.70GHz CPU and 64G RAM. The SGX enclaves

are initialized with 8GB heap space with both Scone and Graphene. The libraries are

ported into Graphene include ld.so, libc.so, libm.so, libdl.so, libutil.so, and librt.so. We

also port libpthread.so for multi-threading support. Scone containers are based on Scone’s

alpine linux images running Scone version 1. We use datasets from the 1000 Genome

project [33] for the testing. Without loss of generality, for single-end alignment, we use

the SRR062634.filt.fastq, which has ~309K reads, with 100bp per read. For paired-end

alignment, we use SRR062634_1 and SRR062634_2. These files are arbitrarily selected as a

personal genome. The detailed data set and specification are shown in Table I.

C. Accuracy

Although the bloomfilter-based dispatch step narrows down the search space for subsequent

steps greatly, that comes with an impact on the accuracy of the final output. However, the

scope of our approach is to perform reads mapping with an acceptable accuracy securely.

Hence we consider the accuracy of the final outputs from DIDA’s approach as the baseline.

We compare the output files generated by the merge stage after running dispatch, alignment,

and merge in sequence on Scone and outside Scone. When Scone outputs are decrypted

to obtain the plain text output, it matches exactly with the output from the non-Scone

execution.

D. Benchmark of SGX overhead

Using SGX could introduce overhead from multiple aspects.

1) Overhead from enclave initialization: Enclave initialization overhead is impacted

by the heap size requested. We measure the enclave initialization time by varying the Heap-

MaxSize (16M, 64M, 256M, 1024M, 4096M). The results show a good linear relationship

Widanage et al. Page 10

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with the increasing max size of heap/stack. We observe that enclave initialization time is

about 0.04 seconds per MB of the configured maximum heap size.

When developing an SGX application using SGX SDK in enclave configuration file

Enclave.config.xml, we can set the parameters StackMaxSize and HeapMaxSize. These

parameters determine the estimated memory requirements of the generated enclave.

2) Overhead from OCall/ECall: The SGX-enabled program defines an interface using

Enclave Definition Language (EDL), in which ECalls and OCalls are defined. A program

can only invoke these defined methods to cross the untrusted and trusted execution

environment boundary. We measured the overhead of the invocation of these calls. The

overhead of OCall and Ecall are 5.27 and 4.65 seconds per million calls respectively. As a

comparison, making the same calls within the untrusted environment only costs 1.3 ms per

million calls.

3) Overhead from EPC page swapping: An enclave can only utilize what a

Processor Reserved Memory (PRM) can provide at the current stage, which is 128MB.

In actual use, the usable memory size for an SGX application is only around 90MB, and

the system uses the rest. Therefore, enclave Page Cache (EPC) can only use this memory.

When a larger dataset may not fit into this space, an EPC page swap occurs, and this process

introduces high overhead. For example, for data access pattern within the memory region

of size ~40MB, the results show that 1 billion runs of the emulated code block, when very

few page faults occurred (~ 104), the execution time is around 3 seconds. However, when we

need to frequently access data outside of that region and thus EPC page swap occurred more

frequently (more than 107 times), the execution time is around 300 seconds, which is about

100 times slower.

E. Optimal partitions for splitting the reference genome

We have experimented with a different number of partitions for the reference genome to find

the optimal configuration. Fig. 8 shows the results. The runtime is measured by sequentially

run the alignment for dispatched reads on one single node using SGX via Scone. We

notice that with the increasing number of partitions, the overall runtime decrease. However,

when the number of partitions is greater than 60, it got flattened. Considering the human

reference genome data we used is about 3.2 GB, this translates to the reference partition

size around or smaller than 50 MB. With the usable memory space around 90 MB for SGX,

this optimal configuration suggests that the entire indexing table can fit into the SGX EPC

to minimize the unnecessary EPC swapping, thus improving the overall performance. We

use reference genome partition number 80 as the optimal number to run within SGX in our

future experiments.

F. Execution times of dispatch and merge

Table II lists the time used for the dispatch and merge steps (single-end reads). Although

bloom filter building seems to be dominating the entire workflow, it is a one-time operation.

The same set of bloomfilters can be used for subsequent executions on different user inputs.

