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Abstract  
Stargardt disease (also known as juvenile macular degeneration or Stargardt macular degeneration) 
is an inherited disorder of the retina, which can occur in the eyes of children and young adults. It is 
the most prevalent form of juvenile-onset macular dystrophy, causing progressive (and often severe) 
vision loss. Images with Stargardt disease are characterized by the appearance of flecks in early and 
intermediate stages, and the appearance of atrophy, due to cells wasting away and dying, in the 
advanced stage. The primary measure of late-stage Stargardt disease is the appearance of atrophy. 
Fundus autofluorescence is a widely available two-dimensional imaging technique, which can aid in 
the diagnosis of the disease. Spectral-domain optical coherence tomography, in contrast, provides 
three-dimensional visualization of the retinal microstructure, thereby allowing the status of the 
individual retinal layers. Stargardt disease may cause various levels of disruption to the photoreceptor 
segments as well as other outer retinal layers. In recent years, there has been an exponential 
growth in the number of applications utilizing artificial intelligence for help with processing such 
diseases, heavily fueled by the amazing successes in image recognition using deep learning. This 
review regarding artificial intelligence deep learning approaches for the Stargardt atrophy screening 
and segmentation on fundus autofluorescence images is first provided, followed by a review of 
the automated retinal layer segmentation with atrophic-appearing lesions and fleck features using 
artificial intelligence deep learning construct. The paper concludes with a perspective about using 
artificial intelligence to potentially find early risk factors or biomarkers that can aid in the prediction of 
Stargardt disease progression.   
Key Words: artificial intelligence; assessment; deep learning; fundus autofluorescence; screening; 
segmentation; spectral-domain optical coherence tomography; Stargardt atrophy; Stargardt disease; 
Stargardt flecks

https://doi.org/10.4103/1673-5374.339477

Date of submission: September 3, 2021 

Date of decision: November 17, 2021  

Date of acceptance: December 13, 2021

Date of web publication: April 29, 2022

Introduction 
Stargardt disease (also called Stargardt macular degeneration or juvenile 
macular degeneration) is a rare inherited disease of the retina (a tissue at the 
back of the eye that sense light) that occurs in the eyes of children and young 
adults (Kong et al., 2008; Ma et al., 2011; Binley et al., 2013; Mukherjee and 
Schuman., 2014; Strauss et al., 2016; Schönbach et al., 2017; Strauss et al., 
2017a, b; Cicinelli et al., 2019). Stargardt disease may severely damage the 
center of the retina (i.e., the macula) and cause vision loss and legal blindness. 
Due to the disease, visual acuity may decrease gradually, causing patients to 
end up with 20/200 vision or possibly worse. Since Stargardt disease occurs in 
children and young adults, it has a significant correlation to lifetime negative 
economic, psychological, and emotional problems. Currently, there is no 
treatment for Stargardt disease; however, vision loss can be slowed by taking 
certain measures. Early detection of Stargardt disease and the understanding 
of its pathogenesis and progression will be helpful for the early intervention 
of vision loss and identifying potential treatment solutions.  

Color fundus photography (CFP) has been the gold standard method for 
documenting and assessing Stargardt disease. On CFP images, the disease is 
typically phenotypically classified by appearance into four stages (Fujinami 
et al., 2015; Cicinelli et al., 2019). Stage 1 has normal fundus. In stage 2, the 
macular and/or peripheral regions have flecks, but have no central atrophy. In 
stage 3, atrophic changes occur in macular central or paracentral regions. In 
stage 4, atrophic changes occur extensively across the entire macula beyond 
stage 3. Figure 1 illustrates the 4-stage Stargardt disease classification on CFP 
images. 

In recent years, blue light fundus autofluorescence (FAF) has emerged as a 
new and useful retinal imaging technique for the assessment of Stargardt 
disease, particularly because of its high image contrast (Schmitz-Valckenberg, 
2008). A FAF image with Stargardt atrophic lesion is shown in Figure 2. 

