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Abstract  
Two of the most common neurodegenerative disorders – Alzheimer’s and Parkinson’s diseases – 
are characterized by synaptic dysfunction and degeneration that culminate in neuronal loss due to 
abnormal protein accumulation. The intracellular aggregation of hyper-phosphorylated tau and the 
extracellular aggregation of amyloid beta plaques form the basis of Alzheimer’s disease pathology. 
The major hallmark of Parkinson’s disease is the loss of dopaminergic neurons in the substantia nigra 
pars compacta, following the formation of Lewy bodies, which consists primarily of alpha-synuclein 
aggregates. However, the discrete mechanisms that contribute to neurodegeneration in these 
disorders are still poorly understood. Both neuronal loss and impaired adult neurogenesis have been 
reported in animal models of these disorders. Yet these findings remain subject to frequent debate 
due to a lack of conclusive evidence in post mortem brain tissue from human patients. While some 
publications provide significant findings related to axonal regeneration in Alzheimer’s and Parkinson’s 
diseases, they also highlight the limitations and obstacles to the development of neuroregenerative 
therapies. In this review, we summarize in vitro and in vivo findings related to neurogenesis, 
neuroregeneration and neurodegeneration in the context of Alzheimer’s and Parkinson’s diseases. 
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Introduction 
Neurodegenerative disorders occur as the result of a gradual, progressive 
loss of neuronal function, ultimately leading to cell death. Different 
neurodegenerative disorders are characterized by the loss of diverse neuronal 
subtypes in different brain regions (Dugger and Dickson, 2017). Numerous 
publications have reported on the causes of such neurodegeneration in 
multiple disorders. Common suspects include abnormal aggregation of 
toxic proteins and significant upregulation of inflammation throughout a 
specific tissue (Rubinsztein, 2006). Parallels can be drawn between different 
neurodegenerative disorders in terms of their disease progression, pathway 
impairment, and functional and structural neuronal deficits, motivating 
researchers to identify therapeutic agents targeting these mechanisms. 

Alzheimer’s disease (AD) and Parkinson’s disease (PD) represent the two 
most prevalent neurodegenerative disorders worldwide (Dugger and Dickson, 
2017). In AD, a slow process of neurodegeneration begins in the trans-
entorhinal cortices (EC) before progressing to the limbic system and finally 
targeting the iso-cortical regions (Braak and Braak, 1995). This progression 
parallels the cognitive decline observed predominantly in older patients. AD is 
characterized by the presence of amyloid beta (Aβ) plaques and neurofibrillary 
tangles (NFTs). NFTs, which are comprised of hyper-phosphorylated tau, 
are found intracellularly, whereas Aβ plaques are extracellular aggregates 
of misfolded amyloid precursor protein (APP). The accumulation of tangles 
and plaques corresponds with neuronal degeneration and death observed in 
different brain regions (Blennow et al., 2006).

PD, a common movement disorder, is characterized by the loss of 
dopaminergic (DA) neurons in the substantia nigra of the midbrain (Spillantini 
et al., 1998; Marino et al., 2020). This neuronal loss is attributed to the 
accumulation of α-synuclein (α-syn) in intracellular deposits known as Lewy 
bodies and Lewy neurites. The specific vulnerability of DA neurons to α-syn 
toxicity has been the focus of multiple studies (Mahajani et al., 2020). Along 
with motor symptoms, most late-stage PD patients suffer from cognitive 
defects and dementia (Hely et al., 2008).

Significant research has focused on neuronal death and the molecular 
underpinnings of neurodegeneration. However, numerous publications also 
highlight the importance of studying neurogenesis and neuroregeneration 
in the context of these disorders. In this review, we describe the 
progression of neurons through neurogenesis, failed neuroregeneration 
and neurodegeneration in the context of AD and PD. Contradictory reports 

debate whether significant defects in neurogenesis play a part in AD and 
PD disease progression. A number of studies also investigate the factors 
influencing axonal regeneration in response to NFTs and Aβ plaques in AD and 
Lewy bodies in PD, highlighting the obstacles that must be overcome before 
neuroregeneration can be considered a viable therapeutic avenue.

Search Strategy and Selection Criteria 
The references cited in this review have been obtained from the following 
databases: PubMed, Google Scholar, and Science Direct. We referenced full-
text review articles, randomized control trials, meta-analyses, and textbooks. 
No limits were used. 

Neurogenesis 
Neurogenesis is the process by which stem cells differentiate into neurons 
(Cope and Gould, 2019). In response to cellular and molecular cues, stem 
cells can either proliferate to generate additional stem cells or differentiate 
to produce neural stem cells (NSCs) capable of giving rise to neurons. 
NSCs can also differentiate into certain glial cells such as astrocytes and 
oligodendrocytes (Kriegstein and Alvarez-Buylla, 2009; Mahajani et al., 
2014, 2017). Neurogenesis can be classified as either embryonic or adult 
neurogenesis (Götz et al., 2016).

Human brain development begins with the formation of the neocortex at the 
rostral end of the neural tube, located close to the embryonic cerebral vesicle. 
At the fifth week of gestation (day 30), the neural tube closes (O’Rahilly and 
Muller, 2010). This closure causes an increase in intraventricular fluid pressure 
and instigates brain enlargement (Budday et al., 2015). Embryonic neurogenesis 
is relatively well-understood (Hartenstein and Stollewerk, 2015). However, our 
understanding of adult neurogenesis has evolved over time as research in this 
field has progressed (Niklison-Chirou et al., 2020).

