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Abstract

Estimating causality from observational data is essential in many data science questions but can 

be a challenging task. Here we review approaches to causality that are popular in econometrics 

and that exploit (quasi) random variation in existing data, called quasi-experiments, and show 

how they can be combined with machine learning to answer causal questions within typical data 

science settings. We also highlight how data scientists can help advance these methods to bring 

causal estimation to high-dimensional data from medicine, industry and society.

Although much of data science has centred around using tools from statistics and machine 

learning (ML) to make predictions and ‘extract insight’ from data1, many questions are 

ultimately causal in nature as the predictions made and insights gained are used to inform 

decision-making. For example, data scientists may build a ML model to make predictions 

of which patients are likely to be re-admitted to a hospital within 30 days, but stake-holders 

ultimately want to know what interventions or policy decisions can be made to reduce the 

risk of a patient being re-admitted. Data scientists need to add causal methods to their toolkit 

to answer the causal questions embedded in many of the problems they aim to solve.

As correlation is not sufficient for causation, there is danger in misinterpreting the 

correlational results common in data science analysis as causal. Any typical supervised 

ML method (for example, predictions from a set of features) is inadequate for inferring 

causation, as training ML models for prediction is an inherently correlational task: the ML 

model only ‘observes’ the relationship between the features and outcome in the data when 

making predictions, instead of ‘changing’ the features to determine their impact on the 

outcome2,3. An example of these shortcomings was a model developed to predict mortality 
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in patients with pneumonia that paradoxically concluded that having asthma reduced 

pneumonia mortality risk4. The model did nothing wrong: patients in the training data 

with asthma were more likely to be admitted to the hospital and were administered more 

aggressive care, ultimately resulting in lower mortality. However, this model is potentially 

harmful from a decision-making perspective as following the model may deny patients with 

asthma the extra care they actually need. With standard ML there is always a risk that 

unobserved features may be driving the model predictions.

Numerous techniques have been developed to estimate causality more appropriately from 

observational data (where there are no randomized perturbations). Here we review standard 

quasi-experimental methods, which have been largely used in economics but underutilized 

outside of this domain. We discuss their assumptions, why we believe that they should be 

more widely adopted and motivate our explanations with real-world examples along with 

potential applications in common data science domains. We close by advocating for the 

cross-pollination of quasi-experimental methods and data science: quasi-experiments can 

make causal inference possible in typical data science settings, while innovations in ML can 

in turn improve these methods for wider application in complex data domains.

Confounders and colliders in observational studies

Observational data can be problematic for causal inference because of the core problem of 

unobserved confounding. We wish to determine the effect of a treatment X (hospitalization) 

on outcome Y (pneumonia risk), but there is a hidden confounder Z (asthma) that 

simultaneously influences both X and Y. If we can conduct an experiment, that is, set X 
ourselves, then we can remove confounding, allowing identification of the causal effect of X 
on Y (Fig. 1a). Experiments are used across medicine (clinical trials), public health (Oregon 

Medicaid lottery experiment5), software development and advertising (A/B testing), and ML 

(bandits and reinforcement learning6–8). However, experiments can be expensive, unethical 

or otherwise impractical. Furthermore, most data in data science settings are observational, 

yet we still would like to estimate causal effects. To infer causality from observational data, 

untestable assumptions about the data-generating process are usually needed.

Many techniques that estimate causality from observational data rely on unconfoundedness, 

which is the assumption that all confounders (variables that influence both the treatment X 
and outcome Y) are observed and accounted for in the data9. In this case, the confounders 

can be ‘controlled for’ to obtain valid causal estimates, for example, by adding them to a 

regression. However, we cannot generally know whether we capture all confounders10, and 

so strong beliefs about the system are needed (Fig. 1b). Practitioners must argue that their 

data do in fact contain all relevant confounders (and none of the colliders, see below), and 

critiques of analyses relying on unconfoundedness often centre on variables missing from 

analysis. Because there is no way of testing whether the missing variables are confounders, 

belief of the causal estimates hinges on belief that the unconfoundedness assumption is 

credible.