Nevertheless, in FAF imaging, the hypofluorescence due to absorption 
of blue light by luteal pigments may hamper the determination of the 
involvement of the fovea. Moreover, CFP and FAF are both two-dimensional 
imaging techniques, which obtain a two-dimensional projection of a three-
dimensional (3D) retina. Spectral-domain optical coherence tomography 
(SD-OCT) has become a frequently used tool in clinics for imaging Stargardt 
disease, because it provides three-dimensional visualization of the retinal 
microstructure, thereby allowing the status of the individual retinal layers 
to be assessed directly and individually (Huang et al., 1991; Fujimoto et 
al., 1998). Stargardt disease in SD-OCT imaging may show various levels of 
disruption of the inner and outer photoreceptor segments as well as other 
outer retinal layers. In Figure 2, the SD-OCT B-scan shows the atrophy, a result 
of cells wasting away and dying, of outer retinal layers. The light can penetrate 
the choroid due to atrophy. OCT has an additional advantage over FAF in that 
it is comfortable and can be performed repeatedly without significant safety 
concerns in patients with a retinal degenerative disease. 

The Doheny Image Reading Center has conducted studies, which were 
supported by the Foundation Fighting Blindness to investigate the natural 
history of Stargardt (i.e., ProgSTAR studies) (Strauss et al., 2015; Schönbach 
et al., 2017; Strauss et al., 2017a, b). The objective of the ProgSTAR studies 
was to evaluate possible efficacy measures for potential suitable regulatory 
endpoints on FAF and SD-OCT images for therapeutic intervention clinical 
trials for Stargardt disease. More specifically, the studies have assessed the 
size changes of Stargardt atrophy on FAF images and the disruption to retinal 
layers on SD-OCT images. The studies have shown that manual delineation 
of these measures, particularly in 3D OCT images, is extremely tedious, time-
consuming, and expensive. Variability between subjective measurements 
from human graders creates yet another challenge, as the typically slow 
progression of Stargardt disease over time necessitates a great precision 
in the measurement for reliable assessment. Automated objective disease 
assessment techniques would be of significant value for research and in 
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clinical trials of Stargardt disease. Traditional classification methodologies 
usually require algorithm developers to design hand-crafted filters to extract 
feasible image features to specific datasets. This causes difficulty in the 
generalization of developed algorithms for application on large and variable 
ophthalmic datasets. In contrast, deep learning - artificial intelligence (AI) 
constructs (Ronneberger et al., 2015; Szegedy et al., 2015, 2016; He et al., 
2016) automatically learn relevant image features, which can yield a high level 
of image processing accuracy and may be more capable of generalization on 
large variable data.

Recent progress in computer processing power and advances in the design 
of deep learning algorithms (e.g., deep convolutional neural networks – deep 
CNNs), have facilitated the state-of-the-art AI approaches to be effectively 
applied to various imaging data. We have found a limited number of studies 
conducted using AI for the assessment of Stargardt disease, probably due to 
Stargardt being a relatively rare disease and as such having a relatively limited 
amount of accessible data. While there is a deep learning algorithm for the 
identification of Stargardt hyperautofluorescent flecks on FAF images (Charng 
et al., 2020), there is only one reported article for the automated assessment 
(screening and segmentation) of Stargardt macular atrophy on FAF images 
done using an AI deep learning algorithm (by our team) (Wang et al., 2019). 
Stargardt atrophy in SD-OCT images may show damage extending from 
the photoreceptor segment retinal layers to outer retinal layers, including 
the choroid. For the Stargardt atrophy assessment in SD-OCT images, the 
quantification of atrophy can be based on the retinal layer segmentation. 
There are so far only two reported OCT retinal layer segmentation algorithms. 
Kugelman et al. (2020) developed an approach using graph search along with 
a deep learning algorithm to segment the retinal layers on SD-OCT images. 
However, such an approach can only segment two OCT boundaries. We 
published a graph-based approach with deep learning-derived information 
to segment twelve SD-OCT retinal layers, which includes all layers associated 
with Stargardt damage of atrophic-appearing lesions and fleck features 
(Mishra et al., 2021). This review addressing AI deep learning approaches 
for the screening and segmentation of Stargardt atrophy on FAF images is 
first provided, followed by a review on automated retinal layer segmentation 
with atrophic-appearing lesions and fleck features using AI deep learning 
constructs. A future perspective regarding further AI application on the 
assessment of Stargardt disease is provided at the end. 