Santiago Ramón Y Cajal, who extensively studied pyramidal neurons, stated 
that the mature central nervous system was a place where “everything 
may die and nothing may be regenerated” (Cajal, 1913). However, roughly 
50 years later, Altman, Das and colleagues provided the first evidence of 
putative proliferating cells in the rat hippocampus, challenging Cajal’s theory 
by demonstrating that neurogenesis occurs in the adult mammalian brain 
(Altman and Das, 1965). This finding increased optimism in the field regarding 
the potential of harnessing endogenous neurogenesis to repair injured or 
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diseased brains. Using rodent models, researchers have demonstrated that 
two specific brain regions, known as the neurogenic zones, act as reservoirs 
of NSCs. The sub-granular zone (SGZ) of the hippocampus and the sub-
ventricular zone (SVZ) in the walls of the lateral ventricles are reported to 
contain proliferative NSCs that can potentially give rise to neurons (Alvarez-
Buylla and Garcia-Verdugo, 2002). 

Signaling pathways involving bone morphogenetic protein (BMPs), Notch, 
WNT and sonic hedgehog are reported to play a critical role in neurogenesis 
and gliogenesis. They also continue to regulate adult NSCs in their 
proliferative state (Mahajani et al., 2017; Morales and Mira, 2019). BMP 
signaling negatively regulates neurogenesis by promoting the differentiation 
of NSCs into astrocytes (Bonaguidi et al., 2005; Mira et al., 2010). Conversely, 
Notch signaling can induce the proliferation and maintenance of NSCs in both 
adult niches. The inhibition of Notch signaling causes NSCs to exit the cell 
cycle and transition to a progenitor cell stage (Ehm et al., 2010; Urbán et al., 
2019). Signaling molecules such as epidermal growth factor, fibroblast growth 
factor-2, brain derived neurotrophic factor (BDNF), glial cell line derived 
neurotrophic factor, stem cell factor, vascular endothelial growth factor, 
insulin like growth factor-1, nitric oxide, and erythropoietin have all been 
reported to be involved in adult neurogenesis (Figure 1; Bonafina et al., 2020; 
Wakhloo et al., 2020; Toprak et al., 2021).

increase of NSCs in the dentate gyrus of the hippocampus (Sung et al.,2020; 
Babcock et al., 2021). Through in vitro experiments using mouse SVZ-derived 
NSCs, researchers have demonstrated significantly increased neurogenesis 
when NSCs are exposed to Aβ1–42 (Scopa et al., 2019). Transgenic mouse 
models expressing mutant APP exhibit significantly decreased neurogenesis 
in the SVZ and the dentate gyrus of the hippocampus (Wirths, 2017; Houben 
et al., 2021). Surprisingly, another study reported significantly increased 
neurogenesis in the SVZ of mice expressing both mutant APP and mutant 
Presenilin 1 (PSEN1). A study by Chevallier and colleagues demonstrated that 
the rate of neurogenesis is linked to each specific mutant form of Presenilin, 
as different mutant PSEN1 transgenic mice showed different variations of 
increased or decreased neurogenesis (Chevallier et al., 2005). However, the 
authors in this study only looked at the increasing BrdU numbers, whereas 
contradictory reports looked at different neuronal markers (Wen et al., 2004).

Similar observations have been reported using the triple transgenic mouse 
model (3xTg-AD) generated by Oddo et al., 2003. This widely used model 
mimics AD pathology through the expression of mutant APP, PSEN1, and 
MAPT genes. These transgenic mice demonstrate cognitive impairment 
due to the region-specific accumulation of Aβ and tau (Marlatt et al., 2015; 
Wirths et al., 2017). Moreover, both the SVZ and SGZ of 3xTg-AD mice 
exhibit impaired neurogenesis (Rodriguez et al., 2008). These mice also 
display an age-dependent decline in neurogenesis when compared with age-
matched controls. The authors correlate this decline in neurogenesis with the 
accumulation of Aβ plaques (Rodriguez et al., 2009). It has been suggested 
that Aβ interferes with the balance between excitatory and inhibitory inputs 
in newly generated neurons, impairing neurogenesis (Mucke and Selkoe et 
al., 2012). Other AD mouse models like 5xFAD (Zalatel et al., 2018), Tg30 
(Houben et al., 2019), Mapt–/– (Hong et al., 2010) have all demonstrated a 
significant reduction in the rate of adult hippocampal neurogenesis compared 
with controls. However, a recent study of 14 month old Mapt–/– mouse has 
demonstrated a significant increase in adult hippocampal neurogenesis, via 
the quantification of BrdU+ cells (Criado-Marrero et al., 2020). 

As mentioned above, different AD rodent models demonstrate significant 
variation in regard to rate of adult neurogenesis. The presence of extracellular 
Aβ and intracellular tau makes it difficult to determine their individual 
impact on differentiating stem cells (Winner and Winkler., 2015), limiting our 
understanding of adult neurogenesis in the context of AD. The genotype-
dependent mechanisms responsible for varying rates of neurogenesis in 
different AD mouse models require further investigation. 

Neurogenesis in Parkinson’s disease
In the past decade, PD research has successfully demonstrated that early-
stage neuronal loss originates in the hippocampus and olfactory bulb, 
rendering neurogenesis research in these brain regions particularly interesting 
(Weintraub and Burn, 2011; Carlesimo et al., 2012). However, similar to AD, 
the analysis of post mortem brain tissues from PD patients has revealed 
conflicting results. For instance, Höglinger and colleagues demonstrated a 
significant reduction in the number of proliferative progenitors in the SVZ of 
PD patients relative to healthy controls (Höglinger et al., 2004), whereas van 
der Berge and colleagues found no change (van der Berge et al., 2011). These 
conflicting results likely originate from a number of differences between these 
two studies, such as the significantly older population (10 years older) and 
longer post mortem interval (~20 hours) studied in Höglinger et al., 2004. The 
two studies also used different markers and analyzed different areas of the 
SVZ.