For example, suppose that in our pneumonia risk problem, we measure patients’ asthma and 

control for it in our analysis. A reviewer of the study could raise that there are numerous 
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other potential confounders that were not accounted for, such as race, socioeconomic status, 

smoking status, other medical history and so on. And even if more of these potential 

confounders were measured as part of the study and controlled for, there is always the 

possibility of another missing confounder that could threaten the validity of the results. Any 

study making causal claims using observational data needs to either use methods that do not 

rely on unconfoundedness or provide a convincing argument that unconfoundedness is at 

least approximately true.

In addition to unconfoundedness, data scientists must also be able to identify variables that 

should not be controlled for, which are called colliders. Unlike confounders, which affect 

both X and Y, colliders are variables that are affected by X and Y (Fig. 1b). Controlling for 

colliders makes our causal estimates worse11,12. For example, we can imagine a possibility 

in our pneumonia question where asthma itself is a collider of hospitalization (X) and 

pneumonia (Y): pneumonia may make it more likely for a hospitalized patient to experience 

asthmatic symptoms, perhaps due to allergies encountered during hospitalization. In addition 

to measuring relevant variables to control for confounding, data scientists seeking causal 

estimates need to ensure that the variables are not colliders.

One framework of causality that is prominent in computer science is the structural causal 

model (SCM) popularized by Judea Pearl11. SCMs combine directed acyclic graphs 

(DAGs) to express causal relationships with a mathematical framework for computing 

causal quantities from the DAGs called do-calculus. The beauty of SCMs is that the 

causal structure of a problem is represented graphically, making both assumptions and 

identifiability of causal effects easy to understand13. Expert knowledge is needed to obtain 

these graphs and to argue that there are no confounders missing in the assumed form3. 

Though we can test the correctness of connections between variables in the graph to some 

degree by checking whether the implied conditional independencies between variables is 

reflected in the data2, unconfoundedness is generally untestable. Unless there is a strong 

belief in the accuracy of the assumed graphical structure14, there will always be the threat of 

unobserved confounders biasing causal estimates.

There are numerous other techniques that aim to estimate causal effects from observational 

data, though they often rely on unconfoundedness or some variant of unconfoundedness. 

Matching and inverse probability weighting, which are popular in social science settings, 

can be used to control for confounding bias in the causal estimates12,15. Double ML 

methods convert treatment effect estimation into two ML prediction tasks, allowing for 

causal inference in high-dimensional data16. There is also a rich field on causal discovery17 

with recent active ML research in this area18–20, where the goal is to infer the causal 

graph from the data itself, often using unconfoundedness as an assumption. Latent variable 

modeling has also been applied to observational causal inference, which does not require 

unconfoundedness but does require specific assumptions about the independence and 

number of causes affecting the outcome21. Because unconfoundedness is often difficult to 

justify in real-world problems, we choose to highlight quasi-experimental strategies here.
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Quasi-experimental strategies

A framework of observational causality that has largely been developed in the field of 

economics, called quasi-experiments, leverages randomness occurring naturally in observed 

data to estimate causal effects. After undergoing a ‘credibility revolution’ over the past 

few decades22,23, economists have increasingly employed quasi-experimental techniques to 

estimate causal effects in real-world problems. These methods also rely on assumptions 

about the causal structure of the data, but these assumptions can be more plausible 

than unconfoundedness, as we will discuss. The following techniques we review leverage 

naturally occurring randomness to estimate causal effects.

Instrumental variables.

The first technique we will examine that uses this idea is instrumental variable (IV) 

estimation24. The goal is to identify observable variables, instruments, that affect our system 

only through their influence on the treatment of interest X (Fig. 2a). In other words, we 

are not asking for the system to be unconfounded but for a component to be unconfounded, 

which we then use to estimate causality.

A famous example of IV analysis in economics considers the effect of the amount of 

required schooling (X) on an individual’s future wages (Y), using birth season (Z) as an 

instrument25. In many US states, children are required to enter school the calendar year 

they are age six, so individuals born later in the year are young for their school grade. 

