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Abstract

The present and future research efforts in cognitive neuroscience and psychophysiology rely on 

the measurement, understanding, and interpretation of blood oxygenation level-dependent (BOLD) 

functional magnetic resonance imaging (fMRI) to effectively investigate brain function. Aging and 

age-associated pathophysiological processes change the structural and functional integrity of the 

cerebrovasculature which can significantly alter how the BOLD signal is recorded and interpreted. 

In order to gain an improved understanding of the benefits, drawbacks, and methodological 

implications for BOLD fMRI in the context of cognitive neuroscience, it is crucial to understand 
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the cellular and molecular mechanism of age-related vascular pathologies. This review discusses 

the multifaceted effects of aging and the contributions of age-related pathologies on structural 

and functional integrity of the cerebral microcirculation as they has been investigated in animal 

models of aging, including age-related alterations in neurovascular coupling responses, cellular 

and molecular mechanisms involved in microvascular damage, vascular rarefaction, blood–brain 

barrier disruption, senescence, humoral deficiencies as they relate to, and potentially introduce 

confounding factors in the interpretation of BOLD fMRI.
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1 | INTRODUCTION

Basic neuroscience research has established that the brain undergoes extensive changes 

with advancing age (Wright & Wise, 2018). Basic cognitive aging research has established 

that psychological function (e.g., episodic and working memory, reasoning, planning, and 

problem solving) also undergoes extensive age-related changes. The notion that relationships 

may be found between changes in the aging brain and changes in cognitive performance 

has led to a generation of research in humans aimed at exploring age-related changes in 

brain–behavior relationships (see Abdelkarim et al., 2019). Neuroimaging modalities, most 

prominently functional magnetic resonance imaging (fMRI), have been utilized extensively 

in this enterprise. FMRI measures blood-oxygen-level-dependent (BOLD) signal that arises 

from a complex interplay of neural, glial, and vascular elements (Figure 1).

Thus, most “neurocognitive aging” studies using fMRI have focused on age-group 

differences in BOLD signal amplitude. Broadly speaking, this literature has not produced 

a consistent picture of relationships between age differences in performance and BOLD 

signal. We argue that reliance on preclinical studies that permit direct measurement of 

the physiologic components (i.e., vascular, glial, and neural) that together give rise to the 

BOLD signal can help resolve this confusion and shed light on which of the components 

in this neural-vascular complex are most closely associated with the pervasive performance 

changes that characterize the adult aging process.

2 | CELLULAR MECHANISMS UNDERLYING BOLD

A common misconception is that BOLD directly measures brain regional oxygen 

consumption, and therefore, neuronal activity. However, this is largely not the case 

as stimulus-evoked BOLD signals generally represent a decrease in deoxyhemoglobin 

concentration, and thus, reflect regional increases in blood oxygenation. Early observations 

from Roy and Sherrington (Roy & Sherrington, 1890) first characterized the intimate 

relationship between brain function and cerebral blood flow (CBF). They observed task-

evoked cerebral vasodilation and attributed it to the increased demand for oxygen and 

nutrients in response to increased neuronal activity, leading them and other researchers to 

build on the hypothesis that CBF changes reflect a tight coupling between cellular energy 

requirements and vascular delivery of glucose and oxygen. Several scientists working in 
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the field of vascular neuroscience have built on these findings to make significant advances 

in understanding how the underlying vascular, vascular-associated glia, and parenchymal 

cells contribute to stimulation-evoked hyperemic responses (Attwell et al., 2010), also 

named neurovascular coupling (NVC). The intuitive idea that changes in CBF are directly 

controlled by metabolic activity has been revisited over the past decade. A range of 

cellular mechanisms have been implicated in contributing to NVC responses (Hillman, 

2014). In particular, astrocytes (Metea & Newman, 2006; Petzold & Murthy, 2011; Stobart 

et al., 2013; Takano et al., 2006; Wells et al., 2015), pericytes (Peppiatt et al., 2006), 

interneurons (Cauli et al., 2004), smooth muscle cells, and endothelial cells (Chen et 

al., 2014), have been proposed to play a role in the local control of blood through 

a feedforward mechanism involving neuronal signaling and neurotransmitters (Attwell 

& Iadecola, 2002; Lauritzen, 2005; Takano et al., 2006). Excellent reviews2, (Hillman, 

2014; Tarantini et al., 2017) explore in detail current understanding of the molecular 

dynamics of neurovascular coupling responses, how they change in aging, and feature 

schematic illustrations to exemplify candidate mechanisms. Recent evidence supports the 

idea that astrocytes play an important role in linking neurotransmitter activity to vascular 

responses, and astrocyte-evoked BOLD signal may associate with oxygen consumption 

without modulation of neuronal activity (Pellerin & Magistretti, 2004; Takata et al., 2018). 