Current transgenic mouse models are incapable of accurately mirroring 
PD pathology, as none of them demonstrate the nigrostriatal degeneration 
observed in human patients. Instead, researchers mimic the loss of 
DA neurons in mice with the help of neurotoxic compounds such as 
6-hydroxydopamine (6-OHDA; Hernandez-Baltazar et al., 2017; Zeng et al., 
2018) or 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP; Meredith 
and Rademacher., 2011). Interestingly, mice treated with 6-OHDA or 
MPTP demonstrate significantly reduced numbers of proliferating cells in 
the hippocampus (Suzuki et al., 2010), but an increase in dopaminergic 
neurogenesis in the olfactory bulb (Yamada et al., 2004; Winner et al., 2006) 
similar to that observed in some PD patients (Huisman et al., 2004). 

Researchers have also generated transgenic mice carrying human wild-type 
α-syn (Masliah et al., 2000). In these mice, the observable accumulation of 
α-syn in different brain regions leads to spatial memory deficits (Masliah 
et al., 2011). The overexpression of human wildtype α-syn contributes to 
a significant reduction in hippocampal neurogenesis that coincides with 
increased neuronal loss (Winner et al., 2004). Interestingly, a similar reduction 
in hippocampal neurogenesis was also observed in a conditional transgenic 
mouse model expressing human wildtype α-syn (Nuber et al., 2008) and 
in mouse models expressing the human mutant A53T α-syn (Koprich et al., 
2017; Regensburger et al., 2020). Studies have reported the role of α-syn in 
dendritic outgrowth, branching, and spine density and maturation (Winner 
et al., 2012), specifically in regard to hippocampal neurons. These findings 
highlight the importance of α-syn in hippocampal neurogenesis (Winner et al., 
2012). Interestingly, the authors have also demonstrated similar impairment 
in adult neurogenesis and neurite outgrowth in LRRK2 G2019S transgenic 
mice (Winner et al., 2011) and in PINK1 deficient zebrafish, where generation 
of dopaminergic neurons in adult brain was significantly affected (Brown 
et al., 2021). As in AD research, elucidating the mechanisms that regulate 
neurogenesis in PD is crucial for screening potential targets that might 
modulate adult neurogenesis.  

Figure 1 ｜ A brief summary of some of the factors that initiate or inhibit adult 
neurogenesis.
BDNF: Brain-derived neurotrophic factor; BMP: bone morphogenetic protein pathway; 
EPO: erythropoietin; NPC: neural progenitor cells; NSC: neural stem cells; SGZ: sub-
granular zone; SVZ: sub-ventricular zone; VEGF: vascular endothelial growth factor; WNT: 
wingless-related integration site pathway. Created with BioRender.com.

The occurrence of adult hippocampal neurogenesis (due to NSCs in the SGZ) 
has since been demonstrated in non-human primates, including marmosets 
and macaques (Charvet and Finlay, 2018; La Rosa et al., 2020). Compared 
to rodents, the rate of adult hippocampal neurogenesis was reported to be 
~10-fold lower in adult macaques. Leuner and colleagues confirmed this 
finding by demonstrating that the rate of neurogenesis in the SGZ of the 
hippocampus was significantly lower in older macaques than in younger ones 
and that the rate gradually decreased with age. This age-dependent decline 
in adult neurogenesis has also been reported in older mice and rats (Leuner 
et al., 2007). Thus, studies conducted in the last two decades demonstrate 
that adult mammalian brains possess stem cells capable of generating new, 
functional cells. These findings open new avenues in the fields of regenerative 
medicine and stem cell-based therapy (Zakrzewski et al., 2019). Using various 
labeling methods such as BrdU, 14C, and immunohistochemistry, researchers 
have successfully demonstrated the presence of adult neurogenesis in 
humans (Moreno-Jiménez et al., 2021). However, contradictory reports 
highlight a reduced number of neurogenesis markers, questioning the 
existence of adult neurogenesis in humans (Cipriani et al., 2018; Sorrells et al., 
2018). 

As seen in rodents, certain factors influence adult neurogenesis in a 
positive and negative manner (Figure 1). For instance, exercise has been 
demonstrated to stimulate the proliferation of NSCs (Xu et al., 2019) and 
increase the number of newly formed neurons (Wakhloo et al., 2020). Other 
positive factors include diet (Murphy et al., 2014), neurotrophins (Bonafina et 
al., 2020), and sleep (Kumar et al., 2020). Reported negative factors include 
aging (Zhu et al., 2014), stress (Diaz-Chávez et al., 2020), and brain injury 
(Redell et al., 2020). 

Neurogenesis in Alzheimer’s disease
As mentioned previously, neuropathological hallmarks of AD include 
the presence of extracellular Aβ plaques and intraneuronal NFTs. The 
accumulation of these plaques and tangles at synaptic sites eventually leads 
to synaptic degeneration and neuronal loss (DeTure and Dickson., 2019). 

Interestingly, the analysis of post mortem brain tissues from AD patients 
reveals a significant reduction in NSCs in the SVZ (Ziabreva et al., 2006) and an 
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Neuroregeneration 
The evolutionary ability of some primitive organisms to regrow body parts 
presents an interesting area of inquiry in the context of AD, PD, and other 
degenerative diseases characterized by the progressive loss of cells and 
tissue (Fuchs and Segre, 2000). Over time, researchers have wondered if 
higher organisms could be induced to display a similar regenerative potential. 
The natural inability of humans to regenerate damaged areas of the brain 
exacerbates the cognitive decline phenotype of many neurodegenerative 
disorders.

Whereas neurogenesis refers to the differentiation of stem cells into new 
neurons, the process of neuroregeneration describes the repair of existing 
neurons compromised by axonal degeneration (Xiong and Collins, 2012). 
Axonal degeneration can occur in response to a wide range of physiological 
challenges including mechanical injury, environmental toxicity, irregular 
nuclear shape and/or size, infection, inflammation, and the disruption of 
axonal transport (Wang et al., 2012; Marotta et al., 2016; Salvadores et al., 
2020). 