Because state laws require school attendance until a particular age, for example, 16 years 

old, individuals are required to be in school for different amounts of time because of their 

birth season. As long as we can assume that birth season is effectively random and only 

affects an individual’s future wages through the amount of required schooling they receive, 

birth season can be used as an instrument to estimate causal effects.

To obtain causal estimates using IV analysis, the treatment (required schooling), outcome 

(future wages) and instrument (birth season) must be identified, with the assumption that the 

instrument only affects the outcome through its effect on the treatment. We then commonly 

perform what is known as two-stage least squares26 (alternative IV estimation frameworks 

have also been proposed27), regressing the treatment on the instrument in the first stage 

(X = αIV, where α is the fitted coefficient) and then regressing the outcome on the estimate 

of the treatment from the first stage (Y = βX, where β is the fitted coefficient). The first stage 

extracts the ‘unconfounded component’ of the treatment due to the effect of the instrument 

and uses that component in our second stage regression to estimate the causal effect on 

the outcome, controlling for confounding in the process: Fig. 2b depicts simulated data 

where the true treatment effect of X on Y is confounded, and we see that IV gives unbiased 

causal estimates even when confounding is present. For our motivating example from the 

introduction, we could use the distance that patients with pneumonia live from a hospital as 

an IV28 (as hospital distance is plausibly random).

There are assumptions and considerations to be made when performing IV analysis to ensure 

valid estimation. We need to assume that there is no confounding variable influencing both 

the instrument itself and the outcome Y (Fig. 2a), which is similar to the unconfoundedness 
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assumption but is often more justifiable because the instrument is chosen to be random: it 

is more plausible to argue that birth season is unconfounded with future wages than it is 

to argue that our treatment X schooling is unconfounded with future wages. We also need 

to ensure the instrument affects the system only through its effect on the treatment, known 

as exclusion restriction (Fig. 2a): Fig. 2c depicts simulated data where the true treatment 

effect of X on Y is confounded and where the exclusion restriction is violated, and we see 

that neither IV nor regression give correct causal estimates. Another key assumption that 

IV analysis requires is the monotonicity or no defiers assumption: no individual units in 

our data sample can respond in the opposite direction of treatment uptake when affected 

by the instrument29. In our above example, a violation of monotonicity would be if some 

states defied national trends and held back individuals born late in the year from entering 

school, which would produce the opposite effect of the instrument compared with other 

states. Furthermore, successful instruments must correlate strongly with the treatment, as 

weakly correlated instruments lack the precision to produce practically useful estimates. It is 

important to ensure that these assumptions are met, as violations of any of these assumptions 

could threaten the validity of the results.

For example, though weather is a popular instrument considered for IV analysis30,31 

because changes in weather are plausibly random, it may not be appropriate depending 

on the specific causal question being asked. Consider a behavioral scientist who wishes 

to study the effect of exercise on mental well-being and plans to use temperature as an 

instrument on the amount of exercise individuals get. Though it tells an intuitive story 

where temperature ‘randomizes’ the amount of exercise individuals get, temperature may in 

fact be only weakly correlated with exercise (for example, people tend to exercise indoors, 

so the outside temperature does not matter much), or more concerningly, may violate the 

exclusion restriction (temperature may also influence mental health outside of exercise, such 

as through seasonal affective disorder). In this situation, though it seems that weather is a 

good candidate for IV analysis, a closer consideration of all the assumptions reveal flaws in 

the study design.

Provided that we find an appropriate instrument such that these assumptions are plausible, 

IV analysis can be used broadly across many disciplines to estimate causal effects in 

non-experimental data by leveraging observable sources of randomness (Table 1).

Regression discontinuity designs.

Another method of leveraging naturally occurring randomness to estimate causality is the 

regression discontinuity design (RDD). In RDDs, our treatment of interest X is assigned 

according to a sharp cutoff of a continuous running variable R, such as age, a standardized 

test score or a blood pressure reading. Because the cutoff is sharp (for example, if age 50 

or above, patients get screened for cancer, otherwise they do not), the treatment assignment 

X is ‘as good as random’ (quasi-random) for individuals near the cutoff, allowing for the 

estimation of the causal effect of treatment X on the outcome Y (Fig. 3a).