In this view, neurovascular coupling responses underlying generation of the BOLD signal 

would be evoked through activated glial mechanisms modulated by neuronal signaling, 

rather than by mechanisms that sense energy consumption. However, due to difficulties 

in reconciling astrocytic distribution, their connectivity, and intracellular Ca2+ transient 

timings with the spatiotemporal properties of neurovascular coupling, some studies (Chen 

et al., 2011; McCaslin et al., 2011; Nizar et al., 2013) have challenged the involvement 

of astrocytes, while others suggest that neurovascular coupling might be mediated by 

diffusion of products of neuronal activity without the involvement of glial cells. As there 

is no single mechanism that has been irrefutability demonstrated, the controversy regarding 

which mechanism, or combination of mechanisms, is responsible for the generation of the 

BOLD response is open for investigation. Another often-overlooked source of signaling 

molecules mediating neurovascular coupling is the vasculature itself. Previous work has 

identified endothelial hyperpolarization as a rapid mechanism by which neurovascular 

coupling responses may quickly propagate (Bagher & Segal, 2011; Figueroa & Duling, 

2009) through gap-junctions within the endothelium itself with little attenuation (Wolfle et 

al., 2011). An additional endothelial-mediated mechanism involves the slow propagation of 

endothelial Ca2+ waves (Tallini et al., 2007) that elicit smooth muscle cell relaxation via 

release of endothelial-derived NO and prostanoids such as prostacyclin (de Wit & Griffith, 

2010). In part, the BOLD signal detected by fMRI reflects hemodynamic changes within 

the brain, which in turn are driven by metabolic alterations and neuronal activity (Keilholz 

et al., 2017). However, the link between BOLD changes and neuronal activity is indirect, 

and may be influenced by several nonneuronal processes as well, which include motion and 

physiological cycles, differences in the physiological baseline which contribute to intra- and 

intersubject variabilities, and the use of anesthesia alters neural activity, vascular tone, and 

NVC (Keilholz et al., 2017). Despite the lack of a unified theory, the predominant view is 

that some combination of the mechanisms listed above must work together to generate the 

blood flow response and the BOLD signal(Attwell et al., 2010).

Yabluchanskiy et al. Page 3

Psychophysiology. Author manuscript; available in PMC 2022 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3 | AGE-RELATED IMPAIRMENT OF NEUROVASCULAR COUPLING 

RESPONSES

The quickly growing field of geroscience has posed itself as an interdisciplinary approach 

that combines preclinical animals studies and clinical knowledge (Csipo et al., 2019) to 

understand the relationship between the biology of aging and the pathophysiology of chronic 

age-related diseases. A range of recent studies both in elderly patients and rodent models 

shows that aging significantly impairs neurovascular coupling responses (Balbi et al., 2015; 

D’Esposito et al., 2003; Fabiani et al., 2014; Park et al., 2007; Schroeter et al., 2007; 

Sorond et al., 2013; Tarantini et al., 2016; Tarantini, Valcarcel-Ares, et al., 2018, 2019; 

Tarantini et al., 2019; Tong et al., 2012; Zaletel et al., 2005). In aging, changes in the 

cerebrovascular ultrastructure caused by arteriosclerotic processes, increases in vascular 

oxidative stress (Logan et al., 2019; Tarantini, Valcarcel-Ares, et al., 2018, 2019; Tarantini 

et al., 2019), progressively dysfunctional cellular components of the neurovascular unit, 

and the age-related decline of important humoral vasoprotective factors (IGF-1) (Toth et 

al., 2015), all are believed to be important contributors to the impairment of neurovascular 

coupling responses and cognition. Notably, age-related changes in resting-state CBF have 

been identified in humans (Bertsch et al., 2009; Restom et al., 2007; Zhang et al., 2017). 

In studies using arterial spin labeling (ASL) perfusion MRI, that were persistent despite 

efforts to correct for age-related morphological changes (Chen et al., 2011). Measurement 

of CBF is integral to the measured BOLD signal as studies have suggested an inverse 

relationship between resting CBF and BOLD fMRI signal (Zebrowitz et al., 2016). The 

age-related changes in resting CBF have been tentatively attributed to alterations of end-tidal 

pCO2 (De Vis et al., 2015). In murine models, resting CBF does not appear to change as a 

function of age (Tarantini et al., 2019) while evidence from isolated rodent cerebral arteries 

suggest that aging is associated with a decrease in baseline CBF (Faraci & Heistad, 1998). 

Collectively, age-related changes in BOLD signal have been shown to decrease significantly 

when lower baseline CBF is accounted for, reinforcing the view that observed age-related 

BOLD fMRI differences must account for a substantial vascular contribution (Zebrowitz et 

al., 2016). Although the exact mechanisms of neurovascular coupling are not completely 

understood, the extant evidence suggests that aging of the cerebrovascular system and 

age-related cerebrovascular pathologies can influence the BOLD signal independently of 

neural activity and must be accounted for with appropriate study design, correct analysis, 

and interpretation of BOLD fMRI data when comparing age groups.

3.1 | Phenotypic alterations of the vascular structure in aging

With age, the structural integrity of the cerebrovasculature is altered (Farkas et al., 2000; 

Li et al., 2018), thus, compromising cerebral circulation and leading to potential functional 

consequences such as increased risk for neurodegeneration and declining cognitive function. 