The simplest model of axon degeneration, named Wallerian degeneration 
after Augustus Waller’s 1850 transection experiments, advances distally from 
a site of physical injury (Coleman and Freeman, 2010). Within days of axon 
severance, Wallerian degeneration progresses through several degradative 
stages (Wang et al., 2012). Immediately following injury, the axon segments 
both proximal and distal to the injury site degenerate over a short distance 
and form axonal bulbs. This initial response is followed by a 24- to 48-hour 
latent period, where the distal portion of the axon retains its structure and 
excitability (Coleman and Freeman, 2010). Finally, the distal axon segment 
degenerates entirely following glial activation, as demonstrated in vivo 
(Catenaccio et al., 2017).  

Axonal degeneration has been identified as a precursor to neuronal death in 
a number of neurological disorders (Millecamps and Julien, 2013; Grosch et 
al., 2016; Tagliaferro and Burke, 2016). These forms of degeneration do not 
originate from axon severance and fail to align completely with the Wallerian 
model in terms of duration and morphological progression (Coleman, 
2005). However, the discovery of the slow Wallerian mutant mouse (WldS) 
revealed a means of protecting both central nervous system (CNS) and 
peripheral nervous system (PNS) neurons by delaying degradation that would 
normally occur after exposure to physical damage, toxic exposure, and other 
neurodegenerative conditions (Coleman and Freeman, 2010). Studies have 
also indicated that axons of CNS neurons undergoing Wallerian degeneration 
swell in a manner reminiscent of the dystrophy seen in many CNS disorders, 
including AD and PD (Conforti et al., 2014). Together, these results suggest 
the existence of a common mechanism of axonal degeneration across diverse 
disorders and neurological conditions (Coleman, 2005). 

Despite sharing homologous processes of axonal degeneration, the PNS and 
CNS vary greatly in their capacity for neuroregeneration. While the PNS has 
“facilitators” that promote plasticity and recovery from neural injury, the CNS 
has “brakes” that promote neural stability and inhibit regrowth (Nagappan 
et al., 2020). These “brakes” include glial inhibition (Yiu and He, 2006), the 
regeneration-antagonistic CNS environment (Song et al., 2017), and the 
limited intrinsic potential of mature CNS neurons for regrowth (Huebner and 
Strittmatter, 2009). Other regenerative inhibitors include myelin-associated 
inhibitors and the chondroitin sulfate proteoglycans (CSPGs; Filbin, 2003; 
Schwab and Ebert, 2014). Overcoming these obstacles is vital for promoting 
CNS neuroregeneration and reversing the axonal degradation characteristic of 
many neurodegenerative disorders.

Neuroregeneration in Alzheimer’s disease
Axonal degeneration is an early pathological sign of many neurodegenerative 
diseases, including AD. This observation is supported by the decreased white 
matter volumes identified in patients with mild cognitive impairment, a high-
risk precursor to AD (Kalus et al., 2006; Rogalski et al., 2009; Ihara et al., 
2010; Bozzali et al., 2011). The accumulation of NFTs and Aβ plaques in AD 
brains causes neurons to undergo a slow, “dying-back” process (Salvadores 
et al., 2020), where NFT and Aβ-accumulation drives degeneration from the 
axon terminals inward toward the cell body, eventually leading to cell death 
(Gilley et al., 2011; Nishioka et al., 2019). This Wallerian-like degeneration 
contributes to synaptic loss and interrupts axonal transport, causing 
connective deficits and driving cognitive decline over time (Blazquez-Llorca et 
al., 2017). 

Interestingly, a study conducted by Blazquez-Llorca and colleagues suggests 
that the early prevention of Aβ plaque accumulation could stimulate axonal 
regeneration and prevent AD progression (Blazquez-Llorca et al., 2017). NFT 
and Aβ-accumulation disrupt axonal transport, reducing the concentration of 
the axon survival factor nicotinamide nucleotide adenylyltransferase-2 (Gilley 
and Coleman, 2010; Ljungberg et al., 2012; Ali et al., 2016) and contributing 
to mitochondrial dysfunction, oxidative stress, and the dysregulation of Ca2+ 
homeostasis (Cieri et al., 2018; Mata, 2018; Albensi, 2019).

AD is also characterized by a loss of dendrites and a reduction in dendritic 
spine density (Boros et al., 2019). Exploring methods by which to regenerate 
normal dendritic structure and synaptic function in hippocampal neurons 
of AD patients is necessary to “shift the balance from neurodegeneration to 

regeneration” and reverse cognitive decline (Iqbal et al., 2014). 

To this end, many studies have focused on the neuroregenerative potential 
of neurotrophin therapy in the otherwise regeneration-adverse CNS. For 
example, BDNF has been identified as an important facilitator of axon 
regeneration, synaptic plasticity, and brain injury recovery (McGregor and 
English, 2019), and reduced levels of BDNF and its TrkB receptor have been 
observed in the AD brain (Sampaio et al., 2017). This reduced BDNF/TrkB 
activity has been shown to upregulate inflammatory pathways that facilitate 
the cleavage of tau and APP in an AD mouse model. Cognitive decline can be 
reversed via the inhibition of these BDNF-linked inflammatory pathways (Wang 
et al., 2019). Similarly, the administration of BDNF into the EC of mouse and 
primate AD models has also been shown to improve cognition (Nagahara 
et al., 2009). However, as described later, several obstacles preclude the 
administration of neurotrophins in vitro (Kazim and Iqbal, 2016; Uliassi et 
al., 2017), and the potential neurorestorative functions of BDNF and other 
neurotrophins require further study before therapeutic applications can be 
considered. 

As previously mentioned, CSPGs inhibit the regenerative potential of neurons 
and have been found to be upregulated in AD brains (Howell et al., 2015). 
CSPGs bind and signal via tyrosine phosphatase sigma (PTPσ), which restricts 
neuronal growth (Tran et al., 2018). Researchers have observed reduced 
neuroinflammation, decreased synaptic loss, and enhanced cognition in 
AD mouse models following PTPσ inhibition (Gu et al., 2016). These results 
suggest that modulating PTPσ might prove an effective strategy for improving 
neuronal regeneration in AD brains.