Also, we notice that partition size does not significantly impact the execution time as

Widanage et al. Page 11

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

these two stages of the workflow are not parallelized. However, the dispatch step can be

parallelized to run in parallel on Bfn and Query to produce corresponding Queryn in contrast

to the Dispatch step shown in Fig 5. If computing resources are available, this should reduce

the execution time by a factor of ‘p’, where ‘p’ is the number of partitions.

G. Execution times of Data Sealing/Unsealing

We use RDTSC (returns a 64-bit time stamp counter (TSC), which is increased on every

clock cycle) to measure the time consumption outside the enclave of data sealing/unsealing

functions we built. Each test runs 10 times. As for sealing inside, we implement an OCall

for timing. The OCall checks the outside TSC value and itself costs less than 0.01ms. Table

IV shows the average execution time when different datasets are given. When dealing with

the single-end input SRR062634, the sealing time is less than 3s. For the pair-ended data

(SRR062634_1 and SRR062634_2), the sealing time is less than 10s.

H. Execution Time of Reads Mapping

Table V lists the execution time for the reads mapping tasks in different settings, which

includes single-end and paired-end execution times. The overhead of using SGX and the

speedup of our proposed solution is compared to the direct Scone and Graphene solutions.

The experiment setup and scripts can be found at [34], [35] and [36].

The file protection features of both Scone and Graphene are configured and enabled, so the

input fastq files and output SAM files are secured. The overhead is measured against the

non-SGX approach from Table V. The speedup can be determined against the SGX Scone

solution from the same table.

As shown in Table V, running BWA directly without involving SGX was fast, but data

privacy is not protected. Another approach is running BWA within a Scone container. This

approach provides an easy way to utilize SGX, but the performance penalty is huge due to

the EPC size limitation of SGX and the frequent page swapping when dealing with big data.

We observe about 40x-50x slowdown comparing to the non-SGX setup. Graphene-SGX

performs worse than Scone because it causes more paging overhead when loading more

components with the whole LibOS to the enclave.

Although the bloom filter generation is mostly a one-time operation, if we consider that time

into account too, the execution times will increase only by 1316 seconds. The best-case of

HySec-Flow execution time (15.52 seconds) is 6x and 212x speedup compared to non-SGX

execution (91 seconds) and Scone execution (3291 seconds) respectively.

The total execution times and projected variation of speedups for other parallelism

configurations(10, 20, 40, 80) are shown in Table VI and illustrated in Fig. 10.

V. Related Work

DIDA [24] is a distributed indexing-dispatched alignment framework for reads mapping.

Our approach is inspired by the DIDA framework but has taken data privacy into full

consideration: the computation involving sensitive data is executed in the SGX enclave, and

Widanage et al. Page 12

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

these sensitive data remained encrypted outside the enclave. We use customized data and

computation partitions to split human reference genome sequence into small segments so

that each reads mapping subtask does not consume much memory. This produces better

performance running inside an enclave. In contrast, the original DIDA framework only

supports a small number of subtasks partitions, each comprising a long reference genome

sequence of the whole chromosome.

Scone [13] provides an easy-to-use container environment that can run executable code

within the SGX enclave. We use Scone to run the individual alignment worker program

in HySec-Flow. However, executing codes in enclaves directly using Scone alone may

introduce significant performance overhead due to the lack of optimization on the data

access according to the limited SGX EPC space. Our proposed framework addresses this

issue by splitting data into smaller segments and running multiple jobs sequentially in a

single enclave or parallel in multiple enclaves.

Graphene-SGX is a practical library OS for unmodified code on SGX. It uses Graphene

LibOS [37] as the inner core to support the binary code compatibility [38]. The enclave

consists of the application to be protected linked with a library OS. Graphene-SGX can

execute the applications by writing a manifest file that describes (among other things) the set

of libraries used by the benchmark (among other things). Compared to Scone, Graphene can

provide a more flexible configuration of multithreading support.