Among the age-related phenotypic changes observed in the cerebrovasculature are increased 

thickness of capillary basement membrane (Alba et al., 2004), age-related rarefaction 

(Tarantini et al., 2016; Tarantini et al., 2016; Tucsek et al., 2014) in animal models, and 

decreased cerebral capillary density in aged humans (Brown et al., 2007; Meier-Ruge et 

al., 1980; Riddle et al., 2003). Vascular rarefaction is of particular interest in the context of 

BOLD fMRI signal interpretation, as variations in the pulse sequences and magnetic field 
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intensity can bias the BOLD signal to larger vessel sizes (Mueller-Bierl et al., 2007). Arterial 

stiffness, a feature often present in the larger vasculature of aged individuals (O’Rourke & 

Hashimoto, 2007) may also be present in the smaller cerebral arterioles and be implicated 

in experimentally observed CBF pulsatility increases(Springo et al., 2015) despite the 

overall baseline CBF decreases (Tarumi et al., 2014). These structural alterations may 

impact vascular elasticity and perfusion capacity possibly influencing CBF and functional 

changes during stimulus-evoked functional hyperemia which in turn could impact BOLD 

fMRI signal magnitude and timing (Brown et al., 2003). Additionally, recent evidence has 

shown that the interaction between increased adiposity and aging can be detrimental for 

neurovascular function, cerebrovascular integrity, and cognitive function. In their study, 

Csiszar et al (Tucsek et al., 2014) found that aging exacerbates the obesity-induced decline 

in microvascular density both in the hippocampus and in the cortex of mice fed a high-fat 

diet. The extent of hippocampal microvascular rarefaction and the extent of impairment of 

hippocampal-dependent cognitive function positively correlated, thus, indicating that obesity 

must be considered as a variable when analyzing BOLD signal in aged individuals.

3.2 | Oxidative stress, microvascular inflammation, and endothelial dysfunction in aging

Chronic, low-grade inflammation has been identified as a hallmark of aging (Cervellati et 

al., 2018; Royce et al., 2019), the term “Inflammaging” (Franceschi et al., 2000; Franceschi 

& Campisi, 2014; Wilhelm et al., 2017) has been used to emphasize this close association 

between aging and the accompanying age-related low-grade sterile inflammatory processes 

taking place. Growing evidence suggests that the combination of aging and inflammation 

accelerates the development of vascular and microvascular pathophysiological processes due 

to the increased generation of reactive oxygen species (ROS) through increased NAD(P)H 

oxidase activity (Adler et al., 2003; Donato et al., 2007; Jacobson et al., 2007; van der Loo 

et al., 2000), and through inefficient mitochondrial oxidative phosphorylation (Balaban et 

al., 2005; Lesnefsky & Hoppel, 2006; Sure et al., 2018) promoting endothelial dysfunction 

(Donato et al., 2007). Heightened inflammatory status also associates with microvascular 

dysfunction in the eye (Lipecz et al., 2019). Direct evidence from animal models of 

aging has suggested that oxidative stress and endothelial dysfunction are critical players 

in the etiology of age-related cerebromicrovascular impairment (Fulop et al., 2018) and 

neurovascular uncoupling (Costea et al., 2019; Park et al., 2007; Tarantini et al., 2016; 

Toth et al., 2014). In endothelial cells mitochondria and NADPH oxidases are major 

sources for ROS production (Carvalho & Moreira, 2018; Tarantini, Valcarcel-Ares, et al., 

2018, 2019). Endothelium-derived nitric oxide (NO) is a potent vasodilatory gasotransmitter 

and its production and bioavailability has been found to be an important contributor to 

NVC responses (Toth et al., 2015). In aging, highly reactive excess superoxide (O2
·−) 

molecules sequester free NO to form peroxynitrate (ONOO−) thus decreasing bioavailability 

of endothelium-derived NO, impairing the dilatory capability of the cerebromicrovasculature 

(Csiszar et al., 2002; Park et al., 2007; Tarantini et al., 2016; Tarantini et al., 2017; Tarantini 

et al., 2018). In support of the role of endothelial dysfunction in impaired NVC responses, 

experimental evidence suggests that treatments that restore endothelial function (Tarantini 

et al., 2018; Tarantini et al., 2019), improve NO bioavailability (Wiedenhoeft et al., 2019), 

inhibit NADPH oxidases (Park et al., 2007), or reduce cerebrovascular oxidative stress 

(Kiss et al., 2019; Tarantini et al., 2019; Toth et al., 2014) can improve NVC responses 
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in aged animals. Recent experimental studies in mouse models of aging have shown that 

old mice overexpressing human catalase in the mitochondria (MCAT) also benefit from 

attenuated age-related oxidative stress, improved microvascular endothelial function and 

preserved NVC responses (Csiszar et al., 2019). It should be noted that in addition to 

chronological aging, accelerated cerebromicrovascular aging associated with pathological 

conditions (e.g., obesity (Csipo et al., 2018), hypertension (Girouard & Iadecola, 2006; 

Iadecola & Gottesman, 2019)) also impair endothelial function and neurovascular coupling 

responses and thereby likely modulate the BOLD signal.

3.3 | Age-related loss of vasodilatory capacity

In addition to impaired response to dilatory stimuli, the intrinsic ability of cerebral vessels to 

dilate was found to be impaired in aged rodents (Tamaki et al., 1995) and in older humans 

(Csipo et al., 2019; Fluck et al., 2014) potentially as a consequence of age-related vascular 

stiffening. Inhalation of higher concentration of CO2 (hypercapnia) has been used to study 

vascular reactivity in rodent models (Balbi et al., 2015) as well as humans (Fluck et al., 

2014; Riecker et al., 2003). Despite the intrinsic limitations of studies involving hypercapnia 

such as the rate of metabolism and respiratory function as confounding variables, the 

observed evidence suggests that aged vessels exhibit a lower degree of cerebrovascular 

reactivity, leading to impaired stimulus-evoked vasodilation. Interestingly, evidence from 

arteries isolated in aged rodents also show aged vessels display a reduced response to 

endothelium-dependent vasodilators (Mayhan et al., 1990). Age-related impairment of 

vascular reactivity may result in decreased BOLD fMRI signal measurements and an overall 

misrepresentation of stimulus-evoked neural responses in aged individuals compared to 

younger groups.

