Table 4. Performance metrics were evaluated by the three ML models (random forest classifier, SVM, and Naïve Bayes) with six muscle datasets.
Random Forest Classifier | Support Vector Machine | Naive Bayes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Muscles | Accuracy | Precision | Recall | F1 score | Accuracy | Precision | Recall | F1 score | Accuracy | Precision | Recall | F1 score |
Biceps | 0.40 | 0.27 | 0.33 | 0.29 | 0.45 | 0.46 | 0.39 | 0.37 | 0.47 | 0.46 | 0.45 | 0.45 |
Deltoid | 0.55 | 0.40 | 0.43 | 0.41 | 0.57 | 0.39 | 0.45 | 0.41 | 0.28 | 0.3 | 0.25 | 0.26 |
ECU | 0.61 | 0.73 | 0.53 | 0.51 | 0.41 | 0.30 | 0.35 | 0.30 | 0.43 | 0.40 | 0.41 | 0.39 |
FCU | 0.45 | 0.31 | 0.37 | 0.32 | 0.35 | 0.25 | 0.30 | 0.24 | 0.35 | 0.25 | 0.26 | 0.25 |
TE | 0.55 | 0.39 | 0.44 | 0.40 | 0.36 | 0.23 | 0.29 | 0.25 | 0.36 | 0.32 | 0.33 | 0.30 |
Triceps | 0.51 | 0.36 | 0.41 | 0.37 | 0.53 | 0.35 | 0.42 | 0.38 | 0.31 | 0.31 | 0.28 | 0.28 |