Search Strategy
We conducted a search of PubMed for the past 3 years’ publications with the 
key words of Stargardt disease, Stargardt atrophy, Stargardt flecks, fundus 
autofluorescence, FAF, spectral-domain optical coherence tomography, 
SD-OCT, artificial intelligence, AI, deep learning, automated, screening, 
segmentation, and assessment. 

Artificial Intelligence for Stargardt Atrophy 
Screening and Segmentation on Fundus 
Autofluorescence Images
The so-far only reported Stargardt atrophy screening and segmentation 
system in FAF images was conducted by our team (Wang et al., 2019). In 
this system, we first developed a deep learning-based automated screening 
system using a backbone of residual neural networks (ResNet) (Szegedy et 
al., 2015, 2016; He et al., 2016), which can differentiate eyes with Stargardt 
atrophy from normal eyes in FAF images. We further developed another 
deep learning-based automated system to segment Stargardt atrophic lesions 
using a fully convolutional neural network – U-Net (Ronneberger et al., 2015). 
Transfer learning based on a pre-trained model was applied to ResNet in 
order to facilitate the algorithm training, and excessive data augmentation 
techniques for both ResNet and U-Net were applied to enhance the 
algorithm’s generalization ability. 

Automated screening of eyes with Stargardt atrophy from normal eyes on 
FAF images using deep learning
Deep learning algorithms with CNNs are usually made up of a multitude of 
artificial neurons, which resemble organic neurons as their name suggests, 
from multiple network layers. Network depth has been shown to be of 
extreme importance for the accuracy of CNNs. Using more layers allows for 
more features to be recognized by the network and as such, often higher 
accuracy. However, one major problem with CNNs is that as the network depth 
increases, accuracy gets saturated and then degrades rapidly. Deep residual 
learning frameworks attempt to fix this by fitting stacked nonlinear layers to a 
residual mapping instead of assuming that these layers will be able to match 
the desired mapping. Take, for example, a desired underlying mapping H(x). 
Let the stacked nonlinear layers fit another mapping of F(x)= H(x)–x. Then the 
original mapping takes on the form F(x)+x. This residual mapping has been 
shown to be easier to optimize, allowing for improved accuracy. Matching 

to the residual mapping is done by using shortcut connections. Shortcut 
connections skip over one or more layers, and only perform identity mapping, 
allowing the network to still be easily implementable into common libraries. 
These shortcut connections have no extra parameters. As such, ResNet allows 
deeper networks to achieve considerably higher accuracy when compared to 
normal CNNs and is ideal for transfer learning. ResNet has also been shown 
to vastly outperform its plain counterparts, in large part due to its ability to 
address the prevalent degradation problem.

Our Stargardt screening system utilized ResNet as the backbone. This 
structure acted as the starting point for our neural network. Preferably, 
ResNet should be trained on a larger data set. During the implementation 
of the screening algorithm, our Stargardt dataset was somewhat small with 
only 100 FAF images (Spectralis HRA+OCT, Heidelberg Engineering) with 
Stargardt atrophy and 320 FAF images from normal subjects. Note that the 
FAF data were from a subset of ProgSTAR studies, which was collected from 
multiple imaging centers. To overcome the problem of smaller data set, 
instead of training a new ResNet model from scratch, we utilized a ResNet 
model (weights) that was already pre-trained on the ImageNet database – a 
large-scale image set with more than ten million of images. This technique 
is called transfer learning, which utilizes the cumulative knowledge trained 
from other datasets to create a new neural network. Training a completely 
new neural network often requires an extremely large training dataset, 
which usually has millions of weights to learn. We re-trained our ResNet by 
taking advantage of the ImageNet model pre-trained from millions of general 
images and applied the general features learned from the ImageNet data 
to the ResNet in this project. This allowed our ResNet model to be highly 
accurate even with a relatively small training dataset. Additionally, as we had 
a limited amount of FAF images, this project also highly relied on strong data 
augmentation to increase the number of training samples in both the ResNet 
and U-Net training. We augmented the training data via several random 
transformations, containing rotation, vertical and horizontal translation, 
shearing transformations, zooming, and horizontal flipping of the FAF images. 
This further helped prevent overfitting and helped the model generalize 
better. The algorithm-defined screening results were compared to manual 
gradings by certified reading center graders. With these strategies, we could 
achieve a good Stargardt atrophy screening result with an accuracy of 0.95, a 
sensitivity of 0.91, and a specificity of 0.98. Figure 3 provides several example 
illustrations of the screening system result.

