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Abstract

Objectives—To develop radiomics model for differential diagnosis of focal-type autoimmune 

pancreatitis (AIP) from pancreatic ductal adenocarcinoma (PDA).

Methods—A total of 96 patients, 45 AIP and 51 PDA, were retrospectively collected. All 

patients underwent pretreatment abdominal CT imaging acquired at non-contrast, arterial, and 

venous phases. 1160 radiomics features were extracted from each phasic image to build radiomics 

models. The performance of radiomics model was evaluated by sensitivity, specificity, and 

accuracy. The results of radiomics model were also compared with those of radiologists’ visual 

assessments.

Results—The sensitivity, specificity, and accuracy of the optimal radiomics model were 93.3%, 

96.1%, and 94.8%, respectively. They were higher than those of the radiologists’ assessments with 

sensitivity of 57.78% / 73.33%, specificity of 88.24 / 90.20%, and accuracy of 75.00% / 81.25%.

Conclusion—Radiomics is helpful for differential diagnosis of AIP in clinical practice as a 

noninvasive and quantitative method.
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Introduction

Autoimmune pancreatitis (AIP) was first described by Yoshida[1] in 1995. According 

to the International Consensus Diagnostic Criteria (ICDC), there are two types of AIP: 

Type - 1 and Type - 2[2]. Type 1 AIP is a systemic disease and is the pancreatic 

manifestation of IgG4-related systemic disease, is more common and seen generally in 

Asian populations. Type 2 AIP is confined to the pancreas. The intensity of the periductal 

inflammatory infiltrate and the presence of ductal neutrophilic abscesses are features that 

assist in distinguishing type 2 AIP from chronic pancreatitis [3, 4]. Contrast-enhanced 

computed tomography (CECT) remains the first-line imaging modality for the evaluation of 

patients with suspected pancreatic disease. A diffuse sausage-shaped or focal enlargement 

of the pancreas with delayed enhancement or capsule-like rim enhancement on CECT 

is considered to be the typical sign of AIP [2]. However, the definitive diagnosis often 

remains challenging, particularly when AIP is accompanied by a focal pancreatic mass 

and abnormal enhancement. Clinically, given the rarity of AIP, the presence of a focal 

mass in the pancreas is often suspected to be pancreatic ductal adenocarcinoma (PDA). 

A 3–43% incidence of pancreatic resection for misdiagnosed PDA with a diagnosis of 

AIP made at surgical pathologic examination was observed [5–7]. In clinical practice, 

although endoscopic-ultrasound-guided fine-needle-aspiration biopsy (EUS-FNAB) is useful 

for diagnosing AIP, it is an invasive procedure and conclusive diagnosis of AIP is often 

difficult owing to the small size of specimens obtained by EUS-FNAB [8].

Numerous imaging strategies have been employed to diagnose AIP noninvasively on the 

basis of imaging features[6, 9–17]. To date, a major drawback of this type of methods is 

that all image features are described subjectively by a radiologist. As a result, the diagnostic 

accuracy will depend on the knowledge and analytical skill of individual radiologist. Thus, 

objective and quantitative diagnostic methods are urgently needed for improved diagnosis of 

AIP, especially focal-type AIP.

Radiomics is a form of image analysis that uses quantitative textural information, known 

as image features, to evaluate medical images. Radiomics is currently gaining increasing 

attention in oncology research and has been applied to cancer diagnosis, prognosis and 

treatment response assessments[18]. Well-developed radiomic features may serve as “virtual 

biopsy” derived biomarkers that are non-invasive, quantitative, and reproducible.

In this study, we retrospectively reviewed CT imaging data from a cohort of 45 patients with 

AIP and 51 patients with PDA. We evaluated the performances of retrospective radiologist 

assessment and radiomics methods to differentiate AIP from PDA. We aimed to evaluate 

whether radiomics can help improve the diagnosis of AIP.

Materials and Methods

The Institutional Review Board approved the retrospective collection and analysis of the 

study data, and the need for informed consent from patients was waived.