3.4 | Role of astrocytes and aging

Astrocytes are among the most prevalent glial cells in the brain and their ideal positioning 

at the interface between neurons and microvessels allows for their fine end-feet processes to 

intimately contact and facilitate communication between neuronal synapses and the cerebral 

microvasculature (Mishra, 2017). Mounting evidence over the past 15 years has revealed 

that astrocytes play a crucial role in the mediation of NVC responses (Filosa et al., 2016) 

by releasing vasodilator metabolites of arachidonic acid and ATP. In recent basic research 

studies, many astrocyte-derived vasoactive signals have been identified and their role on 

vessel relaxation or contraction has been confirmed (Filosa et al., 2016). Numerous studies 

conducted in rodent brain slices and in experimental animals have provided evidence in 

support of astrocytic participation in the regulation of cerebromicrovascular tone (Attwell 

et al., 2010; Carmignoto & Gomez-Gonzalo, 2010; Gordon et al., 2007; Iadecola & 

Nedergaard, 2007) and in modulation of NVC responses in animal models in vivo (Hosford 

& Gourine, 2019; Tarantini et al., 2015; Xu et al., 2008).

During the stimulus-evoked increase in neuronal activity, many proposed pathways are 

activated to produce NVC responses, and some evidence has also considered the more direct 

forms of signaling from activated neurons to vessels (Cauli & Hamel, 2010). A majority of 

studies performed primarily in brain slices suggest that astrocytes first respond to elevations 

in extracellular glutamate as the main signal activating neurovascular responses (Fergus 
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& Lee, 1997; Zonta et al., 2003). Mechanistically, the presence of glutamate stimulates 

a group 1 metabotropic glutamate receptor (mGluR)-dependent elevation of astrocytic 

intracellular Ca2+ via IP3 signaling resulting in a arteriolar vasodilatory response (Zonta 

et al., 2003). The increase in end-feet Ca2+ activates calcium sensitive phospholipase A2 

which releases arachidonic acid, which is promptly converted by cyclooxygenases into 

prostaglandins such as PGE2 or PGI2, and by epoxygenases to epoxyeicosatrienoic acids 

(EETs; Figure 1). Prostaglandins and EETs bind to EP receptors, activate TRPV4 (Nilius 

et al., 2003) and large conductance BKCa channels. In vivo animal studies and brain 

slice work support this view by showing that astrocytic Ca2 + transients result in release 

of arachidonic acid metabolites (Carmignoto & Gomez-Gonzalo, 2010; Koehler et al., 

2009; Takano et al., 2006). Interestingly, in specific experimental settings, arachidonic acid 

metabolites have been shown to elicit vaso-constriction instead of vasodilation (Dabertrand 

et al., 2013), notably under pathological conditions arachidonic acid can be metabolized 

into 20-hydroxyeicosatetraenoic acid (20-HETE), a vasoactive constrictor molecule(Toth 

et al., 2013). This evidence suggests that age-related pathologies such as hypertension 

must be accounted for in the analysis of BOLD fMRI signals as astrocytic contribution to 

neurovascular hyperemic responses might become impaired.

Because the manner in which aging affects astrocytes is not completely understood, many 

studies are interrogating the multifaceted consequences of astrocytic aging, including 

alterations in Ca2+ wave patterns (Mathiesen et al., 2013) and age-related changes in 

arachidonic acid metabolite production and release (Keleshian et al., 2013). Recent 

evidence from rodent studies suggests that, in addition to the newly discovered astrocyte 

heterogeneity, some astrocytic populations may switch to a “reactive” phenotype during 

aging (Clarke et al., 2018), resulting in the development of astrogliosis (Rodriguez-Arellano 

et al., 2016), a pro-inflammatory state characterized by complement activation (Boisvert 

et al., 2018), synapse elimination, and neuroinflammation. Since astrocyte reactivity and 

dysfunction are newly discovered key features of age-related pathologies (Matias et al., 

2019), a better understanding of age-related changes on astrocytic phenotypes hold the 

promise of ameliorating potential confounding factors in the interpretation of BOLD fMRI 

signal in aging populations.

3.5 | Neurovascular energetics in aging

Evidence from several laboratories indicate that the age-dependent neurovascular 

uncoupling, or impairment of NVC response magnitude, could be exacerbated by age-

related alterations in the cerebral metabolic rate of oxygen (CMRO2) (Lourenco et al., 

2018; Peng et al., 2014; Schwarzbauer & Heinke, 1999) or impaired cellular energetics 

in the neurovascular unit (Tarantini, Valcarcel-Ares, et al., 2018, 2019; Tarantini et al., 

2019). The moment-to-moment equilibrium between local O2 supply and consumption after 

neuronal activation follows a biphasic nature, with an immediate initial increase in regional 

O2 consumption followed by a positive component follows as the supply overcomes the 

demand with increased CBF (Thompson et al., 2003). Experiments performed on Wistar 

rats have shown that aging has no effect on the initial rise of tissue oxygen demand, but 

older rats showed a significantly higher tissue oxygen supply during the hyperemic response 

despite an impaired CBF response. These results suggest the presence of an age-related 
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decrease in regional CMRO2 (Lourenco et al., 2018). Other studies have shown both basal 

and maximal O2 consumption-rate decrease in aged mouse brain slices (Dias et al., 2016) 

and an age-related reduction in oxidative phosphorylation in F344 rats (Lam et al., 2009), 

suggesting a critical role for cellular bioenergetics in preserving healthy NVC responses. 