The classic example of RDD concerns high school academic recognition (X) and their effect 

on subsequent academic achievement such as receiving scholarships (Y)32. US high school 

students take a standardized exam called the National Merit Scholarship Qualifying Test 
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(NMSQT), with students who meet a minimum score cutoff being nationally recognized 

with a Certificate of Merit. Here the continuous running variable is the NMSQT test 

score (R). Students who just meet the cutoff are not materially different from students 

who just miss the cutoff, essentially randomizing assignment of the Certificate of Merit 

near the cutoff score. This quasi-randomization design allows estimation of the causal 

relationship between the Certificate of Merit and receiving scholarships for students around 

the threshold. For our motivating example in the introduction, an RDD using pneumonia risk 

score cutoffs for hospitalization33 could be used to obtain causal estimates.

A common method to obtain causal estimates using RDD is to fit two models of the running 

variable R (test score) on the outcome Y (scholarship amount) both to the left and right 

of the threshold, called local linear regression in the linear case (Fig. 3b depicts a local 

linear regression on simulated data)34,35. The causal effect of the treatment X (Certificate 

of Merit) at the threshold is the difference in the two fitted regressions’ predicted value at 

the threshold. A practical consideration of implementing RDDs concerns bandwidth size34: 

how far from the threshold can an individual be and still have effectively random treatment? 

Smaller bandwidths make it more plausible for treatment to be quasi-random but also reduce 

the sample size of the regressions fitted. However, larger bandwidths may introduce bias 

into our estimates, particularly if the relationship between the running variable R and the 

outcome Y is nonlinear, as shown in the simulated data in Fig. 3c: note how the difference 

between the left and right local regressions at the cutoff value do not match the actual 

discontinuous change in the outcome Y. Fortunately, there has been work in econometrics 

exploring optimal and data-driven bandwidth selection methods36,37. Fitting local models 

on either side of the threshold leverages the quasi-randomness in treatment at the cutoff, 

allowing us to quantify the causal effect.

Similar to IV analysis, there are assumptions needed when performing RDD analysis to 

ensure valid estimation. We assume that only the running variable R has a discontinuous 

jump that drives the causal relationship between the treatment and the outcome (Fig. 3a). 

This assumption can be falsified in practice by verifying the continuity of other measured 

covariates at the cutoff value of R. Another critical assumption requires that individuals 

cannot perfectly manipulate the running variable, as this could make the groups above and 

below the threshold incomparable. In our above example, if some students can precisely 

control their test score such that they do just enough studying to achieve the Certificate 

of Merit cutoff, that would violate the quasi-randomization of treatment. Economists have 

developed tests for this form of running variable manipulation enabling falsification of the 

assumption38. Notably, the running variable does not need to be unconfounded to make valid 

causal estimates. Because of its relatively weak and often falsifiable assumptions, RDD is 

known as one of the most credible quasi-experimental methods for estimating causality from 

observational data39.

However, although it is tempting to try and apply RDD analysis whenever there is a 

threshold determining treatment assignment, there are plausible situations where these 

assumptions do not hold. The assumption that units just above and below the threshold 

are comparable needs to be carefully considered in practice, as violations often arise when 

individuals in the study know the cutoff and the score. For example, one may study the effect 
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of grant awards on future academic success of young scientists, utilizing National Institutes 

of Health payline cutoffs for fellowship and grant funding for an RDD analysis40,41. 

However, as payline cutoffs are made public, it is likely that scientists who know that they 

just missed the cutoff are further motivated to work harder than scientists that just barely 

made the cutoff, potentially biasing estimates of future success because the scientists just 

above and below the cutoff differ in motivation.

Provided that the assumptions can be justified, RDD analysis has the potential to be widely 

applicable in estimating causal effects as thresholds exist in many real-world data settings 

(Table 1), even in unconventional settings such as geographic boundaries42.

Difference-in-differences.