E et al. Page 2

J Comput Assist Tomogr. Author manuscript; available in PMC 2022 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Patient Selection

Between January 2012 and May 2019 we searched the clinical and radiological databases 

of two institutions to identify patients with focal-type AIP. A total of 56 patients had 

been diagnosed with focal-type AIP (Type 1). Among the 56 patients, 11 of them were 

excluded due to missing of contrast-enhancement CT images. Finally, a total of 45 patients 

with focal-type AIP (Type 1) were used for study, including 14 patients confirmed with 

histologic diagnosis and 31 patients met the ICDC. For the 14 histologically confirmed 

patients, one was confirmed with specimens from pancreaticoduodenectomy, two were 

confirmed with distal pancreatectomy, and 11 were confirmed with endoscopic-ultrasound–

guided core-needle biopsy. For the ICDC, it included five cardinal features of AIP including 

parenchymal imaging, ductal imaging, serology, other organ involvement, histology of 

pancreas and response to steroid therapy. Each criterion was further classified into two 

levels (levels 1 and 2). The data flow chart for collecting AIP was presented in Fig. 1.

Patients with PDA were randomly selected from our institutional radiological database. In 

terms of distribution of age and sex, the PDA group was matched to the patients with AIP.

The inclusion criteria of focal-type AIP were as follows: 1) patients underwent pretreatment 

triple-phase pancreatic CT; and 2) definitive diagnosis was made by surgical resection, EUS-

FNAB, or meeting the ICDC. Conversely, cases were excluded for the following reasons: 1) 

CT findings of distant metastasis in patients with PDA; 2) patients had received treatment 

for the pancreatic lesion before CT examination; and 3) image quality was unsatisfactory 

due to severe artifacts.

Image Acquisition

Patients were imaged on a range of helical multidetector (16, 64, 128 and 256 slices) CT 

scanners. After an unenhanced scanning (kVp 120, mAs 100–500), dual-phase (arterial and 

venous) of the upper abdomen imaging was acquired using an intravenous bolus injection of 

iodinated contrast (1 mL/kg) with a 3 – 4 mL/sec injection rate; the imaging of arterial phase 

acquisition was triggered by bolus tracking upon the aorta (Trigger cutoff on aorta is 100 

HU. Generally, the triggering of scanning is 35–45s after the injection start when pancreatic 

parenchyma could reach the maximum enhancement). The imaging of the venous phase was 

acquired at the 60 s delay after the injection. All CT images were reconstructed with a slice 

thickness that varied from 1~5 mm.

Retrospective Radiologist Assessment and CT Sign Evaluation

CT images of each patient were reviewed by two radiologists (Z.N. and W.Z. with 6 and 

10 years of experience in the interpretation of abdominal imaging). They were blinded 

to the final diagnosis but aware that the study cohort included patients with AIP and 

PDA. A checklist of the CT signs (Table 3) collected from the previous literature on 

AIP and PDA was provided for the radiologists’ interpretation[2, 9–12, 14–17, 19–21]. 

They independently interpreted triple-phase CT signs on each patient and made their own 

diagnosis. If the two independent interpretations disagreed, a consensus interpretation was 

made for each patient in disagreement.
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Region of Interest (ROI) Delineation

The lesion ROI delineation was performed by one radiologist (E.L. with 16 years of 

experience in the interpretation of abdominal imaging and blinded to the final diagnosis), 

using an in-house imaging platform (Weasis)[22] under an abdominal window/level setting 

(Window: 350 HU; Level: 50 HU). For obtaining the ROIs on the triple phases in each 

patient, an ROI on the arterial-phase was first delineated and then copied to non-enhanced 

and venous phase images. Limited modifications were made only if large organ movement 

existed. The vessels were excluded from the delineated lesion ROI.

Feature Extraction and Reproducibility Assessment

For each delineated lesion ROI, 1160 well-defined quantitative image features were 

extracted using an in-house feature extraction software package implemented on MATLAB 

2016b (MathWorks, Natick, USA). The 1160 image features were an extension of a set of 

the 89 image features published in a previous radiomics study by expanding the scales of 

some feature parameters. The details of each feature can be found in [23].