Neuroregeneration in Parkinson’s disease
Like in AD, the neuronal death involved in PD disease begins with axonal 
degradation (Tagliaferio and Burke, 2016). Many of the debilitating motor 
symptoms associated with PD stem from the degeneration of nigrostriatal DA 
neurons, whose axons bridge the substantia nigra pars compacta and caudate 
putamen regions of the human brain (Sidorova et al., 2019). PD pathogenesis 
is driven by the aggregation of α-syn into Lewy bodies and neurites and the 
eventual loss of DA neurons (Dickson, 2017). As a result, much of the research 
related to achieving neuroprotection in PD has focused on preventing 
neuronal death rather than reversing axonal degeneration (Tagliaferro et al., 
2016). However, in animal studies involving induced α-syn overexpression, 
researchers have identified swollen, dystrophic neurites consistent with 
Wallerian-like degeneration, a loss of striatal dopaminergic terminals in DA 
neurons, and crippled axonal transport prior to neuronal death (Chung et al., 
2009; Decressac et al., 2012). Although Lewy bodies are generally identified 
in the neuronal soma, studies have described significant α-syn accumulation 
in the axons as Lewy neurites as well (Volpicelli-Daley et al., 2016). 

The importance of axonal degradation over programmed cell death in early 
PD pathology may explain the failure of anti-apoptotic kinase inhibitors to 
prevent disease progression, as these neuroprotective agents do not confer 
any sort of axonal protection or regenerative influence (Cheng et al., 2010). 
Instead, research suggests that upregulation of the Akt-Rheb-mTor signaling 
pathway via constitutive Rheb activation is sufficient to induce sprouting in 
6-OHDA-damaged DA neurons (Kim et al., 2012). This is particularly promising 
in that other studies have illustrated similar projection renewal in CNS axons 
by manipulating different upstream targets in the mTor pathway (Park et al., 
2008; Cheng et al., 2011).

As in AD research, neurotrophin therapy offers another potential method 
for restoring the function of diseased DA neurons. Reduced serum and brain 
neurotrophin levels have been observed in both PD patients and rodent 
models (Khalil et al., 2016; Huang et al., 2018). Notably, BDNF, neurotrophin 
3 , and neurotrophin 4 have been shown to influence the differentiation 
and structural development of DA neurons in vitro (Studer et al., 1995). In 
particular, BDNF has been shown to protect DA neurons against neurotoxic 
lesion (Hyman et al., 1991; Spina et al., 1992), to promote neurite outgrowth 
and arborization (Studer et al., 1995), and to reduce motor issues and 
protect DA neurons in animal models of PD (Altar et al., 1994; Hagg et al., 
1995). Studies also suggest that α-syn interferes with BDNF receptor TrkB, 
contributing to the degeneration of DA neurons by effectively eliminating 
BDNF’s pro-survival influence in vitro and in vivo (Zhang et al., 2018). 

However, while a range of studies have documented the neurotrophin-
boosting effects of exercise and food-borne polyphenols (Hirsch et al., 2018), 
the blood-brain barrier (BBB) presents a significant obstacle to the direct 
administration of such neurotrophin-based treatments (Kazim and Iqbal, 
2016; Uliassi et al., 2017). Issues related to BBB permeability and molecular 
specificity have been exemplified in a range of clinical trials involving 
neurotrophic factors like glial-derived neurotrophic factor and neurturin 
(Sidorova et al., 2019). Neurotrophic factor small molecule mimetics 
represent a popular solution due to their ability to pass through the BBB (Kazim 
and Iqbal, 2016). Various neurotrophic factor small molecule mimetics have 
been shown to elicit neuroprotective and neuroregenerative responses, but 
issues related to receptor specificity and dosing indicate a need for further 
investigation (Kazim and Iqbal, 2016). While gene and stem cell therapies also 
represent promising options for overcoming these obstacles and generating 
a regeneration-friendly microenvironment for neurons, additional research is 
required in this area as well (Figure 2; Glavaski-Joksimovic and Bohn, 2013; 
Ghosh et al., 2014; Reddy et al., 2021).
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Neurodegeneration 
Neurodegeneration involves a gradual, irreversible loss of neurons in the 
brain. This loss of neurons is generally preceded by synaptic dysfunction 
and degeneration (Overk and Masliah, 2014) and can occur in response 
to abnormal protein aggregation and toxicity or due to normal aging (Gan 
et al., 2018). Most common neurodegenerative disorders arise due to the 
accumulation of toxic protein aggregates in different regions of the human 
brain (Lee et al., 2011). Here, we look at the findings behind impaired 
mechanisms involved in AD and PD (Figure 3 and Table 1). 

Figure 2 ｜ Schematic demonstrating axonal degeneration and neuroregeneration in 
injured neurons. 
Axonal damage can be induced by mechanical injury, environmental toxicity, infection, 
inflammation, and the disruption of axonal transport. Neuroregeneration can be 
facilitated by the upregulation of mTor signaling, localized delivery of brain-derived 
neurotrophic factor, glial cell line derived neurotrophic factor, neurturin, and other 
neurotrophins. BDNF: Brain-derived neurotrophic factor; GDNF: glial cell line derived 
neurotrophic factor; NFSSM: neurotrophic factor small molecule mimetics; NTN: 
neurturin; PTPσ: tyrosine phosphatase sigma. Created with BioRender.com.

Figure 3 ｜ A brief summary of some of the most important cellular mechanisms 
affected by abnormal protein aggregation in Alzheimer’s disease (AD) and Parkinson’s 
disease (PD).  
The presence and accumulation of amyloid beta plaques and neurofibrillary tangles in 
AD and Lewy bodies in PD lead to the dysregulation of numerous cellular mechanisms, 
causing neurodegeneration and neuronal death. Tau propagation and dopamine 
oxidation are specific to AD and PD, respectively. Created with BioRender.com.