A third standard econometric approach called difference-in-differences (DiD) addresses 

confounding in observational data by looking at a treated and a control group, and 

comparing their outcome trends over time. We have measurements of outcome Y in time 

periods before (Y1) and after (Y2) treatment X for both a treated group that receives the 

treatment and a control group that does not receive treatment. The simple difference Y2,treat 

− Y1,treat of the treated group could serve as an estimate of the causal effect of X, but it 

may be confounded by unobserved factors or time effects. The idea of the DiD is to use the 

difference Y2,control − Y1,control of the control group as an estimate of confounding affecting 

the treated group, correcting for this effect by subtracting this second difference (Fig. 4a).

The classic example of DiD in economics concerns the effect of raising the minimum 

wage (X) on employment (Y)9,43. New Jersey raised the minimum wage in 1992, while 

the bordering state of Pennsylvania did not. The study compared fast food restaurant 

employment numbers from both states before and after the policy change. Changes in 

employment when looking only at New Jersey could have been confounded by other factors, 

such as a national recession. However, by subtracting the difference in employment observed 

in Pennsylvania, which did not see a minimum wage increase but is plausibly equally 

affected by confounders due to geographic and demographic similarities, the authors could 

control for potential confounding.

To perform DiD analysis, we use longitudinal data to make estimates of Y1 and Y2 (for 

example, pre- and post-minimum wage increase) for both the control and treated groups. 

The estimates can be single expectations computed over the pre and post time periods or, 

if the practitioner wishes to include multiple time points and control for other covariates, 

the estimates can be made with a time series regression44,45. We then take the difference 

between the estimated differences of the outcome values between the treated and control 

groups ((Y2,treat − Y1,treat) − (Y2,control − Y1,control)), which yields a valid estimate of the 

effect treatment X has on outcome Y by subtracting out confounding factors that influence 

both the control and treated group equally: Fig. 4b depicts this visually, where the trend lines 

pre-treatment for both the treatment and control group are parallel. We note here that DiD 

analyses are a particular regression method for estimating causality from time series, with 

variations of DiD available for non-parametric and nonlinear settings46–48. The synthetic 

control, related to DiD, is another technique developed in economics to estimate causal 

effects from time series data41.
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Like the other quasi-experimental designs, DiD analysis requires assumptions to ensure 

valid causal estimates. The most important assumption is the presence of parallel trends: 

we require that the treated and control groups are not differently affected by confounding 

factors over time. In our minimum wage example, the parallel trends assumption would be 

violated if the Pennsylvania labour market reacted differently from the one in New Jersey 

to the ongoing recession. If the longitudinal data contain multiple time points, the parallel 

trends assumption can be falsified by examining the outcome Y in the two groups before the 

treatment X is applied, with Fig. 4c visually depicting such a violation. Another assumption 

required is the absence of spillover effects, where intervention itself results in a change 

in the composition of the control and treated groups49. This would be violated if the new 

minimum wage in New Jersey resulted in different individuals re-entering the job market or 

individuals from Pennsylvania moving to New Jersey. Another example of DiD assumptions 

failing to hold was a study examining the impact of US food aid delivered to countries 

on subsequent civil conflict, with random variations in US wheat production impacting 

the amount of aid provided to countries50. The problem was that the association between 

wheat production and conflict varied over time across the ‘control’ and ‘treated’ countries, 

violating parallel trends and showing that the effect of food aid on conflict may have been 

driven by spurious correlations51. For DiD analyses to be valid, we need evidence to support 

both parallel trends and the absence of spillover effects.

Nevertheless, the transparency and flexibility of the DiD analysis make it an attractive 

technique for causal inference provided that appropriate controls are selected and that the 

DiD assumptions are plausible. As many data science problems involve time series, DiD has 

the potential to be used widely for obtaining causal estimates from observational data (Table 

1).

Limitations of quasi-experiments

There are limitations to the generalizability of causal estimates made using quasi-

experimental techniques. All of the methods we have reviewed estimate causal effects 

for specific populations. IVs estimate the causal effect for the individuals affected by 

the instrument52. RDD estimates the causal effect of individuals at the threshold53, 

though extrapolation of causal effects away from the threshold is possible under stronger 

assumptions54. DiD estimates the causal effect for the selected treated group. However, 

we note that generalizability concerns extend to even randomized experiments, where 

participant demographics could limit causal findings to a specific population55. When 

applying quasi-experimental methods, like all causal analyses, we must be mindful of which 

populations the estimates are valid for.