Automated semantic segmentation of Stargardt atrophic lesions on FAF 
images using deep learning 
The Stargardt atrophic lesion segmentation system was completed by a deep 
learning CNN, U-Net (Ronneberger et al., 2015). U-Net is a state-of-the-art 
deep learning algorithm for semantic segmentation, relying on an encoder-
decoder type network architecture. It is based on fully convolutional networks 
instead of fully connected layers and does not require sliding windows. The 
network consists of a contracting path to capture context and an expansive 
(upsampling) path to enable precise localization. The U-Net in this project has 
a similar structure to the one originally reported (Ronneberger et al., 2015), 
which was composed of downsampling layers of convolutional operation, max 
pooling, ReLU activation; and upsampling layers of transpose convolutional 
operation, ReLu, concatenation, and convolutional operation. However, we 
further enhanced it using a more effective training optimization approach and 
better loss function. 

Note that as mentioned, we only had 100 FAF images with Stargardt atrophy. 
To overcome the smaller data set barrier for a deep learning algorithm, we 
used the same U-Net architecture and trained a larger FAF data set with 
atrophic lesions from a different disease known as age-related macular 
degeneration for the initialization of the segmentation of Stargardt atrophy. 
This was because the atrophic lesion profiles of age-related macular 
degeneration in FAF images have a similar appearance to those caused by 
Stargardt disease. Compared to the manual gradings, we could achieve 
a reasonably good Stargardt atrophy segmentation result with the DICE 
similarity coefficient and the overlapping ratio of 0.87 ± 0.13 and 0.78 ± 0.17 
respectively. Figure 4 illustrates the results of our U-Net Stargardt atrophic 
lesion segmentation system.

Furthermore, analysis of data from the ProgSTAR study has demonstrated that 
the areas of decreased autofluorescence (AF) can have variable manifestations 
with at least three distinct morphologies defined to date: “DDAF” (definite 
decreased AF), “WDQDAF” (well-defined questionable decreased AF), and 
“PDQDAF” (poorly defined questionable decreased AF). We recently adopted 
our deep learning approaches for FAF Stargardt atrophy segmentation using 
a sub-set of the ProgSTAR data, and all the three distinct morphologies were 
detected and segmented with reasonably good performance as shown in 
Figure 5. 
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Figure 3 ｜ Example illustration of the screening system results on fundus 
autofluorescence images with 100% accuracy. 
Top row shows example images from normal eyes and the bottom row shows example 
images from eyes with Stargardt atrophy. Note that the Stargardt image in the bottom 
left has similar intensity distribution as normal images in the top row but still can be 
differentiated in the accuracy of 100%. Reprinted with permission from Wang et al. 
(2019).

Figure 4 ｜ Example illustration of the results of the Stargardt atrophic lesion 
segmentation on fundus autofluorescence images. 
Left column: Fundus autofluorescence images.  Middle column: U-Net segmentation 
results (light green) overlapping on fundus autofluorescence. Right column: manual 
delineation results (darker green) overlapping on fundus autofluorescence. Reprinted 
with permission from Wang et al. (2019). 

Figure 5 ｜ Example illustration 
of the Stargardt atrophic 
lesion segmentation on fundus 
autofluorescence images with 
three different morphologies. 
From top to bottom: definite 
decreased AF (DDAF), well-
defined questionable decreased 
AF (WDQDAF), and poorly defined 
questionable decreased AF 
(PDQDAF). Unpublished data.   

Figure 1 ｜ Illustration of 4-stage Stargardt disease classification on color fundus 
photography images. 
Left to right columns: stage 1 to 4. Unpublished data. 