Although existing SGX-based secure computing approaches often assume side channels as

an orthogonal research topic [31], [39], [40], side channels impose serious threats to secure

computing using SGX as attackers can use them to circumvent explicit security defenses

implemented by SGX. A rich literature has focused on discovering SGX side channels [20],

[21], [26], [27]. Notably, HySec-Flow is also vulnerable to such threats. Fortunately, most

known side channels in SGX-based computation can be detected or mitigated using various

defense strategies [22], [23], [28]–[30].

VI. Conclusion

We have introduced an architecture for an end-to-end workflow of privacy-preserving

genomic data analytics using Intel’s SGX technology. We use the reads mapping

application (specifically the commonly used BWA algorithm) to showcase the usability

and the performance of the framework. The naive Scone solution has modest performance

improvement on single-node even when using the partition and dispatch methods. HySec-

Flow makes it possible to run in parallel on multiple nodes while still in a secured fashion.

When tested with single-end reads mapping tasks, we’ve observed a speedup of up to 212x

(for 80 partitions) compared to the naive approach directly executing BWA within the Scone

framework. The speedup is mainly achieved from the process level parallelism as well as

significantly reduced search space by the bloomfilter based dispatch step.

We stress that HySec-Flow can be easily adapted to a category of many genomics

applications where the algorithms are pleasantly data-parallel, e.g., for genome variation

calling [9], [41], for gene expression analysis using RNA-seq data [42], and peptide

Widanage et al. Page 13

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

identification in clinical proteomics [43]. However, in each of these cases, we need to devise

a customized data partition algorithm that can assemble subsets of input data for subtasks so

that the subtasks are performed most efficiently.

VII. Future Work

The HySec-Flow framework can be extended to handle multiple search tasks from different

users by adding a new ‘driver’ component to securely accept jobs from users and assign

containers on demand from a heterogeneous pool of containers due to the pleasingly parallel

nature of the workloads.

We will further integrate into future work another sophisticated framework, Harp [44]–

[51], which utilizes MPI-style collective communications to deal with Big Data among the

nodes from a cluster in an HPC-Cloud environment with an SGX-enabled machine learning

applications.

The HySec-Flow framework has been designed to support non-secure tasks, secure tasks

written directly on Intel SGX API, and secure tasks on Scone or Graphene. Hence other

hybrid workflows (secure / non-secure) other than genome sequencing can be ported into the

framework and scale infinitely using a programmable API [18]. Reads mapping is a large

data-intensive computing task compared to previously developed SGX-based solutions (e.g.,

variant searching and GWAS). Therefore, the framework presented here can be extended to

implement privacy-preserving algorithms for other data-intensive genome computing tasks

such as genome variation calling [52] and gene expression analyses [53] in future work.

Acknowledgment

This work is partially supported by NSF grant No.1838083 on BIGDATA: IA: Enabling Large-Scale, Privacy-
Preserving Genomic Computing with a Hardware-Assisted Secure Big-Data Analytics Framework, NSF grant
CCF-1918626 Expeditions: Collaborative Research: Global Pervasive Computational Epidemiology, NSF grant No.
1835631 CINES: A Scalable Cyberinfrastructure for Sustained Innovation in Network Engineering and Science,
and NIH R01HG010798: Secure and Privacy-preserving Genome-wide and Phenome-wide Association Studies via
Intel Software Guard Extensions (SGX). We appreciate technical support from Intel Inc. and would like to thank
Robert Henderson and the system team for their assistance with our experiments on the SGX cluster.

References

[1]. Gymrek M, McGuire AL, Golan D, Halperin E, and Erlich Y, “Identifying personal genomes by
surname inference,” Science, vol. 339, no. 6117, pp. 321–324, 2013. [PubMed: 23329047]

[2]. Fontaine C and Galand F, “A survey of homomorphic encryption for nonspecialists,” EURASIP
Journal on Information Security, vol. 2007, p. 15, 2007.

[3]. Anati I, Gueron S, Johnson S, and Scarlata V, “Innovative technology for cpu based attestation and
sealing,” in Proceedings of the 2nd international workshop on hardware and architectural support
for security and privacy, vol. 13. Citeseer, 2013, p. 7.

[4]. Russinovich M, “Introducing Azure confidential computing,” Seattle, WA: Microsoft, 2017.