A practical consideration is that quasi-experiments require a specific data-generating process 

or specific type of variable observed to be applied, such as an instrument strongly correlated 

with the treatment (IV), the presence of a threshold determining treatment (RDD) or the 

existence of an appropriate control group to compare to the treated group over time (DiD). 

Thus, the estimation of causal effects using quasi-experimental methods depends on whether 

the data fits into these frameworks, as one cannot usually retrofit existing data into one 

of these methods: “[study] design trumps analysis”56. In addition, there is some danger 
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in looking for data that fit these designs without properly considering the assumptions 

underlying the techniques, which could invalidate the analysis if not met. As discussed in the 

previous section, data that may seem appropriate at face value for the application of these 

methods may not work when carefully considering the assumptions.

Outlook

Data science can benefit from quasi-experiments.

Quasi-experimental strategies should be more broadly applied in data science settings (Table 

1) as they are the only way of meaningfully estimating causality in many situations. For 

example, IV analysis has been used to estimate causal effects of recommender systems57 

by leveraging random shocks in product popularity as instruments58. A popular technique 

in epidemiology called Mendelian randomization is an application of IVs that uses genetic 

variation as an instrument59,60. Thresholds in medical practice abound and should be used 

more frequently for RDD analysis61. DiD techniques can be used to evaluate the effects of 

policies and actions over time across domains such as advertising62 and public health63. 

Quasi-experimental strategies could estimate causal effects in these settings, providing 

useful feedback for decision-making.

Furthermore, we can combine these causal estimates from quasi-experiments with other 

data to improve performance on tasks across ML. For example, there has been work 

using overlapping experimental data to control for confounding in observational studies64, 

which could be extended to leverage quasi-experimental data. Reinforcement learning 

agents perform interventions, make decisions and form policies when interacting with 

their environment, which are inherently causal tasks11,65. However, modern reinforcement 

learning agents are often expensive to train66, so incorporating quasi-experimental estimates 

of causal effects may be a promising way to improve efficiency. In particular, RDDs have 

been applied to bandit problems for policy optimization67. There has been an exploding 

interest in explainable artificial intelligence68 with a renewed focus on causality69,70: 

how does an ML model’s prediction change when we change an input feature? Though 

some explainable artificial intelligence methods rely on perturbing the data to generate 

explanations71,72, there is value in trying to exploit naturally occurring randomness in 

the data to estimate causal effects so that the feature distribution of the original data is 

preserved, as ML models can behave erratically when given out-of-distribution examples73. 

Combining quasi-experiments and their unbiased causal estimates with more flexible and 

powerful ML methods promises meaningful blending of the strengths of these approaches.

Quasi-experiments can benefit from ML.

Work in economics has traditionally focused more on parameter estimation (for example, 

estimating and interpreting regression coefficients) than prediction74, which brings 

opportunities for ML to be incorporated into quasi-experimental methods. In certain 

contexts, we can replace parametric estimators traditionally used in a method with more 

flexible ML estimators. For example, the first stage regression in IV analysis is effectively 

a prediction task. Work has been done scaling IVs to high-dimensional data, nonlinear data 

domains using least absolute shrinkage and selection operator (LASSO), kernel methods 
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and deep learning75–77. There has also been growing interest in inferring causality from 

longitudinal data, with ensemble models as well as matrix completion methods being 

used for causal estimates in time series data78,79. Further crosstalk and application of ML 

techniques to causal time series may be promising future work.

Another area where ML can improve quasi-experiments is by refining the target population 

to which the causal estimates apply. The estimates made by quasi-experiments are only 

valid for specific groups, such as individuals who are affected by an instrument or threshold 

in the cases of IV and RDD analysis. Predicting which individuals are likely to respond 

to a treatment or an instrument80–82 could increase interpretability of the causal estimates, 

as well as inform exclusion criteria for study designs. Furthermore, ML methods excel 

at optimizing loss functions, which can be used to refine treatment and policy strategies. 