Figure 2 ｜ Stargardt atrophy on FAF and OCT images, captured from the grading tool 
of our lab. 
The blue arrows highlight the atrophy on different modality images from a right eye of 
a patient with Stargardt disease. FAF: Fundus autofluorescence; OCT: optical coherence 
tomography. Unpublished data.

Artificial Intelligence for Stargardt Atrophy 
Segmentation on Spectral-Domain Optical 
Coherence Tomography Images 
Retinal layer segmentation and analysis on SD-OCT images have been very 
active research topics, as the retinal layer thickness and intensity may be 
affected locally or globally depending on the specific retinal disease (Carrera 
Fernandez et al., 2005; Li et al., 2006; Garvin et al., 2008; Yazdanpanah et al., 
2009; Chiu et al., 2010; Hu et al., 2013a, b, c). To date, there are three major 
retinal layer segmentation algorithms: active contour method (Yazdanpanah 
et al., 2009), a graph-based shortest path with dynamic programming (Chiu et 
al., 2010), and 3D graph search (Carrera Fernandez et al., 2005; Li et al., 2006; 
Garvin et al., 2008; Hu et al., 2013a, b, c). Of these approaches, graph-based 
approaches have generally performed best. We have intensively worked on 
OCT layer segmentation using graph-based approaches and have supported 
clinical research and many clinical trials.

The advantages of the 3D graph search frameworks over the shortest path 
are that it is less dependent on initialization and can detect multiple optimal 

surfaces simultaneously from a constructed 3D graph based on an OCT image. 
However, the 3D graph search frameworks are relatively slow compared with 
shortest-path frameworks, as shortest-path does not request interaction 
between different retinal surfaces.

The 3D graph search approach we utilized was an evolution of the strategy 
previously described by Li et al. (2006). It is an unsupervised computer 
vision approach without manual ground truth for training. The segmentation 
of multiple surfaces using 3D graph search could be considered as an 
optimization problem with the goal being to find a set of surfaces with the 
minimum cost such that the found surface set was feasible. The 3D graph 
search had two major components: a) the formulation of the cost function, 
and b) the specification of the layer-based parameters encoding the surface 
feasibility constraints, which makes it more suitable for accurately identifying 
retinal layers in various diseases. Having said that, applying a suitable cost 
function and surface constraints, particularly in regions severely disrupted 
by retinal disease was not trivial. The cost function in our implementation 
was a signed edge-based term, favoring a dark-to-bright or bright-to-dark 
intensity transition based on different surfaces. It was achieved by applying 
two different 3 by 3 Sobel kernels in the vertical direction convolving with 
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Figure 6 ｜ Illustration of graph search segmentation of optical coherence tomography 
retinal surfaces associated with Stargardt atrophic-appearing lesion, as well as retinal 
deposits corresponding to the characteristic flecks of Stargardt disease. 
From top to bottom: reference surface in vitreous layer, internal limiting membrane, 
outer plexiform and outer nuclear junction, external limiting membrane, inner-outer 
photoreceptor segmentation junction, inner retinal pigment epithelium, outer retinal 
pigment epithelium/Bruch’s membrane, choroidal-scleral junction. Unpublished data.

biomarkers, which may be encoded within rich multimodal imaging datasets, 
and particularly in 3D OCT. The AI techniques using deep learning would be 
well-suited for addressing the current critical unmet challenges in finding 
“true” novel predictive Stargardt biomarkers. While traditional AI machine 
learning approaches use hand-crafted (human designed) filters to extract 
image features, AI deep learning algorithms are different, automatically 
learning relevant image features and hence being objective. While we expect 
that some of the “objectively-learned” OCT biomarkers may overlap with the 
“subjectively specified” ones, we also anticipate that novel biomarkers with 
novel deep learning techniques may be identified. Further research would be 
needed, and we would expect interesting findings in this field.
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from our team (Wang et al., 2019; Mishra et al., 2021) for the automated 
screening and segmentation of Stargardt atrophy associated features have 
both presented very promising algorithm performances compared with 
manually delineated ground truth from the reading center’s certified graders. 
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