In vivo murine studies have shown that even short-term treatments aimed at improving 

cellular energetics are successful in restoring NVC responses (Tarantini, Valcarcel-Ares, 

et al., 2018, 2019; Tarantini et al., 2019). However, in the context of age-related changes 

that may affect BOLD fMRI signal interpretation, the relationship between neurovascular 

uncoupling and CMRO2 may have the strongest confounding effect. The higher O2 demand 

with diminished supply observed in rodent studies (Lourenco et al., 2018) would result in 

increased venous deoxy-hemoglobin concentrations (Hutchison et al., 2013; Lu et al., 2011), 

partially explaining how age-related changes in CMRO2 and CBF would affect the BOLD 

fMRI response signal.

Another fundamental feature contributing to vascular aging is mitochondrial dysfunction 

(Chistiakov et al., 2012; Chistiakov et al., 2014; Sobenin et al., 2013; Ungvari et al., 2007, 

2008). Age-dependent impairment in mitochondrial function is associated with decline in 

mitochondrial oxidative phosphorylation, state 3 respiration, and diminished activity of 

complexes I and IV in the electron transport chain, resulting in increased electron leakage, 

diminished ATP yield, and generation of mitochondrial ROS (Dai et al., 2012). Recent 

evidence in animal models demonstrated that ATP and its metabolites (ADP and adenosine) 

are also important gliotransmitters released by astrocytes upon neuronal stimulation 

(Heinrich et al., 2012; Toth et al., 2015). In rodents, astrocyte-derived ATP was found to 

contribute to stimulus-evoked cerebrovascular dilation by increasing NO production (Toth 

et al., 2015). In humans, ATP synthesis capability has been found to decrease 8% every 

decade of life (Short et al., 2005) as most cell types experience altered cellular energy 

homeostasis. Still, little is known about the relationship of aging on purinergic signaling and 

its contribution to vasomotor responses, thus, introducing confounding factors affecting the 

interpretation of BOLD fMRI signals.

3.6 | Senescence

Cellular senescence is a state in which cells no longer go through the stages of the normal 

cell cycle and do not divide to create new cells. Despite its name, cellular senescence 

occurs throughout life, and serves to maintain healthy tissue by preventing proliferation 

of potentially tumorous cells. Under normal, healthy conditions, senescent cells signal 

for their own removal from tissue. In aging, however, this does not always occur, and 

senescent cells accumulate in tissue and assume a specific phenotype known as the 

senescence-associated secretory phenotype (SASP). Cells expressing SASP can secrete 

inflammatory substances that might harm nearby tissue, and their accumulation has been 

associated with age-related disease (Campisi et al., 2011; van Deursen, 2014; Ovadya & 

Krizhanovsky, 2014). The available evidence indicate that endothelial senescence associates 

with a substantial increase in the release and/or production of pro-inflammatory chemokines 

and cytokines that exacerbate the heightened inflammatory status of the aged vasculature 

(Morgan et al., 2013; Ungvari et al., 2019). Also senescent endothelial cells contribute to 

endothelial dysfunction in aging and worsen the pathophysiological conditions associated 
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with accelerated vascular aging (Brandes et al., 2005; Herrera et al., 2010; Kida & 

Goligorsky, 2016; Pantsulaia et al., 2016) which may in turn affect negatively neurovascular 

coupling responses and affect BOLD signal. Due to the crucial importance of astrocytes 

in mediation of neurovascular coupling, evidence in favor of the importance of astrocyte 

senescence in the impairment of neurovascular coupling has been growing in recent 

years (Cohen & Torres, 2019; Csipo et al., 2020; Lye et al., 2019). Senescent astrocytes 

demonstrate increased levels of intermediate glial fibrillary acidic proteins and vimentin 

filaments, increased expression of pro-inflammatory cytokines (including interleukin-6 

(Bhat et al., 2012)) and increased accumulation of proteotoxic aggregates which are thought 

to play a role in age-related neuroinflammation and neuronal degeneration (Salminen et 

al., 2011). Importantly, anticancer treatments, including irradiation (Yabluchanskiy et al., 

2020) and chemotherapy (Carlson et al., 2018) can cause neurovascular senescence, which 

associate with significant impairment of neurovascular coupling responses.

3.7 | Age-related IGF-1 deficiency

Changes in the systemic milieu in aging is associated with complex changes in the 

circulating levels of vasoprotective endocrine factors (Kiss et al., 2020; Schafer & 

LeBrasseur, 2019; Ungvari et al., 2018, 2020; Zhang et al., 2019). Decrease in circulating 

insulin-like grown factor 1 (IGF-1) as a consequence of aging has recently been shown to 

exert detrimental effects on various aspects of endothelium-dependent vasodilation (Toth et 

al., 2015) and contribute to microvascular rarefaction (Norling et al., 2019; Sonntag et al., 

1997; Tarantini et al., 2016; Tarantini et al., 2016). Extensive early research has determined 

that the reduction in IGF-1 is an important component of the age-related decline in cognitive 

function in multiple species including humans (Frater et al., 2018; Norling et al., 2020; 

Sonntag et al., 2013). Additionally, genetic IGF-1 deficiency was shown to impair vascular 

function (Bailey-Downs et al., 2012; Bailey-Downs et al., 2012; Csiszar et al., 2008; Fulop 

et al., 2018; Tarantini et al., 2016; Tarantini et al., 2016; Tarantini et al., 2016; Tarantini et 

al., 2017; Toth et al., 2014), including neurovascular coupling responses in rodent models 

(Toth et al., 2015). A recent study suggested that systemic circulating IGF-1 protects against 

features of cognitive and sensorimotor decline with aging in male mice (Farias Quipildor 

et al., 2019). Given the close relationship between age-related circulating IGF-1 deficiency 

and endothelial health and neurovascular coupling responses, it is plausible that IGF-1 levels 

may play an important role in the modulation of the BOLD signal.