Table 1 ｜ Shared mechanisms implicated in Alzheimer’s disease and Parkinson’s 
disease

Implicated mechanisms Alzheimer’s disease Parkinson’s disease

Synaptic dysfunction Chen et al., 2019 Gcwensa et al., 2021
Impaired protein clearance Chung et al., 2019 Hardy, 2019

Iron dyshomeostasis Masaldan et al., 2019 Devos et al., 2020
Mitochondrial dysfunction Xu et al., 2021 Malpartida et al., 2020

Autophagy impairment Zhang et al., 2021 Hou et al., 2020

Petersen, 2018; Roehr et al., 2020), A673T (Peacock et al., 1993; Jonsson et 
al., 2012), and KM670/671NL (Oksanen et al., 2018) have given to the amyloid 
cascade hypothesis, which states that an imbalance in APP metabolism leads 
to altered Aβ homeostasis, triggering AD-type neurodegeneration (Uddin et 
al., 2021). Almost all patients suffering from an inherited form of AD have 
mutations in either APP or PSEN1/2 (Haass et al., 2012).

Synaptic dysfunction and loss
It has been widely reported that synaptic dysfunction precedes neuronal 
degeneration, which occurs in response to the presence of intracellular NFTs 
and extracellular Aβ plaques surrounding these neurons (Serrano-Pozo et al., 
2011). Aβ is produced and released in high quantities during synaptic activity 
(Cirrito et al., 2005), and the cognitive impairment observed in AD patients 
shows a strong correlation with synaptic dysfunction (Colom-Cadena et al., 
2020). Although aging represents one of the most important AD risk factors, 
synaptic loss is not observed in older control individuals (Henstridge et al., 
2018). Assays measuring the electrical activity of cultured neurons in response 
to drugs and small molecules have enabled researchers to evaluate neuronal 
health in a high-throughput fashion (Colombi et al., 2013). In multiple rodent 
models of AD expressing mutant tau or human tau, neurons demonstrate 
impaired firing rates and patterns (Frere and Slutsky, 2018) as well as a tau-
dependent silencing of electrophysiological activity (Menkes-Caspi et al., 
2015). 

Tau propagation
Tau propagation is closely linked to the synaptic dysfunction described above. 
In vitro studies have demonstrated that during synaptic activity, tau is secreted 
by neurons and taken up by post-synaptic neurons (Yamada et al., 2014). Even 
in vivo rodent model systems exhibit cytoplasmic tau in post-synaptic neurons 
(Wei et al., 2021), strengthening the claim that tau is propagated through 
neuronal activity.

Impaired protein clearance
The ubiquitin-proteasome system is the primary pathway for the degradation 
of abnormally misfolded proteins (Thibaudeau et al., 2018). Autophagy 
is a pathway by which cytoplasmic content is delivered to lysosomes for 
degradation. When fully functional, unnecessary proteins can be degraded 
to prevent aggregation (Karabiyik et al., 2017). Impaired autophagy has been 
reported in the context of both AD and PD. In the healthy human brain, 
autophagy is involved in memory formation and the inhibition of age-related 
memory decline (Shehata et al., 2018; Glatigny et al., 2019). Even though 
Aβ production is dependent upon synaptic activity (Karisetty et al., 2020), 
lysosomes are responsible for the clearance of intracellular Aβ (Suire et al., 
2020). Aβ-secretase-derived fragment C99 (β-CTF) of APP is reported to cause 
endosomal morphological abnormalities known to occur in the early stages 
of AD (Nixon, 2017; Pensalfini et al., 2020). On the other hand, studies have 
demonstrated significantly reduced proteasome activity in different brain 
regions of AD patients (Keller et al., 2000) and have also demonstrated the 
responsibility of impaired proteasome function for Aβ plaque accumulation 
(Cheng et al., 2018).

Iron dyshomeostasis
Although iron accumulation in the brain increases with age (Bilgic et al., 
2012), abnormally high quantities of iron have been observed in different 
brain regions of AD patients, including the motor and parietal cortex and 
the hippocampus (Ghadery et al., 2014; Langkammer et al., 2014; Tao et 
al., 2014). Recently, researchers have demonstrated a relationship between 
iron accumulation and the extent of Aβ plaque and NFT accumulation (van 
Duijn et al., 2017). Iron is believed to play a role in the aggregation of Aβ 
plaques (Telling et al., 2017) and NFTs (Rao and Adlard, 2018). However, the 
exact mechanisms linking these two phenomena are not clear. Neuronal 
loss due to iron-dependent lipid peroxidation, called ferroptosis, has been 
implicated as one of the causes of cell death in AD (Yan and Zhang, 2020). 
Modulating ferroptosis could provide a potential therapeutic approach. 
Moreover, a recently demonstrated link between the presence of ferritin in 
the cerebrospinal fluid of individuals carrying the major late onset AD risk 
allele, ε4 of the gene APOE (Ayton et al., 2015), highlights its importance for 
biomarker discovery.