[5]. Shaon F, Kantarcioglu M, Lin Z, and Khan L, “Sgx-bigmatrix: A practical encrypted data analytic
framework with trusted processors,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 1211–1228.

[6]. Chen F, Wang C, Dai W, Jiang X, Mohammed N, Al Aziz MM, Sadat MN, Sahinalp C, Lauter
K, and Wang S, “Presage: privacy-preserving genetic testing via software guard extension,” BMC
medical genomics, vol. 10, no. 2, pp. 77–85, 2017. [PubMed: 29297358]

Widanage et al. Page 14

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[7]. Chen F, Wang S, Jiang X, Ding S, Lu Y, Kim J, Sahinalp SC, Shimizu C, Burns JC, Wright VJ et
al. , “Princess: Privacy-protecting rare disease international network collaboration via encryption
through software guard extensions,” Bioinformatics, vol. 33, no. 6, pp. 871–878, 2017. [PubMed:
28065902]

[8]. Carpov S and Tortech T, “Secure top most significant genome variants search: idash 2017
competition,” BMC medical genomics, vol. 11, no. 4, pp. 47–55, 2018. [PubMed: 29747637]

[9]. Mandal A, Mitchell JC, Montgomery H, and Roy A, “Data oblivious genome variants search on
intel sgx,” in Data Privacy Management, Cryptocurrencies and Blockchain Technology. Springer,
2018, pp. 296–310.

[10]. Kockan C, Zhu K, Dokmai N, Karpov N, Kulekci MO, Woodruff DP, and Sahinalp SC,
“Sketching algorithms for genomic data analysis and querying in a secure enclave,” Nature
methods, vol. 17, no. 3, pp. 295–301, 2020. [PubMed: 32132732]

[11]. Pascoal T, Decouchant J, Boutet A, and Esteves-Verissimo P, “Dyps: Dynamic, private and secure
gwas,” Proceedings on Privacy Enhancing Technologies, 2021.

[12]. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, and Meyre D, “Benefits and limitations of
genome-wide association studies,” Nature Reviews Genetics, vol. 20, no. 8, pp. 467–484, 2019.

[13]. Arnautov S, Trach B, Gregor F, Knauth T, Martin A, Priebe C, Lind J, Muthukumaran D,
O’keeffe D, Stillwell ML et al. , “{SCONE}: Secure linux containers with intel {SGX},” in 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 689–703.

[14]. Tsai C-C, Porter DE, and Vij M, “Graphene-sgx: A practical library {OS} for unmodified
applications on {SGX},” in 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC}
17), 2017, pp. 645–658.

[15]. Li H and Durbin R, “Fast and accurate short read alignment with burrows–wheeler transform,”
bioinformatics, vol. 25, no. 14, pp. 1754–1760, 2009. [PubMed: 19451168]

[16]. Langmead B and Salzberg SL, “Fast gapped-read alignment with bowtie 2,” Nature methods, vol.
9, no. 4, p. 357, 2012. [PubMed: 22388286]

[17]. Chen Y, Peng B, Wang X, and Tang H, “Large-scale privacy-preserving mapping of human
genomic sequences on hybrid clouds.” in NDSS, 2012.

[18]. “Scalable and secure platform for hybrid task scheduling,” https://github.com/Data-ScienceHub/
sgx-tasks, accessed: 2021-07-11.

[19]. Costan V and Devadas S, “Intel sgx explained.” IACR Cryptol. ePrint Arch, vol. 2016, no. 86,
pp. 1–118, 2016.

[20]. Lee S, Shih M-W, Gera P, Kim T, Kim H, and Peinado M, “Inferring fine-grained control
flow inside {SGX} enclaves with branch shadowing,” in 26th {USENIX} Security Symposium
{USENIX} Security 17), 2017, 557–574. pp.

[21]. Wang W, Chen G, Pan X, Zhang Y, Wang X, Bindschaedler V, Tang H, and Gunter CA, “Leaky
cauldron on the dark land: Understanding memory side-channel hazards in sgx,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, pp.
2421–2434.

[22]. Chen G, Wang W, Chen T, Chen S, Zhang Y, Wang X, Lai T-H, and Lin D, “Racing in
hyperspace: Closing hyper-threading side channels on sgx with contrived data races,” in 2018
IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp. 178–194.