To assess the interobserver agreement for the computation of the radiomic features, we 

randomly chose a subset of 40 patients (20 AIPs and 20 PDAs) from the entire patient list 

and asked a second radiologist (10 years of experience in the interpretation of abdominal 

imaging and blinded to the final diagnosis) to delineate the lesion ROIs and extract the 

features in the same manner and using the same software tools. The concordance correlation 

coefficient (CCC) was used to indicate the reproducibility of the radiomics features[24].

Radiomics Model Building

To capture informative image information as much as possible, we extracted 1160 features to 

quantify phenotypic characteristics of lesions at three CT phases. However, analyzing such 

a large feature set was difficult and prone to overfitting on data. Therefore, a novel coarse-to-

fine two-stage strategy was adopted[25, 26]. At the coarse-stage, considerably numbers of 

redundant features were removed from the feature set based on the minimum Redundancy 

Maximum Relevance algorithm[27]. At the fine-stage, a compact set of informative and 

nonredundant features were combined using the Random Forest (RF) algorithm[28]. More 

detailed description on radiomics model building are presented in the Appendix.

Machine-learning algorithms were coded using the Matlab 2018a (Mathworks, Natick, 

USA) package. In the RF algorithm, we took the default values for all of the algorithm’s 

parameters except the “Number of Tree” and “Minimal Leaf Size”. These two parameters 

could regularize the fitness power of RF and help prevent overfitting, which was especially 

useful for studying small datasets like ours. In this work, we empirically set the “Number of 

Tree”=15 (approximately 15% of total data) and “Minimal Leaf Size”= 10 (approximately 

10% of total data).

Models Based on Triple-phase CT Imaging

Four radiomics models, i.e., a noncontrast model, an arterial model, a venous model, and a 

hybrid model, were constructed in our study. The noncontrast, arterial, and venous models 
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were independently built based on each of the three-phase CT images, whereas the hybrid 

model was built on the average prediction of the three-phase models.

Performance Evaluation and Statistical Analysis

For the radiologist’s assessment, accuracy, sensitivity, specificity, negative predictive value 

and positive predictive value were used to indicate performance. For the radiomics 

prediction model, sensitivity, specificity, and the AUC (the area under the receiver operating 

characteristic curve (ROC)) was used. The AUC was calculated through five-fold cross-

validation.

The significant difference for continuous data and categorical data were evaluated using 

the Student t-test and the chi-squared test, respectively. The tests were performed on SPSS, 

version 19.0 (SPSS, IL, USA), and p <0.05 was considered significantly different.

Results

Patient Demographics

A total of 96 patients – including 45 patients with focal-type AIP and 51 patients with PDA 

– were evaluated. No significant difference was found among the patients between the two 

cohorts in terms of age (p = 0.142) and gender (p = 0.083). More details of the patient 

demographics and clinical features are summarized in Table 1.

Retrospective Radiologist Assessment

As shown in Table 2, radiologist 1 correctly diagnosed 26 AIP and 46 PDA with 75.00% 

accuracy. Radiologist 2 diagnosed 33 AIP and 45 PDA with 81.25% accuracy.

CT Sign Evaluation

The frequencies of all the CT signs of patients with AIP and PDA are summarized in Table 

3. Capsule-like rim enhancement and homogeneous enhancement in the venous phase are 

the two typical CT signs for AIP diagnosis (Fig. 2). On all three phases, the mean CT 

attenuation values of pancreatic involvement were significantly higher in AIP than in PDA. 

(p < 0.001, Table 1).

Renal involvement was more frequent in patients with AIP than those with PDA (p = 

0.020). Renal involvement in our study indicated the CT sign that, CT images revealed a 

bilateral diffuse renal swelling with multiple hypodense lesions, and bilateral focal thinning 

or absence of the renal cortex. Some patients showed diffuse thickening of the renal 

pelvis wall. Vascular involvement was more frequent in PDA than in AIP (p = 0.027). 

No difference was noted between these two cohorts in the frequency of lymphadenopathy, 

biliary dilatation, or retroperitoneal stranding or fibrosis.