Neurodegeneration in Parkinson’s disease
As previously described, PD is characterized by the loss of DA neurons 
in the substantia nigra pars compacta in the human midbrain. Previous 
research estimates that 30–70% of DA neurons are lost prior to PD 
symptom manifestation (Cheng et al., 2010), highlighting the need to 
identify biomarkers for early disease diagnosis (Pan et al., 2019). Several 
genetic mutations are associated with the loss of DA neurons, serving as 
a template for the study of neurodegeneration. Well-researched genes 
include SNCA (α-syn; Sato et al., 2011; Winner et al., 2011; Mahul-Mellier 
et al., 2020), PTEN-induced putative kinase 1 (PINK1; Cooper et al., 2017), 
Glucocerebrosidase (GBA1; Murphy et al., 2014; Mazzulli et al., 2016), Parkin 
(Sanyal et al., 2015) and Leucine-rich repeat kinase 2 (LRRK2; Volpicelli-Daley 
et al., 2016; Ferreira and Massano, 2017). Specific mutations in these genes 
have been extensively studied. For example, the A53T mutation in SNCA 
induces mitochondrial dysfunction in rodent models (Bido et al., 2017), the 
G2019S mutation in LRRK2 gene increases α-syn accumulation and causes 
autophagy dysregulation (Su et al., 2015; Volpicelli-Daley et al., 2016), and the 
G411S mutation in PINK1 gene causes mitochondrial dysfunction (Puschmann 
et al., 2017). 

Neurodegeneration in Alzheimer’s disease 
Several reports speculate that Aβ plaques appear years before the onset of 
AD symptoms and could trigger the accumulation of hyper-phosphorylated 
tau in tangles (Bloom, 2014). AD progression has been previously linked to 
synaptic failure (Chen et al., 2019), which has been suggested as a better 
marker of cognitive decline than the accumulation of NTFs and Aβ plaques 
(Bereczki et al., 2018). Although aging is considered to be one of the most 
important risk factors for AD (Hebert et al., 2013), multiple genetic mutations 
have been implicated in the disease, including PSEN1, PSEN2 and APP (Lin et 
al., 2020). Mutations in the APP gene, such as E693Q (Petersen et al., 2010; 
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Recent reports have also highlighted the importance of β-syn and the V70M 
and P123H mutations in the neurodegeneration of DA neurons in rodent 
models of PD and dementia with lewy bodies, respectively (Psol et al., 2021; 
Raina et al., 2021). This study demonstrates that overexpression of β-syn and 
its mutants are toxic to hiPSC-derived DA neurons and rat primary cortical 
neurons in a manner similar to α-syn-induced toxicity. This β-syn induced 
neuronal toxicity was preceded by mitochondrial and synaptic dysfunction in 
these cultured neurons (Psol et al., 2021). These results indicate that rodent 
models using viral vectors to overexpress proteins to study neurodegeneration 
remain attractive research tools.

It is well known that the upregulation or overexpression of α-syn causes a loss 
of DA neurons in rodent models (Taschenberger et al., 2012) and in hiPSC-
derived neurons (Mahajani et al., 2019). Dopaminergic and glutamatergic 
neurons patterned from the same hiPSC line demonstrate significantly 
different vulnerability to toxicity induced by α-syn overexpression with 
differentiated DA neurons proving to be more susceptible to neuronal loss 
than differentiated glutamatergic neurons (Mahajani et al., 2019). Researchers 
are working on transdifferentiating rat primary cortical neurons to generate 
DA neurons and evaluate the effect of α-syn-induced toxicity in DA neurons 
(Raina et al., 2020).

Although variance and a lack of reproducibility between different hiPSC 
lines make it difficult to compare significant findings (Mahajani et al., 2021), 
studies with hiPSC-derived neuronal models have contributed immensely 
to our understanding of the mechanisms impaired in PD. Impaired cellular 
mechanisms that contribute to the loss of DA neurons in the midbrain include 
oxidative phosphorylation (Protter et al., 2012), mitochondrial dysfunction 
(Ryan et al., 2015), mRNA translation (Kim et al., 2020), autophagy dysfunction 
(Sanchez-Danes et al., 2012), and the degeneration of axons and dendrites 
(Czaniecki et al., 2019), which has been demonstrated in other disorders as 
well (Giacomini et al., 2014; Cortelli et al., 2015; Giacomini et al., 2016). Some 
of these impaired cellular mechanisms are briefly summarized below. 

Mitochondrial dysfunction
Most neurodegenerative disorders demonstrate mitochondrial dysfunction, 
leading to neuronal death (Connolly et al., 2017). Luth and colleagues have 
demonstrated a strong connection between prefibrillar α-syn oligomers and 
mitochondrial dysfunction in vitro and in vivo (Luth et al., 2014). Oxidative 
stress, impaired biogenesis, defective mitophagy, abnormal mitochondrial 
dynamics, impaired mitochondrial trafficking, and calcium imbalance are 
some of the affected pathways that can cause mitochondrial dysfunction in 
PD. Most mutated genes implicated in PD including PINK1, parkin, LRRK2, 
SNCA, vacuolar protein sorting-associated protein 35 (VPS35), coiled-coil-
helix-coiled-coil-helix domain containing 2 (CHCHD2), and others, contribute 
pathologically to the different pathways mentioned above (Park et al., 
2018). For instance, LRRK2 mutant models generated in rodent neurons, 
patient fibroblasts, and hiPSC-derived DA neurons have demonstrated 
increased mitochondrial fragmentation, delayed mitophagy, and decreased 
mitochondrial mobility (Singh et al., 2019). Similar mitochondrial dysfunction 
has been demonstrated in rodents carrying heterozygous GBA mutations (Li 
et al., 2019).

Autophagy impairment
Defective autophagy has been demonstrated in multiple model systems of PD. 
Decreased autophagy has been detected in DA neurons in α-syn mutant mice 
(Pupyshev et al., 2018). The inhibition of autophagy drives a gradual loss of 
DA neurons and a significant decrease in dopamine levels (Xilouri et al., 2016). 
Contrarily, it has been demonstrated that upregulation of the autophagy-
related gene 5 restricts the apoptosis of DA neurons in a MPTP-induced 
zebrafish model of PD (Hu et al., 2017). Moreover, LRRK2 has been shown to 
play a role in phagophore biogenesis and autophagosome formation, fusion, 
and function (Madureira et al., 2020).