[23]. Oleksenko O, Trach B, Krahn R, Silberstein M, and Fetzer C, “Varys: Protecting {SGX}
enclaves from practical side-channel attacks,” in 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), 2018, pp. 227–240.

[24]. Mohamadi H, Vandervalk BP, Raymond A, Jackman SD, Chu J, Breshears CP, and Birol I,
“Dida: Distributed indexing dispatched alignment,” PloS one, vol. 10, no. 4, p. e0126409, 2015.
[PubMed: 25923767]

[25]. “Scone file projection,” https://sconedocs.github.io/SCONE_Fileshield/, accessed: 2021-02-04.

[26]. Van Bulck J, Minkin M, Weisse O, Genkin D, Kasikci B, Piessens F, Silberstein M, Wenisch TF,
Yarom Y, and Strackx R, “Foreshadow: Extracting the keys to the intel {SGX} kingdom with
transient out-of-order execution,” in 27th {USENIX} Security Symposium ({USENIX} Security
18), 2018 pp. 991–1008.

Widanage et al. Page 15

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Data-ScienceHub/sgx-tasks
https://github.com/Data-ScienceHub/sgx-tasks
https://sconedocs.github.io/SCONE_Fileshield/

[27]. Chen G, Chen S, Xiao Y, Zhang Y, Lin Z, and Lai TH, “Sgxpectre: Stealing intel secrets from sgx
enclaves via speculative execution,” in 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2019, pp. 142–157.

[28]. Shinde S, Chua ZL, Narayanan V, and Saxena P, “Preventing page faults from telling
your secrets,” in Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, 2016, pp. 317–328.

[29]. Shih M-W, Lee S, Kim T, and Peinado M, “T-sgx: Eradicating controlled-channel attacks against
enclave programs.” in NDSS, 2017.

[30]. Sinha R, Rajamani S, and Seshia SA, “A compiler and verifier for page access oblivious
computation,” in Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 649–660.

[31]. Shen Y, Tian H, Chen Y, Chen K, Wang R, Xu Y, Xia Y, and Yan S, “Occlum: Secure and
efficient multitasking inside a single enclave of intel sgx,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 955–970.

[32]. Van Bulck J and Piessens F, “Tutorial: Uncovering and mitigating side-channel leakage in intel
sgx enclaves,” in Proceedings of the 8th International Conference on Security, Privacy, and
Applied Cryptography Engineering (SPACE’18). Springer, 2018.

[33]. Siva N, “1000 genomes project,” 2008.

[34]. “BWA using Scone,” https://github.com/dsc-sgx/bwa-sgx-scone, accessed: 2021-02-05.

[35]. “BWA using Graphene-SGX,” https://github.com/StanPlatinum/graphene-bwa, accessed:
2021-06-19.

[36]. “Containerized dida & bwa on scone,” https://github.com/Data-ScienceHub/scone-dida-bwa,
accessed: 2021-06-20.

[37]. Tsai C-C, Arora KS, Bandi N, Jain B, Jannen W, John J, Kalodner HA, Kulkarni V, Oliveira
D, and Porter DE, “Cooperation and security isolation of library oses for multi-process
applications,” in Proceedings of the Ninth European Conference on Computer Systems, 2014,
pp. 1–14.

[38]. Shanker K, Joseph A, and Ganapathy V, “An evaluation of methods to port legacy code to sgx
enclaves,” in Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 2020, pp. 1077–1088.

[39]. Sinha R, Rajamani S, Seshia S, and Vaswani K, “Moat: Verifying confidentiality of
enclave programs,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1169–1184.

[40]. Subramanyan P, Sinha R, Lebedev I, Devadas S, and Seshia SA, “A Formal Foundation for
Secure Remote Execution of Enclaves,” in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2017, pp. 2435–2450.

[41]. Lambert C, Fernandes M, Decouchant J, and Esteves-Verissimo P, “Maskal: Privacy preserving
masked reads alignment using intel sgx,” in 2018 IEEE 37th Symposium on Reliable Distributed
Systems (SRDS). IEEE, 2018, pp. 113–122.