Radiomics Prediction Model

To build the four radiomics models, we extracted three radiomics feature sets, each 

containing 1160 features, from the three-phase CT images separately. For each feature 

set, we applied a CCC threshold of 0.60 to screen features with low reproducibility. As 
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a result, there were 714, 726 and 694 reproducible features remained in each set. The 

radiomics models based on the reproducible features and the coarse-to-fine strategy were 

developed to output the probability of being AIP or PDA. Finally, a hybrid model was built 

by averaging the output probabilities of the three single-phase models. The performances 

of the hybrid radiomics model achieved AUC (95% CI) of 0.977 (0.924, 0.997). The 

ROCs of the four radiomics models are presented in Fig. 3. The features selected to create 

radiomics model as well as their importance to the model (the predictor importance output 

by the RF algorithm) are listed in Table 4. The “LongRun-Low-GrayLevel-Emphasis” and 

“LongRun-High-GrayLevel-Emphasis” features were the radiomic features most important 

to our models built to distinguish AIP from PDA.

Discussion

Based on the triple-phase CT imaging, we developed four radiomics models. Among them, 

the hybrid model demonstrated the highest performance of AUC = 97.7% and accuracy = 

94.80% for distinguishing focal-type AIP from PDA. Our results indicated that radiomics 

analysis could serve as a noninvasive, quantitative and potentially useful tool for improving 

the diagnostic accuracy of focal-type AIP in clinical practice.

The retrospective diagnostic accuracy assessments of the two radiologists were 75% and 

81.25%. This result is similar to that of a previous study in which the accuracy for 

diagnosing AIP was reported between 53% and 78%[14]. Noticeably, the radiomics models 

showed improved diagnostic performance than the radiologists (Table 2). Even based on 

noncontrast CT imagine, the radiomics model shows a diagnostic accuracy of 79.19%. A 

possible explanation for the low and varied diagnostic accuracy of radiologists was that the 

identification of the specific CT signs was subjective and relied on the experience of the 

radiologists. Moreover, a low agreement between the two radiologists was found for the 

specific CT signs of AIP[14, 15].

Compared to radiologists’ subjective evaluation, radiomics models can enable the 

quantitative assessment of heterogeneity information for AIP and PDA on CT imaging, 

which may be reflected by their heterogeneous nature at the gross and cellular levels 

based on different pathological features[3, 4, 29]. As can be seen from Fig 4, PDA shows 

the haphazard arrangement of neoplastic cells and fibrous connective tissue. However, 

AIP shows significant lymphoplasmacytic infiltration around atrophic pancreatic pancreatic 

ducts with fibrosis, such differences in pathology are likely to be reflected on imaging as 

differences in heterogeneity. However, these pathological features are difficult to detect with 

the naked eye. In our study, as shown in Table 4, aside from the features to characterize 

homogeneity information, such as the above-mentioned “Run-Length” features, the features 

to characterize heterogeneity information such as “LoG” (Laplacian of Gaussian)[30] and 

“GLCM” (Gray Level Co-Occurrence Matrix)[31] features, were also involved. The “LoG” 

and “GLCM” are features that have been proven useful in predicting the pathological 

features of certain tumor types[32–35]. Therefore, the quantification of such features could 

potentially serve as imaging biomarkers for supporting precise diagnoses for AIP.
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Moreover, our study showed that CECT has a definitive impact on the selection of radiomics 

features. As shown in Table 4, the three radiomics models are built on different features. 

The underlying reason for the variability of radiomics features may be correlated with the 

biological heterogeneity within the tumor tissue (vascularity or lack of it). The heterogeneity 

on CT can be quantified using radiomics analysis, which reflects the coarseness and 

regularity that result from local spatial variations in image brightness (an extension from 

measuring attenuation). Therefore, our study indicated that radiomics features may be 

affected by the phase (arterial or venous) of acquisition and some scan-related parameters 

(i.e. contrast dose and injection rate), and the reproducibility of radiomics features due to 

image acquisition should be investigated extensively before using these features in clinical 

practice.

Our study has a major limitation, i.e., we were only able to examine a small number of 

patients due to the rarity of the AIP disease. Future studies with a larger patient population 

in multiple institutions are needed for the validation of the developed radiomics models.

Conclusion

Our results show that radiomics, as a noninvasive and quantitative method, has a great 

potential to improve the accuracy of AIP diagnosis.
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Appendix

Radiomics Model Building

A ‘coarse’ to ‘fine’ two-stage strategy was developed to screen redundant and non-

informative features and create a compact set of the informative and non-redundant features 

for model building.