3.8 | Age-related pathologies

Lipopolysaccharide (LPS)-induced encephalopathy induces neuroinflammation. Long-term 

neuroinflammation is associated with aging and subsequent cognitive impairment (CI). 

A recent study used parametric MRI approaches to assess cerebrovascular, blood–brain-

barrier (BBB), metabolic and free radical level changes associated with LPS-augmented 

neuroinflammation, and found that LPS-exposed rat brains had decreased relative cerebral 

blood flow (rCBF), increased BBB disruption, decreased N-acetyl aspartate (NAA; a 

neuronal marker), and increased levels of free radicals detected in vivo, compared to saline-

treated controls (Figure 2) (Towner et al., 2018), (Towner et al., 2019). These findings 

imply that increased neuroinflammation results in cerebrovascular, neuronal metabolic and 
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free radical changes, which are similar to the mechanistic alterations underlying age-related 

BOLD fMRI change.

3.9 | Aging and exercise

Emerging research demonstrates that exercise is associated with improving several cognitive 

outcomes (Loprinzi et al., 2018). For example, recent evidence has suggested that physical 

exercise in aging can play a role in improving neurogenesis, gliogenesis, angiogenesis, 

cerebral circulation, and growth factor production, as well as parahippocampal function 

(Loprinzi, 2019a) and modulating episodic memory function (Loprinzi, 2019b). These 

novel findings imply that incrased physical activinty in aging may promote beneficial 

microvascular effects that would contribute to a more effective and responsive cerebral 

circulation to neuronal activity, potentially affecting that relationship between cerebral 

perfusion and cognitive load. Therefore, exercise may be considered a contributing 

confounding variable in the interpretation of BOLD fMRI signals in elderly individuals.

4 | FUNCTIONAL NEAR-INFRARED SPECTROSCOPY IN AGING AND AGE-

RELATED DISEASES

Since the original studies in cognitive neuroscience to understand the physiochemical states 

of brain tissues (Logothetis, 2008), BOLD fMRI has gained currency in neuroimaging and 

clinical applications (Bauer et al., 2014; Lang et al., 2014). However, the use of BOLD 

fMRI to date remains somewhat limited mainly due to increasing interest in examining 

brain activity during exercise, or in populations that are not typical or suitable for the 

fMRI imaging including infants, those with abnormal aging, or those with limited functional 

capabilities. The use of BOLD fMRI for research purposes is also limited to large academic 

centers that are equipped with the expensive technology but compete with the use of the 

fMRI for clinical purposes. In aging neuroimaging research, fMRI allowed to identify 

age-related change in hemodynamic pattern in the brain regions responsible for age-related 

decline in executive function (Wilckens et al., 2017). Physiological modulation of these 

brain regions demonstrated a less specific cerebral activation and recruitment of additional 

brain regions in older adults when compared to young controls (DiGirolamo et al., 2001; 

Milham et al., 2002). However, the cost and ecological burden associated with use of 

fMRI modalities in aging research have prevented large-scale studies on age-related diseases 

and development of prospective medical interventions. Therefore, the necessity of new 

alternative tools with complementary strengths where fMRI is limited led to development of 

functional near-infrared spectroscopy (fNIRS).

The fNIRS technology originated from Jobsis work (Jobsis, 1977). This work provided 

the first evidence that near-infrared light can be transmitted through biological tissues. A 

number of in vivo and human studies allowed for development of the first, although limited, 

commercially available fNIRS instruments in 1989 (Scarapicchia et al., 2017). Further 

advancement in fNIRS technology and data analysis allowed for broader application and 

use in the laboratory and clinic (Huppert et al., 2009; Lagerwaard et al., 2020; Lv et al., 

2009). Modern fNIRS tools allow non-invasive and nonionizing methods for measuring 

functional integrity and hemodynamic brain activity that is spectroscopically extracted from 
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measured concentrations of oxygenated, deoxygenated and total hemoglobin within the 

brain tissues and, since the original implementation, fNIRS has proven to be a useful 

tool to study normal and altered brain functions(Yucel et al., 2017). Recent studies that 

utilized fNIRS to investigate age-related changes in the brain have also used same paradigms 

applied in fMRI research. In the field of physiopsychology, and in other disciplines, it 

remains as a topic of intense debate whether the hemodynamic responses measured by 

fNIRS or fMRI can be correlated to neuronal responses and/or cognitive load. A study from 