Dopamine oxidation
Upon dopamine release, excess dopamine can either be reutilized by DA 
neurons (Werkman et al., 2006) or taken up and degraded by glial cells 
(Inyushin et al., 2012). The dopamine taken up by neurons can leak from the 
synaptic vesicles, accumulate in the cytosol, and get degraded by monoamine 
oxidase (Zucca et al., 2017). However, this accumulated dopamine forms 
quinones upon oxidation, causing mitochondrial damage (Segura-Aguilar 
et al., 2014); cytoskeleton disruption (Paris et al., 2010); oxidative stress 
(Puspita et al., 2017); and synuclein oligomerization (Mor et al., 2017). Stress 
induced by dopamine oxidation is reportedly toxic to DA neurons (Hsieh et 
al., 2011). Increased dopamine levels are also neurotoxic to selective neurons 
in vitro (Raina et al., 2021) and in vivo (Bucher et al., 2020). Moreover, it has 
been reported that the accumulation of oxidized dopamine impairs synaptic 
vesicle endocytosis by increasing α-syn levels in patient hiPSC-derived DA 
neurons carrying a LRRK2 mutation (Nguyen and Krainc, 2018). Significant 
accumulation of oxidized dopamine led to lysosomal dysfunction in patient 
hiPSC-derived DA neurons carrying the 84GG GBA1 mutation (Burbulla et al., 
2019). Similar results have been observed in α-syn mutant rodent models, 
where high dopamine concentrations contribute to the production of α-syn 
oligomers, which promote neuronal loss in the substantia nigra pars compacta 
(Mor et al., 2017). 

Future Outlook
Alzheimer’s disease
Recent advances made in the field of single-cell RNA sequencing seem poised 

to improve our understanding of the molecular targets responsible for Aβ/
NFT-mediated neuronal toxicity in AD. At the time of writing, 73 datasets 
containing more than 700,000 cells from different regions of the human 
and mouse brain have been generated in the study of AD. Analysis has been 
performed extensively on single cells from the prefrontal cortex, EC, superior 
parietal lobe, and superior frontal gyrus from AD and control human brains. 
The same is true of the hippocampus, cerebral cortex, prefrontal cortex, SVZ 
and the cerebellum of the mouse brain (Jiang et al., 2020). These datasets 
are free and publicly available for other researchers to use in their own 
analyses. AD is characterized by a slow neurodegeneration beginning in 
the EC and eventually progressing to the limbic and neocortical structures, 
making the EC and hippocampus the earliest affected brain regions. When 
Grubman and colleagues performed scRNA-seq on the EC region from AD 
patients, they demonstrated that the AD risk gene APOE was specifically 
suppressed in oligodendrocyte precursors cells and astrocytes, but was 
surprisingly upregulated in microglial cells (Grubman et al., 2019). Another 
study sequenced more than 80,000 nuclei from prefrontal cortex of 48 AD 
patients at different disease stages. The authors observed that the most 
significant AD- specific changes typically occur in the early stages of disease 
progression (Mathys et al., 2019). Otero-Garcia and colleagues isolated and 
profiled neuronal somas with or without NTFs from the prefrontal cortex 
of AD patients and controls, demonstrating that there exists a selective 
susceptibility of different neuronal subtypes to form NFTs throughout AD 
progression (Otero-Garcia et al., 2020). 

Parkinson’s disease
Significantly more single-cell RNA sequencing has been used in AD research 
than in studies related to PD. In the past five years, multiple analyses have 
been performed on single cells isolated from hiPSC-derived neurons (Lang et 
al., 2019; Fernandes et al., 2020), rodent tissues (Hook et al., 2018; Tiklova 
et al., 2019, 2020; Bryois et al., 2020), and human post mortem samples 
from different brain regions (Welch et al., 2019; Agarwal et al., 2020; Bryois 
et al., 2020; Smajic et al., 2020). An interesting study by Fernandes and 
colleagues has revealed six transcriptionally distinct cell clusters including 
two dopaminergic progenitor clusters and four mature dopaminergic 
neuronal clusters, each of which demonstrate a differential sensitivity to 
stress (Fernandes et al., 2020). Using rodent brain tissues and differential 
gene expression, researchers have obtained a set of genes downregulated 
in mouse DA neurons (Bryois et al., 2020). But single-cell RNA sequencing 
provides the most insight when human post mortem tissues from PD 
patients are analyzed. The profiling of cells from the substantia nigra of PD 
patients and control individuals reveals multiple distinct cell types, including 
neurons, astrocytes, oligodendrocytes, microglia, oligodendrocyte progenitor 
cells and endothelial cells (Agarwal et al., 2020; Welch et al., 2020). These 
studies illustrate that PD-related upregulation of microglia and astrocytes 
correlate with an increase in cytokine signaling and stress response to other 
unfolded proteins (Agarwal et al., 2020; Welch et al., 2020). Along with 
these analyses, various computational and machine learning tools have been 
developed for researchers to better understand single-cell RNA sequencing 
data and visualize their results. Researchers are working toward compiling 
comprehensive single-cell atlases that others can use freely as reference 
datasets. 

Conclusion
In conclusion, a significant amount of research has focused on elucidating the 
mechanistic causes of neurodegeneration in AD and PD. Conflicting reports 
related to impaired neurogenesis in these disorders illustrate the need for 
further investigation to understand whether targeting neurogenesis-related 
pathways could serve as a viable therapeutic approach. Likewise, surveying 
various published articles on the potential of neuroregeneration reveals major 
obstacles that need addressing in terms of drug delivery systems, localized 
neurotrophic factor expression, and the formation of a microenvironment 
conducive to axonal regeneration. Until these technical limitations are 
resolved, it is difficult to consider the restorative ability of neurons as a 
potential therapy method. Moreover, as the degeneration of affected neurons 
cannot currently be reversed, it is imperative that researchers focus on 
identifying a panel of biomarkers to facilitate early intervention and thereby, 
allowing more time to restrict disease progression.
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