For example, there has been work in optimizing the treatment thresholds of RDDs with 

respect to maximizing treatment effect or minimizing potential harm83,84. ML extensions 

of quasi-experiments show promise in characterizing the target population of the causal 

estimates and informing better policy choices.

Empirical economists are showing interest in using ML and data science74,85,86. In addition 

to the settings we have already reviewed, there have been methods developed for causal 

inference in other contexts, such as under interference (where the treatment assignment 

of individuals can affect others’ outcomes)87 or in network data88. As ML methods 

become commonplace, data scientists and ML researchers should look to opportunities for 

collaborations with the economics community.

We need to take causality seriously.

Much like how causality has been highlighted as the central issue in areas such as 

marketing89 and neuroscience90, there needs to be wider acknowledgement that many data 

science questions are causal in nature3. We advocate for data scientists to view the questions 

they are working on through a causal lens: can the question be answered through correlation 

or prediction, or is there an underlying causal mechanism that one is seeking to understand? 

If the goal is to understand decision-making, actions or interventions, a data scientist needs 

to carefully consider their data: is it observational or experimental, are there concerns about 

unobserved confounding variables and what strategies can be taken to address confounding? 

The quasi-experiments we have presented here are one set of methods that can successfully 

identify causal effects in the presence of confounding, and should be part of data scientists’ 

toolkit much like how they have become part of economists’ toolkit45,91.

We have highlighted opportunities for both data science and the traditional users of quasi-

experiments to build off each other. Causality needs to play a larger role in data science, and 

quasi-experiments provide practical methods for measuring causality in observational data. 

At the same time, innovations from ML and data science are being used in economics, and 

the continued application of these ideas to complex data domains can increase the scope of 

questions economists and other social scientists can ask. We envision a future where more 

data science endeavours are explicitly centered around causality, and where other fields such 

as economics can leverage advances in ML to help answer their own causal questions.
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Fig. 1 |. Graphical representations for estimating causality in experimental and observational 
data.
a, Graphical representation of an experimental study, where there is no link between 

treatment X and confounder Z as X is randomized. b, Graphical representation of an 

observational study, where both colliders C and confounders Z can bias causal effect 

estimates.
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Fig. 2 |. DAG and plots of IVs.
a, Graphical representation of how IVs vary X to measure its causal effect on Y. The crossed 

edges depict assumptions needed for valid IV inference: the exclusion restriction (crossed 

grey edge) as well as no unmeasured confounding between IV and Y (crossed red edge). 

b, Histogram of causal effect estimates across 100 simulated datasets for both IV (orange) 

and typical regression (blue) when the true treatment effect (dashed line) of X on Y is 

confounded. c, Histogram of causal effect estimates across 100 simulated datasets for both 

IV (orange) and typical regression (blue) when the true treatment effect (dashed line) of X 
on Y is confounded and the exclusion restriction is violated.
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Fig. 3 |. DAG and plots of RDDs.
a, Graphical depiction of how RDDs use a threshold T in a continuous running variable 

R to effectively randomize treatment X (crossed red line) to estimate causal effects Y. b, 

Scatterplot (blue dots) and fitted local regressions (red lines) within the bandwidth (shaded 

red regions) of outcome Y on running variable R for simulated linear data to the left and 

right of the cutoff (dashed line). c, Scatterplot (blue dots) and fitted local regressions (red 

lines) within the bandwidth (shaded red regions) of outcome Y on running variable R for 

simulated nonlinear data to the left and right of the cutoff (dashed line).
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Fig. 4 |. DAG and plots of DiD.
a, Graphical representation of DiD, where both the control and treated groups are affected 

by the confounder Z1, but the difference of their differences pre- and post-treatment yield 

unbiased estimates of the outcome Y. An appropriate control group must be chosen such 

that any confounders affect both groups (the crossed edge of Z2 affecting only the treated 

group would be a violation of this). b, Scatterplot of outcomes Y for both the treated group 

(orange) and the control group (blue) over time in simulated data where parallel trends 

holds, with a treatment X being applied (dashed) to the treated group. c, Scatterplot of 

outcomes Y for both the treated group (orange) and the control group (blue) over time in 

simulated data where the parallel trends assumption is violated.
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