Within the two-stage strategy, the first stage coarse selection was consisted of two 

sub-procedures, the unsupervised hierarchical clustering and the feature ranking. The 

unsupervised hierarchical clustering was performed in three steps. Firstly, calculate 

correlation between features; secondly, organize all features into a hierarchical clustering 

tree according to their mutual correlations; finally, by setting a correlation threshold, 

all features were separated into a series of redundant feature groups (i.e. when setting 

correlation threshold as 0.5, it means all candidate features are clustered into a series of 

redundant feature groups, within which mutual correlation of all feature exceed 0.5). For 

each group of redundant features, only the most informative features were kept, and others 

were excluded. In the feature ranking procedure, the minimum Redundancy Maximum 

Relevance (mRMR) algorithm (1) were applied to rank the correlated features. The top-

ranked feature was selected as the most informative feature for each redundant feature 

group. In our study, by setting a high correlation threshold, a compact candidate feature list 

can be attained after the coarse selection.
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At the second stage, the fine selection was consisted of two algorithms, the Incremental 

Forward Search (IFS) (1) and the Random Forest algorithm (2). IFS was adopted to evaluate 

features sequentially. In our study, up to twenty features (top 20 features identified in the 

ranking step, empirically set to 20% of the patient data) were evaluated. IFS initiated on 

an empty set and included k features if and only if the addition of the k features could 

increase the performance of the classification models. The procedure of IFS was repeated 

until all the candidate features in the compact candidate feature list were evaluated (The 

forward step k was set as 3 in our study). During the IFS, the RF algorithm was used to 

combine features. Thus, totally 20/3=6 candidate models were created during the IFS. The 

final optimal model was determined as the model that could achieve the best performance in 

terms of area under a receiver operating characteristic curve (AUC) which was estimated by 

five-fold cross-validation.

All the algorithms for model building were implemented on the platform of Matlab 2017b 

(Mathworks, Natick, USA). Parameters for the mRMR and RF algorithms were all set as 

default.

List of all abbreviations

AIP autoimmune pancreatitis

PDA pancreatic ductal adenocarcinoma

ICDC International consensus diagnostic criteria

CECT Contrast-enhanced computed tomography

EUS-FNAB Endoscopic-ultrasound-guided fine-needle-aspiration biopsy

ROI Region of interest

CCC Concordance correlation coefficient

ROC Receiver operating characteristic curve

AUC Area under the receiver operating characteristic curve
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Figure. 1. Flow diagram of study population.
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Figure. 2. Typical CT Features of focal-type autoimmune pancreatitis and pancreatic 
adenocarcinoma.
(A) A 63-year-old man with focal-type autoimmune pancreatitis. In arterial phase, the 

axial CT image shows a focal hypo-attenuation mass in the pancreatic body (white arrow 

head). (B) In venous phase, the focal mass of the pancreatic body shows the homogeneous 

enhancement and capsule-like rim (white arrow head). (C-D) A 49-year-old man who had 

abdominal pain for 1 year. Contrast-enhanced CT images show a 2 cm low-attenuation mass 

in the pancreatic neck in arterial and venous phases. The patient underwent surgery, and the 

final pathologic result was PDA (white arrow).

E et al. Page 12

J Comput Assist Tomogr. Author manuscript; available in PMC 2022 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure. 3. Ability of receiver operating characteristic curves of the radiomics models to 
differentiate AIP and PDA.
The performances of radiomics models in differentiating AIP and PDA were AUC (95% CI) 

= 0.827 (0.737, 0.897), 0.890 (0.810, 0.945), 0.953 (0.890, 0.986) and 0.977 (0.924, 0.997) 

for the non-contrast, arterial phase, venous phase and hybrid of three phases, respectively. 

Variables in parentheses are not defined.
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Figure. 4. Pathology of the PDA and AIP.
(A) Pathology of pancreatic adenocarcinoma. Note the haphazard arrangement of neoplastic 

cells and desmoplastic stroma (Hematoxylin and Eosin staining, original magnification × 

100).

(B) Phomicrograph shows significant lymphoplasmacytic infiltration around pancreatic 

ducts with fibrosis (Hematoxylin and Eosin staining, original magnification × 100).