Fabiani et al have discovered the presence of a proportional relationship between neuronal 

and hemodynamic responses using a combined approach (Fabiani et al., 2014). In this 

work, young and older individuals were found to exhibit a quadratic relationship between 

neuronal and hemodynamic effects, with reduced increases of the hemodynamic response 

at high levels of neuronal activity. Although the relationship between neuronal and vascular 

measures of brain function departs substantially from linearity between younger and older 

adults, these finding highlighted that the neurovascular coupling becomes impaired in 

older adults, meanwhile the neuronal response remains unchanged. These clinical findings 

further substantiate basic science evidence that aging and other age-related changes (i.e., 

obesity, lack of exercise, etc.) impair cerebrovascular integrity and its function potentially 

introducing confounding variables when interpreting vascular outcomes (with fNIRS or 

fMRI) in elderly patients. Earlier studies compared fNIRS-related brain activation in the 

prefrontal cortex of healthy young and older adults and provided consistent evidence 

of the signal observed within the regions responsible for cognitive tasks implemented 

when compared to BOLD fMRI signal (Habeck, 2010; Vasta et al., 2017; Vermeij et al., 

2012, 2014, 2017). In these studies, the authors reported a consistent overactivation of 

the prefrontal cortex during a relatively low cognitive load in older adults, suggesting 

a compensatory mechanism. When comparing concentrations of oxygenated hemoglobin 

in older adults without mild cognitive impairment and in those with nonamnestic and 

amnestic mild cognitive impairment, Yoon et al. found a progressive decrease in the 

mean accumulated oxygenated hemoglobin values from normal aging to amnestic cognitive 

impairment (Yoon et al., 2019). When using fNIRS approach in older adults with mild 

cognitive impairment and mild Alzheimer’s disease, researchers found a general decline 

in functional connectivity from normal aging to Alzheimer’s disease with more profound 

laterality in older adults with Alzheimer’s disease during a verbal fluency task (Tang & 

Chan, 2018). Another study has also reported abnormal patterns of hemodynamic response 

across groups of normal aging, mild cognitive impairment, and moderate/severe Alzheimer’s 

disease in older adults. In this study, the authors demonstrated greater and steeper reductions 

in oxygenated hemoglobin concentrations as disease severity developed from mild cognitive 

impairment to Alzheimer’s disease (Li et al., 2018).

Additionally, stimulus intensity and cognitive load have been shown to affect younger and 

older adults differently. In a human study, participants viewed a single fixation cross at the 

center of a radial yellow and blue checkerboard flickering at three frequencies (2, 4, and 8 

Hz) during the stimulation blocks. Younger participants’ neurovascular response increased 

as the task became more intense, similar findings were obtained in a study comparing 

younger and older adults using fNIRS during 1-back and 2-back testing (Figure 3).
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The fNIRS methodology was further applied in age-related pathologies such as 

hypertension. In the study by Bu et al., the authors report altered neurovascular coupling 

measured as a significant decrease in wavelet phase coherence and effective connectivity 

during resting and standing period in subjects >60 years of age with systolic and diastolic 

blood pressure over 150 and 90, respectively (Bu et al., 2018). Authors also reported 

a strong correlation between continuous fNIRS findings and the Montreal Cognitive 

Assessment cognitive scores in the group of hypertensive older adults, indicating strong 

contribution of hypertension to cognitive decline in aging. Functional NIRS has also 

been studied in age-related pathologies such as cancer to measure changes in brain 

hemodynamics after chemotherapy.

The use of fNIRS technology has also been proposed for longitudinal assessment and 

monitoring of the cancer treatment related cognitive impairment (Jean-Pierre, 2014). 

Recent data show that cancer patients after the chemotherapy presented with unbalanced 

increases in activation in prefrontal cortex regions during cognitive stimulation (Jean-Pierre 

et al., 2015). These findings were comparable to other that reported similar results in 

human subjects with cognitive decline. Finally, fNIRS was found useful as a monitoring, 

therapeutic, and research tool in stroke patients (Yang et al., 2019). The fNIRS has been 

extensively used for poststroke upper and lower limb function recovery, balance control, and 

motor learning. In these studies, functional improvements after stroke were associated with 

improved activation in prefrontal and sensorimotor cortex brain regions (Hara et al., 2013; 

Hatakenaka et al., 2012; Kato et al., 2002; Mihara et al., 2012; Miyai et al., 2002, 2003; 

Rea et al., 2014; Takeda et al., 2007). Spontaneous activity in prefrontal cortex oxygenation 

was also found to be altered in older adults and in patients with cerebral infarction (Li et al., 

2010). Several other studies have investigated the dual-task interference between cognitive 

and physical performance in poststroke subjects. Authors reported that prefrontal cortex 

activation might prioritize physical demands in poststroke subjects (Mori et al., 2018), 

unlike in healthy elderly (Holtzer et al., 2016).

Current limitations for fNIRS use are mainly due to technological constraints. Changes in 

hemoglobin concentrations evoked by neuronal activity can be masked by body physiology 

related to cardiac cycle, breathing, or blood pressure fluctuations (Csipo et al., 2019). 

Current approaches to eliminate this interference, that originates from scalp, skull, and 

brain itself, include frequency-based algorithms and recently emerging time-domain NIRS 

approach that enables “null-distance” depth resolution (Pifferi et al., 2016). Further, current 

use of fNIRS technology will significantly benefit from a routine implementation of the 

diffuse correlation spectroscopy, a technique that is sensitive to red blood cells motion and 

that may provide a complementary index of blood flow within the measured brain areas 

(Durduran & Yodh, 2014; Sutin et al., 2016). Additionally, since evidence gathered by 

analysis of BOLD fMRI may be expensive and studies may often be underpowered as a 

consequence of high-equipment costs, alternative approaches such as fNIRS are emerging 

to investigate neurovascular coupling in aged individuals (Csipo et al., 2019). While limited 

by its inferior spatial resolution and penetration depth, fNIRS has a much higher temporal 

resolution than fMRI, allowing for measurements of rapid concentration changes in both 

oxygenated and deoxygenated hemoglobin. Assessment of neurovascular coupling responses 

by functional near-infrared spectroscopy in humans provides an affordable method to assess 
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hemoglobin concentration changes in cortical brain areas which provides consistent results 

when compared with fMRI.