[42]. Prasad KV, Abdel-Hameed AA, Xing D, and Reddy AS, “Global gene expression analysis using
rna-seq uncovered a new role for sr1/camta3 transcription factor in salt stress,” Scientific reports,
vol. 6, no. 1, pp. 1–15, 2016. [PubMed: 28442746]

[43]. Decramer S, de Peredo AG, Breuil B, Mischak H, Monsarrat B, Bascands J-L, and Schanstra JP,
“Urine in clinical proteomics,” Molecular & cellular proteomics, vol. 7, no. 10, pp. 1850–1862,
2008. [PubMed: 18667409]

[44]. Zhang B, Ruan Y, and Qiu J, “Harp: Collective communication on hadoop,” in 2015 IEEE
International Conference on Cloud Engineering. IEEE, 2015, pp. 228–233.

[45]. Zhang B, Peng B, and Qiu J, “High performance lda through collective model communication
optimization,” Procedia Computer Science, vol. 80, pp. 86–97, 2016.

[46]. Chen L, Peng B, Zhang B, Liu T, Zou Y, Jiang L, Henschel R, Stewart C, Zhang Z, Mccallum E
et al., “Benchmarking harp-daal: High performance hadoop on knl clusters,” in 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD). IEEE, 2017, pp. 82–89.

Widanage et al. Page 16

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/dsc-sgx/bwa-sgx-scone
https://github.com/StanPlatinum/graphene-bwa
https://github.com/Data-ScienceHub/scone-dida-bwa

[47]. Peng B, Zhang B, Chen L, Avram M, Henschel R, Stewart C, Zhu S, Mccallum E, Smith L,
Zahniser T et al., “Harplda+: Optimizing latent dirichlet allocation for parallel efficiency,” in
2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017, pp. 243–252.

[48]. Peng B, Chen L, Li J, Jiang M, Akkas S, Smirnov E, Israfilov R, Khekhnev S, Nikolaev A, and
Qiu J, “Harpgbdt: Optimizing gradient boosting decision tree for parallel efficiency,” in 2019
IEEE International Conference on Cluster Computing (CLUSTER). IEEE, 2019, pp. 1–11.

[49]. Zhang B, Peng B, and Qiu J, “Model-centric computation abstractions in machine learning
applications,” in Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and Systems
for MapReduce and Beyond, 2016, pp. 1–4.

[50]. Chen L, Li J, Sahinalp C, Marathe M, Vullikanti A, Nikolaev A, Smirnov E, Israfilov R, and Qiu
J, “Subgraph2vec: Highly-vectorized tree-like subgraph counting,” in 2019 IEEE International
Conference on Big Data (Big Data). IEEE, 2019, pp. 483–492.

[51]. Peng B, Li J, Akkas S, Araki T, Yoshiyuki O, and Qiu J, “Rank position forecasting in car
racing,” in 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2021, pp. 724–733.

[52]. Consortium P, “A map of human genome variation from population-scale sequencing,” Nature,
vol. 467, no. 7319, p. 1061, 2010. [PubMed: 20981092]

[53]. Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M,
Martin CL, Ledbetter DH et al. , “Linkage, association, and gene-expression analyses identify
cntnap2 as an autism-susceptibility gene,” The American Journal of Human Genetics, vol. 82, no.
1, pp. 150–159, 2008. [PubMed: 18179893]

Widanage et al. Page 17

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1:
Framework Overview.

Widanage et al. Page 18

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2:
The conventional (Untrusted) workflow: the data with gray background needs to be

encrypted because it involves private information.

Widanage et al. Page 19

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3:
Conventional Bloom filter with k = 3 that illustrates the true positive, and false positive.

Widanage et al. Page 20

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 4:
The Workflow of Privacy-Preserving Genomic Computing Framework with Hybrid

Containers and Resources.

Widanage et al. Page 21

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 5:
Dispatch

Widanage et al. Page 22

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 6:
Alignment

Widanage et al. Page 23

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 7:
Merge encrypted SAM files

Widanage et al. Page 24

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 8:
Sequential run time within SGX for different number of partitioned reference genomes.

Widanage et al. Page 25

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 9:
Comparison of the HySec-Flow execution time of Scone and Graphene in different stages.