(C) Tissue was stained for IgG-positive cells.

(D) Tissue was stained for IgG4-positive cells .90% of IgG + plasma cells are IgG4 positive.
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Table 1.

Patient Demographics and Clinical Features

AIP
(n=45)

PDA
(n=51) P

Age (range) 61 (34–78) 68 (45–83) 0.142

Gender 0.083

 Male 26 38

 Female 19 13

Clinical characters

 Weight loss 28 37 0.022

 Abdominal pain 45 48 0.245

 Jaundice 17 15 0.386

Laboratory data

 Elevated serum IgG4 27 0

 Elevated lipase 14 6

 Elevated CA19-9 15 32

Surgery 3 27

EUC-FNAB 11 8

Note—Except for age, data are number of occurrences. Values in parentheses are range. Clinical information was not available for all patients.

IgG4 was measured in 38 patients with autoimmune pancreatitis, no patient with pancreatic ductal adenocarcinoma.

Lipase was measured in 45 patients with autoimmune pancreatitis, 21 patients with pancreatic ductal adenocarcinoma.

Cancer antigen 19-9 (CA 19-9) was measured in 45 patients with autoimmune pancreatitis, 51 patients with pancreatic ductal Adenocarcinoma.

EUC-FNA= endoscopic ultrasound guided fine needle aspiration biopsy
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Table 2.

The ability of different approaches to differentiate AIP from PDA

AIP vs PDA Sensitivity (%) Specificity (%) Negative Predictive 
Value (%)

Positive Predictive Value 
(%) Accuracy (%)

Radiologist 1 57.78 90.20 80.70 66.67 75.00

Radiologist 2 73.33 88.24 78.95 84.62 81.25

Radiomics-Non-contrast 71.11 86.27 77.19 82.05 79.17

Radiomics-Arterial phase 82.22 90.20 85.19 88.10 86.46

Radiomics-Venous phase 93.33 96.08 92.00 89.13 90.63

Radiomics-Hybrid 93.33 96.08 94.23 95.45 94.80
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Table 3.

Frequency of CT Imaging Feature

CT feature AIP
(n=45)

PDA
(n=51) p

 Capsule-like rim 32 (71.11) 0 <0.001

 Homogeneous enhancement in venous phase 41 (91.11) 0 <0.001

CT-attenuation values of pancreatic lesion (in HU), mean value ± SD

 Non-contrast 39.20 ± 5.81 33.85 ± 6.28 <0.001

 Arterial phase 73.28 ± 19.31 44.10 ± 6.46 <0.001

 Venous phase 81.47 ± 11.43 55.47 ± 10.14 <0.001

Extra-pancreatic

 Biliary dilatation 17 (37.78) 15 (29.41) 0.386

 Vascular involvement (SMV, SMA, SPA, SPV) 19 (42.22) 33 (64.71) 0.027

 Lymphadenopathy 11 (24.44) 16 (31.37) 0.451

 Retroperitoneal stranding or fibrosis 2 (4.44) 0 0.217

 renal involvement 5 (11.11) 0 0.020

Note--Data are in number of occurrences. Data in parentheses represent percentages.

AIP=autoimmune pancreatitis, PDA=pancreatic ductal adenocarcinoma.

SMV=superior mesenteric vein, SMA=superior mesenteric artery, SPA=splenic artery, SPV=splenic vein.
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Table 4.

Selected features for creating radiomics models and their importance to the models

Non-Contrast Arterial Venous

Features Importance Features Importance Features Importance

LongRun-Low-GrayLevel-
Emphasis 35% LongRun-Low-GrayLevel-

Emphasis 47% LongRun-High-GrayLevel-
Emphasis 45%

Intensity-Maximum 29% LongRun-High-GrayLevel-
Emphasis 36% GLCM-Diff-Entropy 30%

LoG-Entropy 15% Intensity-Kurtosis 9% LoG-MGI 7%

Intensity-Root-mean-square 12% GLCM-MCC 6% GLCM-IMC2 7%

LoG-MGI 6% Laws-10 1% Laws-1 6%

Laws-1 4% Laws-13 1% Laws-13 4%
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