5 | PERSPECTIVES

The basic science studies reviewed here demonstrate how much has been learned in 

the past decade about the effects of aging on vascular and neurovascular function. The 

interaction between the age-associated vascular changes and neuronal signals can affect the 

interpretation and conclusions that can be drawn from BOLD signal analysis. Thus, it is now 

more evident that BOLD fMRI studies which involve aging as a biological variable must 

deliver alternative strategies to account for the compromised vascular and neurovascular 

health in older individuals, as measured differences in BOLD signal may not be attributable 

only to neural activity. More recent studies seeking to understand the effect of aging on brain 

function have developed and validated several techniques that aim to separate vascular and 

neuronal signals when performing BOLD fMRI scans. However, more research is needed to 

develop and facilitate the adoption of such approaches as a common analysis tool. Further 

preclinical fMRI studies investigating cerebrovascular outcomes (such as NVC, rarefaction, 

and BBB permeability) on aged rodents will be of critical importance as the challenges 

to resolve the components underlying the BOLD signal to better understand the effects of 

aging on the brain cerebrovasculature remain unanswered.
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FIGURE 1. 
Schematic illustration of how aging and age-related vascular changes affect the 

neurovascular coupling processes that contribute the BOLD response
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FIGURE 2. 
LPS-induced neuroinflammation-associated cerebrovascular and neuronal changes in rat 

cerebral cortex. (a) Relative cerebral blood flow (rCBV) significantly decreases with LPS-

induced neuroinflammation (p < .0001), compared to saline controls (n = 6/group). (b) 

Blood-oxygen level-dependent (BOLD) contrast in functional MR images (fMRI) from 

LPS-exposed rat brains are significantly less than controls (p < .01) (n = 6/group). (c) The 

neuronal metabolite N-acetyl aspartate (NAA) is significantly decreased in LPS-exposed rat 

cortex (p < .01) (n = 6/group). (d) Blood–brain barrier (BBB) disruption is significantly 

increased in LPS-exposed rat cerebral cortex compared to controls (p < .001) (n = 6/group). 

Measured as a percent change in MRI signal intensity obtained post-Gd-DTPA MRI contrast 

enhancement. (e) Representative rCBF maps obtained from control or LPS-exposed rat 

brains. (f) Representative contrast-enhanced (CE) MR images post-Gd-DTPA in control 

or LPS-exposed rat brains. (g) Representative MR image depicting the cortical region for 
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obtaining a MR spectrum. Metabolites: myo-inositol (myo-Ins); total choline (tCho); total 

creatine (tCr); and N-acetyl aspartate (NAA). All data were obtained 6 weeks post-LPS or 

saline treatments. Data modified from references (Towner et al., 2018) and (Towner et al., 

2019). BOLD fMRI data are unpublished
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FIGURE 3. 
Aging is associated with impaired neurovascular coupling responses during increasing 

cognitive load. (a) Neural-vascular coupling ratio (ratio of fractional CBF signal change 

to fractional CMRO2 signal change) in response to visual checkerboard stimulation using 

MRI. The coupling ratio was greater in younger than older adults across frequencies and 

increased with increasing frequency in younger adults but older adults. The neural-vascular 

coupling ratio was calculated from the reciprocal of parameter weights from a 2 (Age-

Group) × 3 (Flicker-Frequency) mixed-effects linear model predicting CMRO2, with CBF 

as a covariate. The coupling ratio was greater in younger adults than older adults. There 

were significant main effects of both Age-Group in NVC ratio, t(47) = 4.027 (p = 2.044 

× 10–4), (linear) main effect of Flicker-Frequency condition in NVC ratio, t(94) = 4.615 

(p = 3.056 × 10–5). The ratio increased with increasing frequency more for younger adults 

than older adults. The Age-Group × Flicker-Frequency interaction effect was significant, 

F(2, 94) = 9.473 (p = 1.879 × 10–4). (b) fNIRS assessment of neurovascular coupling 

responses during 1- and 2-back cognitive task in four healthy young (21–45 years of age) 

and four healthy aged individuals (>65 years of age). Analysis was performed using a 

pipeline based on General Linear Model (GLM) approach created using the Brain AnalyzIR 

toolbox. For this comparison, we evaluated neurovascular coupling responses between a 

more challenging 2-back task and less challenging 1-back task using the contrast [2-back–

1-back]. Solid lines represent statistically significant change (q < 0.05, corrected p value) 

in hemodynamic response between more challenging cognitive task versus less challenging 

task. We observed an increase in neurovascular coupling responses in young individuals 

during a more challenging cognitive task, evidenced by a statistically significant increase in 

the oxy-hemoglobin (HbO) in dorsolateral prefrontal cortex (red arrow) and a statistically 

significant decrease in the deoxy-hemoglobin (HbR) in left lateral frontopolar cortex (blue 

arrow). No statistically significant difference in neurovascular coupling responses during 

increasing cognitive load was observed in older adults. These data suggest an impaired 

neurovascular coupling response in aged individuals
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