Widanage et al. Page 26

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 10:
Speedup of HySec-Flow over Scone and Graphene

Widanage et al. Page 27

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widanage et al. Page 28

TABLE I:

Dataset specification.

Data Set Source # Reads bp/read

SRR062634.filt.fastq 1000 Genomes [33] 309K 100

SRR062634_1 1000 Genomes [33] 24M 100

SRR062634_2 1000 Genomes [33] 24M 100

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widanage et al. Page 29

TA
B

L
E

 II
:

D
is

pa
tc

h,
 A

lig
nm

en
t a

nd
 M

er
ge

 f
or

 B
W

A
 (

Si
ng

le
 E

nd
 R

ea
ds

)

P

ar
ti

ti
on

s

D
is

pa
tc

h
(s

ec
on

ds
)

A
lig

nm
en

t
(s

ec
on

ds
)

M
er

ge
 (

se
co

nd
s)

N
on

 S
ec

ur
e

Se
cu

re
N

on
 S

ec
ur

e
Se

cu
re

N
on

 S
ec

ur
e

Se
cu

re

m
in

av
g

m
ax

m
in

av
g

m
ax

m
in

av
g

m
ax

m
in

av
g

m
ax

10
14

.4
5

14
.5

2
14

.4
5

44
.0

0
44

.5
8

44
.8

7
0.

27
0.

43
0.

77
5.

19
7.

58
8.

70
0.

88
4.

70

20
6.

57
7.

81
8.

06
22

.3
5

26
.6

2
27

.2
6

0.
12

0.
14

0.
16

2.
32

4.
10

4.
77

0.
83

4.
65

40
3.

20
4.

46
4.

56
9.

63
14

.3
2

14
.5

8
0.

06
0.

10
0.

14
1.

05
1.

77
2.

15
0.

80
4.

62

80
1.

48
1.

48
2.

93
6.

29
9.

12
9.

68
0.

03
0.

13
0.

47
0.

44
0.

73
1.

18
0.

81
4.

66

T
he

 a
lig

nm
en

t s
te

p
is

 p
ar

al
le

lly
 e

xe
cu

te
d

ac
ro

ss
 th

e
cl

us
te

r.
M

in
im

um
, A

ve
ra

ge
 a

nd
 M

ax
im

um
 ti

m
e

re
po

rt
ed

 b
y

co
nt

ai
ne

rs
.

Ta
bl

e
II

 s
ho

w
s

th
e

re
su

lts
 f

or
 th

e
pr

op
os

ed
 p

ar
tit

io
n

an
d

di
sp

at
ch

. T
he

 p
ar

tit
io

n
an

d
di

sp
at

ch
 a

pp
ro

ac
h

sh
ow

s
a

sl
ow

do
w

n
w

hi
ch

 g
re

at
ly

 im
pr

ov
es

 f
or

 h
ig

he
r

pa
rt

iti
on

 c
ou

nt
s

du
e

to
 b

et
te

r
E

PC
 u

til
iz

at
io

n.

O
ur

 a
pp

ro
ac

h
m

ak
es

 it
 e

as
ie

r
to

 r
un

 in
 p

ar
al

le
l b

ec
au

se
 o

f
th

e
pl

ea
si

ng
ly

 p
ar

al
le

l n
at

ur
e

of
 th

e
da

ta
 a

nd
 th

e
ap

pl
ic

at
io

n.
 I

n
th

e
be

st
 c

as
e(

if
 r

es
ou

rc
es

 a
re

 a
va

ila
bl

e)
, w

e
ca

n
ru

n
th

e
si

ng
le

 e
nd

 a
lig

nm
en

t
pi

pe
lin

e
se

cu
re

ly
 in

 1
5.

53
 s

ec
on

ds
 (

ba
se

d
on

 9
.6

8s
 in

 p
ar

al
le

l d
is

pa
tc

hi
ng

, 1
.1

8s
 in

 p
ar

al
le

l a
lig

nm
en

t o
ve

r
80

 n
od

es
 a

nd
 4

.6
6s

 in
 m

er
gi

ng
)

by
 p

ar
tit

io
ni

ng
 th

e
pr

ob
le

m
 in

to
 8

0
su

bt
as

ks
. E

ve
n

in
 th

e
w

or
st

ca

se
 th

at
 h

as
 o

nl
y

on
e

SG
X

 e
na

bl
ed

 n
od

e,
 w

e
ca

n
ex

pe
ct

 to
 c

om
pl

et
e

th
e

al
ig

nm
en

t i
n

79
2.

46
 s

ec
on

ds
 r

un
ni

ng
 s

eq
ue

nt
ia

lly
.

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widanage et al. Page 30

TABLE III:

Non Secure Execution (one-time calculations)

#Partitions Partitioning (s) Bloomfilter Building (seconds) Indexing (seconds)

1 0 1985.09 4302

10 37.59 1211.65 3052

20 39.39 1113.9 2853

40 40.17 1147.48 2602

80 41.93 1316 2292

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widanage et al. Page 31

TABLE IV:

Data Sealing/Unsealing with Intel SGX

Operation Single End (seconds) Pair End (seconds)

Sealing outside 2.59 8.29

Unsealing inside 2.59 8.30

Sealing inside 2.59 8.31

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widanage et al. Page 32

TABLE V:

BWA Alignment (Sequential)

Alignment Type Containers BWA Alignment (seconds) Slowdown

Non Secure 91 1

Single-end SCONE 3291 36.1

Graphene 10603 117

Non Secure 15423 1

Paired-end SCONE >173K >41

Graphene >173K >41

A single-end reads file has 309K reads and each read is 100bp long. A pair end of reads file has 24M reads each. Non secure refers to BWA
execution w/o SGX.

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Widanage et al. Page 33

TA
B

L
E

 V
I:

C
om

pa
ri

so
n

of
 H

yS
ec

-F
lo

w
 a

ga
in

st
 S

co
ne

 o
r

G
ra

ph
en

e
fo

r
R

un
ni

ng
 B

W
A

N
um

be
r

of
 P

ar
ti

ti
on

s
SC

O
N

E
 (

Se
qu

en
ti

al
)

To
ta

l t
im

e
(s

)
H

yS
ec

-F
lo

w
 p

ar
al

le
l S

C
O

N
E

To

ta
l t

im
e

(s
)

Sp
ee

du
p

G
ra

ph
en

e
(S

eq
ue

nt
ia

l)
 T

ot
al

ti

m
e

(s
)

H
yS

ec
-F

lo
w

 p
ar

al
le

l G
ra

ph
en

e
To

ta
l t

im
e

(s
)

Sp
ee

du
p

1
32

91
32

27
.4

8
1.

02
10

60
3

11
02

5.
41

0.
96

10
32

91
58

.2
7

56
.4

7
10

60
3

41
2.

66
25

.7

20
32

91
36

.6
8

89
.7

1
10

60
3

30
0.

9
35

.2
3

40
32

91
21

.3
4

15
4.

19
10

60
3

24
5.

84
43

.1
3

80
32

91
15

.5
2

21
1.

94
10

60
3

21
7.

23
48

.8
0

IEEE Int Conf Cloud Comput. Author manuscript; available in PMC 2022 June 04.

	Abstract
	Introduction
	Background
	Intel SGX
	SGX-based Data Sealing
	Bloom filter
	Threat Model

	Architecture
	Trust Establishment
	Partition
	Indexing
	Dispatch
	Alignment
	Merge
	Pipeline
	Data Sealing

	Evaluation
	Security Analysis
	Experimental setup & data sets
	Accuracy
	Benchmark of SGX overhead
	Overhead from enclave initialization:
	Overhead from OCall/ECall:
	Overhead from EPC page swapping:

	Optimal partitions for splitting the reference genome
	Execution times of dispatch and merge
	Execution times of Data Sealing/Unsealing
	Execution Time of Reads Mapping

	Related Work
	Conclusion
	Future Work
	References
	Fig. 1:
	Fig. 2:
	Fig. 3:
	Fig. 4:
	Fig. 5:
	Fig. 6:
	Fig. 7:
	Fig. 8:
	Fig. 9:
	Fig. 10:
	TABLE I:
	TABLE II:
	TABLE III:
	TABLE IV:
	TABLE V:
	TABLE VI:

