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N E U R O S C I E N C E

Modeling spatial, developmental,  
physiological, and topological constraints  
on human brain connectivity
Stuart Oldham1,2*, Ben D. Fulcher3, Kevin Aquino1,3, Aurina Arnatkevičiūtė1, Casey Paquola4, 
Rosita Shishegar1,5, Alex Fornito1

The complex connectivity of nervous systems is thought to have been shaped by competitive selection pressures 
to minimize wiring costs and support adaptive function. Accordingly, recent modeling work indicates that 
stochastic processes, shaped by putative trade-offs between the cost and value of each connection, can successfully 
reproduce many topological properties of macroscale human connectomes measured with diffusion magnetic 
resonance imaging. Here, we derive a new formalism that more accurately captures the competing pressures of 
wiring cost minimization and topological complexity. We further show that model performance can be improved 
by accounting for developmental changes in brain geometry and associated wiring costs, and by using interregional 
transcriptional or microstructural similarity rather than topological wiring rules. However, all models struggled to 
capture topographical (i.e., spatial) network properties. Our findings highlight an important role for genetics in 
shaping macroscale brain connectivity and indicate that stochastic models offer an incomplete account of 
connectome organization.

INTRODUCTION
The human brain is a topologically complex network, showing 
properties that are neither completely random nor completely 
regular (1). These properties are commonly studied through the lens 
of graph theory (1, 2), which represents the brain as a collection of 
nodes (putative processing units, such as individual neurons, neu-
ronal populations, or brain regions) linked by edges (some aspect of 
structural or functional connectivity between nodes). The applica-
tion of graph-theoretic tools to these brain networks, otherwise known 
as connectomes, has identified key topological properties of brain 
networks, such as the existence of highly connected network hubs, 
a rich club of strong interconnectivity between hubs, and an economical, 
small-world, hierarchically modular organization (1–4). These topo-
logical properties also have a characteristic topography, meaning that 
they are spatially embedded in consistent locations; for instance, network 
hubs tend to be located in transmodal association cortices (4, 5). Under-
standing the causes and consequences of this complex arrangement 
of connections is a central objective of connectomics (6).

More than a century ago, Ramón y Cajal (7) proposed some 
general principles for brain organization, arguing that nervous 
systems are configured according to three simple laws related to the 
conservation of space, material, and time. The conservation of space 
and material refers to a pressure to minimize the physical, metabolic, 
and cellular resources required to sustain neural function. This cost 
minimization principle is ubiquitous in biological systems and mini-
mizes unnecessary energy expenditure, which is essential for meta-
bolically expensive organs such as the brain (8). Conservation of 
time refers to a requirement for rapid and efficient communication 

between system elements, which is essential for adaptive function 
and organism survival.

Several studies have suggested that cost minimization is an 
important principle of neural organization, showing that properties 
as diverse as the spatial arrangement of neurons and cortical areas 
(9), the branching patterns of neuronal arbors (10), and the fraction 
of cortical gray matter occupied by axons and dendrites (11) can be 
explained by a pressure to minimize the overall volume of axonal 
wiring, which is often used to represent the wiring cost of a nervous 
system. However, a network configured solely to minimize wiring 
costs resembles a lattice, in which each element only connects to its 
nearest spatial neighbors. Abundant evidence indicates that connec-
tomes have more long-range projections than expected under a 
pure cost minimization model (12, 13). These long-range projections 
are thought to act as topological shortcuts, improving the speed, 
efficiency, robustness, and complexity of communication across the 
network (12–14). In the language of Ramón y Cajal, they can be 
said to conserve time. However, the long distances spanned by 
these connections (5, 15) incur a wiring cost, leading to a trade-off 
between Ramón y Cajal’s conservation laws; more specifically between 
the conservation of space and material (wiring cost) on the one hand 
and the conservation of time or, more generally, the promotion of 
complex, adaptive processes (functional value) on the other (13).

Insight into the possible role of cost-value trade-offs in sculpting 
connectome topology has come from generative network models, 
which specify wiring rules for growing brain-like networks in silico 
(16). Empirical evidence has indicated that the probability that two 
neural elements (such as individual neurons or brain regions) are 
connected decays roughly exponentially as a function of the distance 
between them, termed “the exponential distance rule” (EDR) (17, 18). 
Modeling studies indicate that it is possible to grow synthetic 
networks that capture many key topological properties of empirical 
connectomes according to this rule, when it is implemented as a 
stochastic process in which the probability of forming a connection 
between any two network nodes declines exponentially as a function 
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of their anatomical distance (17–21). Under this purely spatial model, 
long-range connections are more costly than short-range connec-
tions, but wiring costs are not absolutely minimized and are subject 
to stochastic fluctuations around a characteristic connection length 
scale. The networks that result from this model show many com-
plex topological properties identified in empirical connectome data, 
including modularity, a fat-tailed degree distribution, brain-like 
motif spectra and distributions of connection distances, and the 
presence of a densely connected core (17, 18, 22, 23). This EDR has 
thus been invoked as a fundamental principle of neuronal connec-
tivity (17, 18).

Recent modeling of human connectome data suggests that the 
EDR offers an incomplete account of connectome architecture. 
Specifically, this work indicates that EDR-based models are less 
accurate in reproducing several topological features of empirical 
connectomes when compared to models that combine a distance 
penalty with a preference to form topologically favorable connections, 
thus more closely capturing the cost-value trade-off implicit in 
Ramón y Cajal’s laws (5, 24–28). In particular, these studies suggest 
that models combining a distance penalty with a homophilic at-
tachment rule, in which connections are more likely to form be-
tween nodes that connect to other similar nodes (24–26, 29), offer 
better accounts of the empirical data. However, three key consid-
erations, detailed in the following, should be addressed before the 
homophilic attachment model can be accepted as a parsimonious 
account of macroscale human connectome topology.

A first consideration is that the models considered to date have 
quantified wiring costs at a single, postnatal time point, which does 
not account for the marked changes in brain size and geometry that 
occur during early development, when connections are being formed 
(30, 31). Between 18 weeks gestational age (GA) and birth, the brain 
undergoes an approximately 20-fold expansion in volume (31), 
which is coupled with substantial increases in the complexity of 
cortical folding (30). Such geometric changes influence distances 
between regions and may change interregional wiring costs when 
compared to the adult brain (32, 33), and modeling work has found 
that capturing the physical growth of biological neural networks is 
important for predicting their subsequent topology (34, 35). The effect 
of these changes in brain size and shape on model performance has 
not been considered; it is possible that even a simple EDR may provide 
an adequate model if long-range connections are established early 
when distances are smaller and wiring costs are lower.

A second consideration is that current cost-topology models rely 
on abstract topological rules for influencing connection probabilities, 
which can sometimes have an ambiguous physiological interpreta-
tion. For instance, homophilic attachment based on similarity in 
connectivity neighborhoods implies that two nodes have knowledge 
of each other’s neighbors when forming a connection. It is unclear 
how such a mechanism would be instantiated in brain development. 
Alternative, physiologically grounded homophilic processes may 
offer a more interpretable model. For instance, the architectonic 
type principle, formulated following extensive observations of 
mammalian tract-tracing data, proposes that regions with similar 
cytoarchitecture and laminar organization are more likely to be 
connected to each other (36, 37). Similarly, there is growing evidence 
that similarity in regional transcriptional profiles may also be linked 
to interregional connectivity (5, 21). Whether such physiologically 
grounded homophilic attachment rules offer a better account of 
empirical data than topological homophily has not been evaluated.

A final consideration is that the performance of existing models 
is commonly evaluated with respect to topological properties of the 
network while ignoring spatial topography. This is an important 
oversight, as the same topological distribution can be spatially 
embedded in different ways, and these topographical variations can 
have functional consequences (38, 39). An adequate model should 
ideally capture both topological and topographical properties of the 
empirical data. Recent evidence indicates that existing cost-topology 
models cannot capture the topography of certain properties, such as 
the network degree sequence and, by extension, location of connectome 
hubs, even when model parameters are optimized for this objective 
(5, 27, 28) [but see also (26)].

Informed by these considerations, here, we use generative net-
work models to investigate spatial, developmental, physiological, 
and topological constraints on the human connectome. First, we 
develop a framework to account for developmental changes in brain 
size and shape when estimating model-based wiring costs, thus 
yielding a new class of developmentally informed models that offer 
a more realistic appraisal of how wiring costs shape connectome 
topology. Second, after introducing a new formulation of the cost- 
value model that more accurately captures trade-off mechanisms 
and that yields more interpretable parameter estimates, we com-
pare the performance of spatial and trade-off models to that of 
models that rely on either topological or physiologically constrained 
wiring rules. Last, we evaluate model performance with respect 
to both topological and topographical properties of the human 
connectome, yielding a more comprehensive characterization of 
model performance.

RESULTS
We used diffusion imaging data from 100 unrelated participants in 
the Human Connectome Project (HCP) (40) to construct structural 
brain networks with which to assess the performance of different 
generative network models (see Methods). We focus here on 
modeling the emergence of complex binary topological properties, 
given that this has attracted the most attention in the literature 
(5, 24–26, 28, 29) and that the binary pattern of interregional 
connectivity is thought to provide a fundamental substrate from 
which more complex dynamics influenced by variations in connectivity 
weights can emerge (32, 41). A schematic overview of our model 
fitting and evaluation procedure is presented in Fig. 1. As wiring 
costs are a fundamental element of the models that we evaluate, 
our first aim was to incorporate into the generative models the 
pronounced changes in cortical shape and size that occur during 
the second half of gestation, when most connections are being formed. 
To this end, we used cortical surface reconstructions of fetal struc-
tural magnetic resonance imaging (MRI) templates. These templates 
were obtained from a public database, where 81 scans of fetuses 
acquired between 19 and 39 weeks GA were used to construct tem-
plates spanning 21 to 38 gestational weeks (Fig. 1A) (42, 43). We 
registered each surface to an adult template surface using the multi-
modal surface matching (MSM) algorithm (Fig. 1B) (44, 45), allow-
ing us to map nodes to consistent spatial locations across all time 
points and to measure how distances between nodes, as a proxy for 
putative wiring costs, change through development. We refer to 
these developmentally informed models as “growth” models and 
the traditional models that only estimate wiring cost in the adult 
brain as “static” models (Fig. 1C).
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Fig. 1. Schematic of our approach to fitting and evaluating generative connectome models. (A) Fetal surfaces from 21 to 38 weeks GA, showing sulcal depth. (B) To 
estimate how network wiring costs change through development, we parcellate the adult surface and use spherical MSM based on sulcal depth to map the parcellation 
to each of the fetal (target) surfaces. This procedure allows us to track the location of each parcellated region and estimate how wiring costs change through development. 
(C) Generative models were run using estimates of wiring cost based on adult distances (static models) or distances that change over time (growth models). (D) Benchmark 
topological properties were measured for each synthetic network and compared to the distributions of the empirical network using the KS statistic to quantify model fit 
(similar distributions indicate a better fit; thick lines represent empirical data, and lighter lines correspond to different realizations of a model). (E) Steps (C) and (D) 
were repeated for different parameter values in each model using an optimization scheme that searches the parameter landscape to find the parameter combination 
that yields the best fit to the data. Starting with an initial random sample, the algorithm narrows in on areas of the landscape associated with better fits and samples 
those regions more often (see Methods). (F) Leave-one-out cross-validation was used to avoid overfitting. For a given participant’s network, the best-fitting parameters 
for the 99 other participants are used to generate model networks. These models are iterated 20 times to account for the inherent stochasticity of the models (a), and 
the average across these 20 iterations is then taken to yield 99 fit values (b). These 99 fit values are then averaged (c), resulting in a single, cross-validated fit statistic, 
FCV, for each person.
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We assessed model fits to the data as per previous work (25), 
using the Kolmogorov-Smirnov (KS) statistic to quantify the dis-
tance between model and empirical network distributions of node 
degree, node clustering, node betweenness, and edge length distri-
butions, with the largest such distance being taken as the final index 
of model fit [max(KS)], such that the performance of a given model 
was assessed according to the property that it captured least accu-
rately (Fig.  1D). To identify the best-fitting parameters for each 
model, we used an optimization procedure that sampled 10,000 
different parameter combinations, preferentially sampling from areas 
in the parameter landscape that produced the best fits (Fig. 1E; 
see Methods).

Past models have evaluated model fitness on the basis of within- 
sample performance, making it difficult to compare models with 
different complexity. To ensure that our results were not driven 
by overfitting and that models with different numbers of free 
parameters could be compared fairly, we used a leave-one-out 
cross- validation procedure. As depicted in Fig. 1F, this procedure com-
prised three steps: (a) For each individual’s data, we fitted models 
using the optimum parameter values obtained for the other 99 indi-
viduals from the initial sweep of 10,000 parameter combinations 
[with optimal parameters defined using max(KS)] and repeated 
this process 20 times to account for stochastic fluctuations in the 
models, yielding 99 × 20 model networks for each person; (b) we 
then took the average across the 20 runs, resulting in 99 mean fit 
estimates; (c) the average fit over these 99 models in the held-out 
individual was recorded; (d) steps (a) to (c) were repeated so that 
each individual in the sample was held out once, resulting in a 
cross- validated fit statistic, FCV, for each participant, with smaller 
values indicating a better fit.

The generative model forms connections probabilistically and 
one at a time according to a specific set of wiring rules. Under 
the traditional formulation of the cost-topology model proposed by 
previous studies (24, 25), the wiring rule can be written as

     ij   = exp(−   D  ij   ) ×   T  ij        (1)

where ij is the connectivity score that is used to subsequently 
derive a probability of a connection forming between nodes i and j 
at a given time step (see Methods), Dij is the distance between those 
nodes,  is a parameter controlling the scale of the distance decay, 
Tij is some topological relationship between nodes i and j, and  is a 
parameter controlling the scaling of the topological term. Prior 
work has often formulated the wiring cost term using a power-law, 
rather than exponential, distance dependence, but we use the expo-
nential form here because of the abundant empirical evidence for 
such a dependence (17, 18), to allow a direct comparison to the 
widely studied EDR (17, 18), and because the scale invariance of the 
power-law function means that any such models will preserve rela-
tive wiring costs under global changes in brain size and will there-
fore be insensitive to the developmental changes in brain geometry 
introduced in our growth class of models. We follow the approach 
of Betzel and colleagues (25) and consider 12 different topological 
terms for Tij that capture various aspects of degree, clustering, and 
connection homophily, the formal definitions of which are provided 
in Table 1.

In Methods and the Supplementary Materials (figs. S1 and S2), 
we show that the model formulation expressed in Eq. 1 can dispro-
portionately penalize long-range connections and lead to an ambiguous 

interpretation of parameter estimates because of a lack of indepen-
dence between model parameters. We therefore derived a new 
formulation, given by

       ij   =   
exp(−   D  ij  )  ─  max(exp(− D ) )   +  (     

  T  ij      
 ─ 

max( T    )
   )      (2)

where  controls the contribution of the topological term, and each 
term is normalized by its maximum value to ensure appropriate 
scaling of the distance and topological quantities. Practically, when 
estimating ij, high values of  assign more weight to the topological 
term; high values of  indicate a stronger distance penalty (i.e., 
shorter length scale of connectivity); and high values of  control 
the nonlinear scaling of the topological term, such that large values 
of Tij exert a proportionally greater influence than smaller values. 
Models including the nonlinear scaling of topology provided by  
fitted the data better than models that excluded  (see figs. S1 and 
S3 and Supplementary Text). Moreover, fig. S1C shows that the 
additive formulation of Eq. 2 more accurately captures putative 
trade-offs between cost and topology in connectome wiring, leads 
to more interpretable parameters estimates, and can fit our data 
better than the multiplicative formulation in Eq. 1, particularly with 
regard to capturing the empirical edge length distribution (fig. S2). 
Therefore, all results presented in the following sections use the 
basic formulation given in Eq. 2.

Accounting for developmental changes in cortical geometry
We first set out to determine whether incorporating developmental 
constraints into the generative models, by accounting for fetal 
changes in brain size and shape when estimating wiring costs, influ-
ences model performance. Figure 2 shows how cortical geometry 
varies through time (Fig. 2A), along with variations in total surface 
area (Fig. 2B) and interregional distances (Fig. 2C). From 21 GA to 
38 weeks GA, there is a 378% increase in total cortical surface area 
(Fig. 2B), and the distribution of interregional distances gradually 
becomes more skewed, such that an increasing number of regional 
pairs separated by longer anatomical distances emerge (Fig. 2C), 
and the maximum possible distance increases by 74%. In compari-
son to the adult brain, the total cortical surface area observed at 
38 weeks GA is 67% smaller and the maximum interregional dis-
tance is 41% shorter. Such large differences indicate that wiring 
cost estimates using adult brain geometry vary greatly from 
those that are likely to operate when interregional connections are 
being established.

To incorporate such developmental changes in brain size and 
shape into our models, we introduced a time-varying wiring cost to 
the basic formulation given by Eq. 2, yielding

       ij   =   
exp(−   D  ij  (t ) )  ───────────  max(exp(− D(t ) ) )   +  (     

  T  ij      
 ─ 

max( T    )
   )      (3)

where Dij(t) is the distance between nodes i and j at time point t 
(where t = 1 is 21 weeks GA, t = 2 is 22 weeks GA… t = 18 is 38 weeks 
GA, and t = 19 is the adult). For simplicity, we add connections at a 
uniform rate at each developmental time point, resulting in E/19 
connections being added iteratively (i.e., one by one) according to 
the wiring costs given by any individual time point, with E corre-
sponding to the number of edges in the empirical network and 19 
representing the number of developmental time points considered 
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(18 fetal and 1 adult). Once the set number of edges is added at a given 
time point, the distances are updated to the next time point, and the 
procedure repeats until E edges have been added (note that in the 
static model, all edges are added according to the same geometry).

For the static and growth trade-off models, we compared 12 dif-
ferent topological terms for Tij, as previously done (25) (see Table 1 
for definitions), along with a purely spatial model based solely on 
the EDR. These models used the additive form with the  parameter 
(i.e., had nonlinear scaling of the topology term) as they showed 
superior performance to those where it was not included (fig. S3). 
The cross-validated fit statistics for these models are shown in Fig. 3. 
We replicate prior work (24, 25) in showing that trade-off models 
generally outperform the purely spatial EDR-based model, even when 
considering out-of-sample performance. While the spatial growth 
model yielded a small yet statistically significant improvement [cal-
culated as a Wilcoxon signed-rank test, Bonferroni-corrected for all 
325 possible combinations of comparisons between additive static 
and growth models, PFWER(325) < 0.05 or P < 1.54 × 10−4] in mean 
FCV relative to its static counterpart [growth, 0.34 ± 0.03; static, 0.35 ± 
0.02; PFWER(325) < 0.05], this improvement was not sufficient to 
surpass the performance of the best-fitting trade-off models. Thus, 
even when developmental changes in brain geometry are consid-
ered, purely spatial models offer an incomplete account of the data. 

This result offers important confirmation of the hypothesis that, 
compared to a simple EDR process, the trade-off models more ac-
curately capture the four key statistics of human connectome topol-
ogy considered here.

As per past work (25), we found that the best-fitting model com-
bines a distance penalty with a homophilic attachment rule based 
on the matching index (see Table 1). We also observed a significant 
[PFWER(325) < 0.05] performance advantage for the growth variant 
of this model over the static case, indicating that incorporating de-
velopmental constraints enhances the accuracy of this model, with an 
average improvement of ~10% (i.e., the mean FCV values for the best- 
fitting static and growth matching index models were 0.23 ± 0.01 and 
0.20 ± 0.01, respectively). Performance differences between the growth 
and static variants of the other cost-topology models were smaller.

As FCV is derived from the worst KS statistic across four topological 
measures (node degree, node clustering, node betweenness, and edge 
length), we examined the extent to which the performance of each 
of these measures shaped the resulting FCV value. For most models, 
the nodal clustering, nodal betweenness, and edge length distribu-
tions were the final determinant of the final FCV value, indicating 
that these properties were the most difficult to capture (fig. S4). By 
comparison, the degree distribution was better captured [as indicated 
by only a small proportion of max(KS) values being determined by 

Table 1. Definitions of topological terms used in the cost-topology generative models. di, degree of node i; ci, clustering coefficient of node i; 𝒩i\j, 
neighbors of node i but excluding node j; A, adjacency matrix; r(Dij), the exponential fit between distance and correlated gene expression (CGE). For the cCGE, 
uCGE, MPCHIST, and MPCT1/T2 models, we add a value of 1 to avoid any negative values, as these values cannot be used to appropriately define a probability. 

Name Tij/PCij Topology/physiological class Description

clu-avg    (     c  i   _ 2   +   c  j   _ 2   )    Topology: clustering Mean clustering coefficient of nodes i and j

clu-diff ∣ci − cj∣ Topology: clustering Absolute difference between the clustering coefficients 
of nodes i and j

clu-max max[ci, cj] Topology: clustering Maximum clustering coefficient of nodes i and j

clu-min min[ci, cj] Topology: clustering Minimum clustering coefficient of nodes i and j

clu-prod cicj Topology: clustering Product of the clustering coefficients of nodes i and j

deg-avg    (     
d  i   _ 2   +   

d  j   _ 2   )    Topology: degree Mean degree of nodes i and j

deg-diff ∣di − dj∣ Topology: degree Absolute difference between the degree of nodes i and j

deg-max max[di, dj] Topology: degree Maximum degree of nodes i and j

deg-min min[di, dj] Topology: degree Minimum degree of nodes i and j

deg-prod didj Topology: degree Product of the degrees of nodes i and j

Matching   ∣ N  i\j   ∩  N  j\i  ∣  _  
∣ N  i\j   ∪  N  j\i  ∣

  Topology: homophily The proportion of neighbors shared by nodes i and j

Neighbors ∑kAikAjk Topology: homophily The number of nodes neighboring both i and j

cCGE CGEij − r(Dij) + 1 Physiological: corrected CGE The CGE of nodes i and j corrected for the spatial 
autocorrelation

uCGE CGEij + 1 Physiological: uncorrected CGE The CGE of nodes i and j uncorrected for the spatial 
autocorrelation

MPCHIST MPC(HIST)ij + 1 Physiological: histological The partial correlation of histological intensity profiles of 
nodes i and j

MPCT1/T2 MPC(T1/T2)ij + 1 Physiological: T1/T2-weighted ratio The partial correlation of T1/T2 ratio intensity profiles of 
nodes i and j



Oldham et al., Sci. Adv. 8, eabm6127 (2022)     3 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

6 of 18

the KS statistic for degree]. FCV for the best-fitting matching model, 
in both static and growth cases, was more evenly influenced by the 
different topological properties. Notably, the growth matching 
model more accurately captured the empirical edge length distribu-
tion than its static counterpart, suggesting that the improved per-
formance of the growth model arose from a more accurate estimate 
of network wiring costs, as expected.

Comparison of model parameter estimates offers further insights 
into the relative behavior of the growth and static models. The optimal 
parameters for the two classes of models showed substantial differ-
ences; for instance, the growth matching model had the best-fitting 
parameters of  = 0.35 ± 0.17,  = 1.78 ± 0.44, and  = 4.93 ± 2.06, 
while the static model had  = 0.21 ± 0.16,  = 1.28 ± 0.36, and  = 
3.96 ± 2.21 (fig. S5). The higher  value observed under the growth 

Fig. 2. Surface area and fiber distance distributions for the fetal surfaces. (A) The adult brain is warped into the shape of the fetal brain at each GA time point (see 
Fig. 1B), allowing our node parcellation to be projected through developmental time. (B) Surface area estimated using the inner white/gray boundary of the left hemisphere 
of each fetal brain, with the adult included for comparison. (C) Kernel density plots of internodal fiber distances between all nodes at each developmental time point.

Fig. 3. Model performance for static and growth variants of spatial and cost-topology trade-off models. Each violin plot shows the distribution of cross-validated 
FCV values for static and growth additive models across individuals. The color of each violin plot indicates the topology metric used in the model: Homophily is shown in 
blue, clustering (clu) in red, degree (deg) in green, and spatial in purple. The white circle indicates the median of each distribution, while the horizontal black line indicates 
the mean. The matching growth model achieved the best performance. *PFWER(325) < 0.05 (Wilcoxon signed-rank test, Bonferroni-corrected for all 325 tests between all 
26 models).
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formulation suggests that an increased distance penalty is required 
for an optimum model fit compared to the static form. This effect 
likely arises because the length scales in the growth model are short-
er than in the static variant, so the growth model requires a stronger 
distance penalty to match the adult edge length distribution. Rela-
tive to the static variant, the growth matching model also required a 
stronger weighting and stronger nonlinear scaling of the topology 
term, as indicated by the magnitudes of the  and  parameters, re-
spectively (fig. S5). This result suggests that connection probabilities 
were more heavily skewed toward node pairs with high matching 
index values in the growth variant. Given that the growth variant was 
also associated with a stronger distance penalty (higher  value), the 
higher value of  implies that topologically valuable connections are 
more likely to form during early stages of the growth model, when the 
distance penalty is weaker. Notably, for cost-topology models showing 
similar performance to the purely spatial model,  was approximately 
0, consistent with the observation that topological rules did not im-
prove model accuracy in these cases. These mechanistic interpreta-
tions of model parameters are only possible under our new model 
formulation (i.e., Eqs. 2 and 3), as the classical formulation of Eq. 1 
does not sufficiently separate the contributions of cost and topology 
(see Methods).

Physiologically informed attachment rules
Our results indicate that cost-topology trade-off models offer a more 
accurate account of empirical human connectome topology than 
purely spatial, EDR-based models and that homophilic attachment 
mechanisms informed by the matching index show the strongest per-
formance. Our findings also indicate that incorporating develop-
mental constraints into the matching model improves its accuracy. 
However, the topological homophily rule is an abstraction with no 
clear physiological mechanism. We next asked how the performance 
of this rule compares to that of models that incorporate alternative, 
physiologically grounded homophilic attachment mechanisms, such 
as those related to the architectonic type principle (34, 37, 46, 47). 
First, we estimated the microstructural profile covariance (MPC) 
between pairs of regions using the BigBrain atlas, which is a Merker- 
stained three-dimensional (3D) histological reconstruction of a 

postmortem adult human brain (48). This measure, which we term 
MPCHIST, quantifies interregional similarity in estimates of cell size 
and density through the cortical depth (49). Second, we estimated 
MPC derived from the ratio of T1-weighted to T2-weighted signal 
estimated from in vivo MRI (MPCT1/T2), which is often used as a proxy 
for intracortical myeloarchitecture (50). Last, given the reported link 
between coupled gene expression and neuronal connectivity (5, 21), 
we also evaluated measures of interregional transcriptional coupling, 
quantified as correlated patterns of expression measured across 
1634 brain-expressed genes (51) using data from the Allen Human 
Brain Atlas [AHBA; (52, 53)]. We term this measure correlated gene 
expression (CGE) (5, 21). Further details are provided in Methods.

For each of these three physiologically informed models, we eval-
uated model performance with and without a wiring cost term in 
the model. Models without the wiring cost take the form

      ij   =   PC  ij         (4)

where PCij represents the pairwise element for the respective physi-
ological constraint matrix (i.e., MPCHIST, MPCT1/T2, or CGE; see 
Table 1). Models with a wiring cost are defined as

       ij   =   
exp(−   D  ij  (t ) )

  ───────────  max(exp(− D(t ) ) )   +  (     
  PC  ij      

 ─ 
max( PC    )

   )      (5)

Note that growth variants can only be estimated for models that 
include wiring costs. For CGE-constrained models, we examined vari-
ants that used either raw CGE values (uCGE) or values corrected for the 
well-known distance dependence of the coupling estimates (cCGE) 
(21, 53). The relationship between MPC and distance is more region-
ally variable and a bulk distance correction unevenly affects certain 
areas (54), so we only consider raw estimates of these quantities (see 
Methods).

First, we examined whether any of the single-parameter physio-
logical models (MPCHIST, MPCT1/T2, cCGE, or uCGE) could out-
perform the classical spatial and/or cost-topology models. As shown in 
Fig. 4, all but the cCGE significantly outperformed [PFWER(120) < 0.05] 
the spatial model, but only the uCGE model (FCV = 0.19 ± 0.02) 

Fig. 4. Model performance of physiologically informed models. Each violin plot shows the FCV values of different models. The color of each violin plot indicates 
the type of model: Matching is shown in blue, cCGE in red, uCGE in green, MPCHIST in orange, MPCT1/T2 in cyan, and spatial in purple. The white circle indicates the median 
of each distribution, and the horizontal black line indicates the mean. uCGE models achieved the best fit. Note that uCGE, cCGE, MPCHIST, and MPCT1/T2 models do not 
have a growth variant as they do not have an independent distance term. *PFWER(120) < 0.05 (Wilcoxon signed-rank test, Bonferroni-corrected for all 120 tests between 
all 16 models).
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outperformed the matching index model (static: FCV = 0.21 ± 0.01; 
growth: FCV = 0.20 ± 0.01). Adding a distance term to the physiolog-
ical models improved the performance of the MPCHIST, MPCT1/T2, 
and cCGE models, and growth variants were associated with slight 
performance advantages for all but the spatial+MPCT1/T2 and 
spatial+uCGE models. Critically, however, none of the MPCHIST, 
MPCT1/T2, or cCGE models surpassed the accuracy of the uCGE 
model. Moreover, combining uCGE with a wiring cost term offered 
only a minor 2% performance gain (static spatial+uCGE: FCV = 0.183 ± 
0.018; uCGE: FCV = 0.187 ± 0.017), suggesting that the single- 
parameter uCGE model offers a parsimonious account of the data.

The lack of improvement observed with the addition of a distance 
penalty to the uCGE model is likely due to the approximately expo-
nential distance dependence that is already present in uCGE values 
(21, 53). As noted above, the cCGE model, which explicitly removes 
the intrinsic spatial dependence of CGE, was the worst perform-
ing model (FCV = 0.40 ± 0.02). This result, together with the strong 
performance advantage of the uCGE model over the purely spatial 
model, indicates that it is the specific spatial patterning of CGE, 
beyond a simple EDR-based distance dependence, that is particu-
larly informative about connectome topology. The only other phys-
iologically informed model to outperform the matching index model 
was the static variant of the spatial+MPCT1/T2 [FCV = 0.19 ± 0.020, 
PFWER(120) < 0.05]. All other physiologically informed models showed 
either comparable or slightly worse performance than the matching 
index model.

Evaluation of model fits to the specific topological properties used 
in the fitting procedure indicated that the physiological models (ex-
cluding cCGE, spatial+cCGE, and MPCT1/T2) more accurately cap-
tured the edge length distribution than the topological models, for 
which edge lengths were fitted least accurately [as indicated by the 
edge length distribution determining the value of max(KS) only a small 
proportion of times; fig. S6]. For the physiological models, between-
ness and clustering were the two properties that were least accurate-
ly reproduced.

To examine the extent to which the choice of parcellation may drive 
our findings, we repeated our analysis for the physiological models 
using a functionally informed parcellation (55) of the same nodal res-
olution. This result largely paralleled our main findings, with the 
uCGE models achieving the best performance (fig. S7).

Modeling topographical properties of the human connectome
Our findings indicate that physiologically informed homophilic attach-
ment mechanisms, and particularly those constrained by interregional 
transcriptional coupling, can reproduce key topological properties 
of the human connectome better than wiring rules based on topo-
logical homophily. We next investigated whether these models can 
also reproduce the way in which these properties are spatially em-
bedded, i.e., the topography of the connectome. To this end, we fo-
cused on the performance of the growth uCGE models, matching 
index model, and spatial models in reproducing the spatial topography 
of regional clustering, betweenness, degree, and mean connection dis-
tance, that is, the spatial characteristics of the four topological properties 
used to fit the models to the data. We quantified model performance 
in capturing topographical properties as the Spearman correlation 
between the best-fitting model and empirical node sequences for each 
of these properties. Note that only the topological (i.e., statistical dis-
tributions), and not topographical (i.e., node/edge sequences), prop-
erties were used to optimize model parameters.

We found that while the uCGE and matching models closely 
capture the statistical distributions of topological features, all models 
generally show poor performance in capturing topographical prop-
erties, with the average correlation across individuals never exceed-
ing 0.22 (Fig. 5). Despite this generally modest performance, the 
uCGE and spatial+uCGE models showed better performance across 
nearly all topographical properties.

The models considered in Fig. 5 were optimized to fit topological 
properties. To investigate in more detail whether the models can ac-
curately reproduce topographical properties regardless of fits to topolog-
ical distributions, we evaluated the maximum Spearman correlation 
between empirical and model node degree obtained across all pa-
rameter combinations evaluated in our model fitting procedure. We 
found that no such correlations ever exceeded 0.49, with median cor-
relations across the models ranging between −0.17 and 0.13 (fig. S8), 
further suggesting that current generative models have a limited capac-
ity for reproducing topographical properties of the human connectome.

DISCUSSION
In this work, we introduce a new formalism for capturing how 
cost-value trade-offs might shape brain network wiring and com-
bine this new model with a framework for incorporating physio-
logical constraints and developmental changes in brain size and 
shape. Using a cross-validated model evaluation procedure that ac-
counts for variations in model complexity, we show that develop-
mentally informed growth models fit the data better than models 
assuming fixed wiring costs through development. As per prior work 
(5, 24–28), we not only confirm that cost-topology trade-off models 
perform better than purely spatial models but also show that physi-
ologically constrained models, particularly those in which the prob-
ability of forming a connection between two regions is influenced 
by their level of transcriptional coupling, offer a more accurate and 
parsimonious account of connectome topology. While physiological 
models did show better reproduction of empirical topographical 
properties than cost-topology models, all models weakly captured 
the way in which the data are spatially embedded. Collectively, our 
findings suggest that a simple, single-parameter generative model with 
a homophilic attachment mechanism based on transcriptional cou-
pling offers the most parsimonious account of connectome topology 
and that additional constraints may be required to accurately model 
topographical properties of human brain networks.

Parsing the effects of space, topology, and physiology 
on connectome wiring
The EDR has been proposed as a fundamental constraint on neuronal 
connectivity, having been used to explain edge length distributions and 
the presence of particular kinds of cliques and motifs in the connec-
tomes of mouse and macaque (17, 18). The rule implies that sto-
chastic processes subject to distance dependence are sufficient to 
explain connectome topology. Past work directly comparing EDR-
based models to cost-topology trade-off models has found that the 
latter class fit empirical macroscale human connectome data better 
(5, 24–26, 28), but these studies did not account for differences in 
model complexity (see Methods). Our cross-validated fitting proce-
dure allowed fair model comparison and confirmed the superiority 
of the trade-off models. Moreover, we showed that incorporating 
developmental changes in brain geometry still resulted in superior 
performance for trade-off compared to spatial models, indicating 
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Fig. 5. Model performance in capturing connectome topography. For each of the network measures that were used to evaluate model performance, we show violin 
plots of the Spearman correlation between the empirical and data for selected models for a given property of the model fit function. For the spatial+uCGE model, we 
additionally show, for each network measure, the average cumulative distribution function (CDF) of the model data (colored line) as compared to the empirical data 
(black line), a scatterplot of average nodal model values against average nodal empirical values, and a projection of these across-individual average nodal measures onto 
the cortical surface. The Spearman correlation between the empirical and model data is reported above each scatterplot. (A) Spatial topography of node degree. (B) Spatial 
topography of node clustering. (C) Spatial topography of node betweenness. (D) Spatial topography of mean node connection distance.
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that a past reliance on using adult estimates of wiring cost has not 
artificially limited the performance of models based solely on EDR-
like processes. These findings are in line with Ramón y Cajal’s (7) 
hypothesis that an interplay between wiring cost and functional 
value shapes brain network wiring.

Of the trade-off models considered here, those relying on homo-
philic attachment guided by the matching index performed better than 
models based on properties of node clustering or degree, consistent 
with prior work (24–26, 28). However, while this form of topological 
homophily may be plausibly linked to a Hebbian-like plasticity process 
(29), the precise mapping between topological terms such as the 
matching index and the physiological processes that sculpt neuronal 
connectivity remains unclear. We therefore investigated an alterna-
tive class of homophilic attachment models in which interregional 
homophily was informed by physiology rather than topology and 
showed that these models often perform better than the matching 
index model.

In a general sense, all three physiologically constrained models 
considered here—CGE, MPCHIST, and MPCT1/T2—offer different 
ways of testing the architectonic type principle, or structural model of 
neuronal connectivity, which states that regions with more similar 
cytoarchitecture and laminar organization are more likely be con-
nected with each other (36, 37, 46, 56). MPCHIST and MPCT1/T2 represent 
more direct measures of cytoarchitectonic similarity, quantifying 
cortical depth–dependent variations in cell size/density and myelin 
content, respectively. CGE offers an arguably less direct, although per-
haps related, measure of microstructural similarity. Gene expression 
measures in the AHBA are obtained through bulk tissue microarray, 
and the resulting expression values will be influenced by regional 
variations in cellular architecture, although the specific contributions 
to CGE made by cytoarchitectonic or other aspects of transcrip-
tional similarity remain unclear.

The superior performance of both CGE and MPCT1/T2 compared 
to MPCHIST models may indicate that interregional coupling of factors 
related to myeloarchitecture may be more closely linked to connec-
tivity than similarity in neuronal organization, in light of evidence that 
the T1/T2 ratio tracks intracortical myelin (50) and that oligodendrocyte- 
related genes contribute to variations in CGE that are linked to inter-
regional connectivity (5). Notably, MPCT1/T2 has a lower resolution 
than MPCHIST and is thus more sensitive to the skewness of the in-
tensity profiles, which varies along a sensory-fugal axis (54). Hence, 
MPCT1/T2 more closely corresponds to the hierarchical sensory-fugal 
axis, which is an established organizing principle of neuronal con-
nectivity (57). In addition, the BigBrain atlas from which MPCHIST 
estimates were derived was constructed using only a single brain, and 
the challenges of data reconstruction and lack of averaging across 
individuals may result in somewhat noisier measures.

The spatial+uCGE model showed the lowest average FCV value, 
closely followed by the single-parameter uCGE model. The strong 
performance of the single-parameter uCGE model suggests that a 
nonlinear (power-law) scaling of CGE values to favor connections 
between regions with positive CGE values (see Methods) provides a 
parsimonious model of macroscale connectome topology, with little 
additional benefit from the inclusion of a term for connection wiring 
costs. Although the uCGE values show a strong and approximately 
exponential distance dependence (21, 53), this dependence alone 
cannot account for the strong performance of the uCGE model, given 
that the spatial model performed so poorly. Rather, it is the specific 
spatial patterning of CGE values that is likely to be important in 

shaping connectome topology. This conclusion is further supported 
by the comparatively poor performance of the spatial+cCGE model, 
which replaces the intrinsic distance dependence of the CGE values 
with a fitted exponential wiring cost penalty. Thus, while a bulk ex-
ponential trend can approximate the distance dependence of CGE, 
fluctuations around this trend may play a central role in shaping 
interregional connectivity. In this sense, both spatial and physiological 
constraints may be more relevant to understanding connectome 
wiring than abstract topological rules.

Accounting for developmental changes in brain 
size and shape
In general, growth-based model variants yielded small, yet statistically 
significant, performance advantages over their static counterparts 
when considering the best-fitting models. This result suggests that 
developmental changes in cortical geometry may not play a substantial 
role in shaping connectome topology. Optimal values of , which 
define the distance penalty imposed in the model, were larger in the 
growth models than in the static model, indicating that an increased 
distance penalty was required for the growth models, on average. 
This increased penalty counteracts the potential benefit of shorter 
distances at earlier time points. Because the position of nodes, and 
thus the relative distances between them, did not change drastically from 
one time point to another (except for between the 38 gestational 
week and adult brain time points), it is likely that the models fitted 
the  parameter to the average distance across all these time points. 
Because the distances in the fetal brains largely represent scaled-
down adult distances, this behavior will limit potential performance 
differences between growth and static model variants. One way around 
this limitation is to fit a distinct value of  at each time point. Future 
work could also look to vary the rate at which connections are added 
at different time points; however, these changes come at the cost of 
a substantial increase in model complexity. We opted for the 
simplest approach and fixed  across time, but our basic framework 
could be adapted to investigate these more nuanced influences in 
future work.

Our growth models were implemented such that any node at any 
given time point could form a connection. This is known as tau-
tochronous (or parallel) growth. Simulations have suggested that 
heterochronous (or serial) growth, in which there is a prescribed 
order to which nodes can form connections, may offer a more real-
istic model (33, 46, 58, 59). Heterochronous growth is thought to play 
an important role in shaping the relationship between cytoarchitec-
tonic similarity and connectivity (56) and may facilitate the formation 
of long-range connections when combined with spatial changes in 
brain geometry. Our modeling framework can be extended to con-
sider heterochronous growth by adding connections at different rates 
or times for different brain regions. Developing principled ways of 
parametrizing these growth processes will be an important exten-
sion of the current work.

Modeling topographical properties of the connectome
Initial generative modeling studies only evaluated model performance 
with respect to a small set of handpicked topological properties 
(24, 25), thought to be characteristic of the human connectome. Only 
recently have topographical properties been considered (5, 26–28). 
Recent studies have shown the importance of the spatial location of high- 
degree hub regions (38) and indicated that classical cost-topology 
trade-off models cannot accurately capture the spatial arrangement 
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of nodal degree (27) [however, see (26) and limitations below] but 
that incorporating transcriptional information can improve accuracy 
(5). These findings motivated us to consider the extent to which our 
models could reproduce the topographical properties of degree, 
clustering, betweenness, and mean connection distance. We repli-
cated prior results indicating that physiologically constrained models, 
particularly those using CGE estimates, more accurately captured 
diverse aspects of network topography (5). However, even the best- 
fitting model achieved only moderate success, with the highest av-
erage spatial correlation in the spatial+uCGE model (across all four 
properties) being  = 0.22. It is thus possible that a combination of 
transcriptional constraints and heterochronous growth may be nec-
essary to accurately capture both topological and topographical 
properties of the human connectome. This combination may result 
from developmental variations in transcriptional profiles guiding 
axons to their targets. The construction of anatomically compre-
hensive gene expression atlases through different stages of prenatal 
development (60) would help to test this hypothesis.

Limitations
The reference cortical surfaces that we used at each fetal time point 
were obtained from different fetuses and using differing numbers of 
scans, introducing variability in cortical shape and size between ges-
tational time points (42, 43). This variability means that our surface 
model does not smoothly develop from one time point to another, 
as would be expected in an actual brain. Nonetheless, we expect that the 
relative fiber distances estimated using these geometries should not 
vary markedly and that, for present purposes, they represent a rea-
sonable first approximation of developmental changes in geometry.

Our growth model added connections one at a time, but connec-
tions are likely to form contemporaneously in the developing brain. 
Connections are added sequentially in the model so that the topol-
ogy of each edge can be recalculated at each iteration, but future 
extensions may consider sampling multiple edges at any given time. 
Moreover, we added an approximately equal number of connections 
at each developmental time point, but more complex temporally 
and spatially varying schemes for connection formation are possible. 
Other biological mechanisms that may shape connectivity could also 
be considered. For instance, axons undergo a substantial degree of 
postnatal pruning that likely alters the resulting network topology. 
Including a process of axonal overgrowth followed by pruning coupled 
to dynamics unfolding on the network could simulate this process, but 
the best way to efficiently parameterize such a model remains unclear.

In line with previous studies (24–26, 28), we only examined the 
ability of generative models to capture binary network topology. 
However, biological neural networks have edge weights that span 
several orders of magnitude (61). Extending the framework devel-
oped here to capture weighted network properties would represent 
an important extension of our work. For example, the model could 
be run so that the same edge can be placed into the network multiple 
times (thereby increasing its weight). Alternatively, the model could 
be configured such that there is an additional term that can increase 
the weight of edges that have been added to the network. Our model 
represents a flexible approach that can be adapted to explore these 
and other possible ways of incorporating weights into generative 
network models.

Last, while numerous studies have used generative models, they have 
been fitted to connectomes generated using different preprocessing 
pipelines, thresholding methods, parcellations, one or both hemispheres, 

and many other methodological variations. As the topology of brain 
networks can differ on the basis of how the data were processed 
(62), it is possible that these variations may influence model perform-
ance. For example, studies using higher-resolution parcellations 
comprising ≥100 nodes have encountered difficulty in replicating 
the spatial embedding of network hubs (5, 28), whereas one study 
using a lower-resolution parcellation of 68 nodes performed better 
in relation to node degree (26). Moreover, studies using probabilistic 
rather than deterministic tractography have identified alternative cost- 
topology models to the matching index model as offering the best fit 
to empirical data (5). A better understanding of how model per-
formance depends on data preprocessing will be essential if the field 
is to converge on a parsimonious consensus model.

Here, we advance a framework for modeling the influence of cost- 
topology trade-offs in brain network development that allows fair 
comparison between models of different complexity, which cap-
tures developmental changes in brain geometry, and which can be 
used to incorporate additional physiological constraints. We show 
that simple, physiologically constrained models offer more accurate 
accounts of human brain topology than models relying on more 
abstract topological rules of the connectome but that all generative 
models have trouble replicating the spatial embedding of topo-
graphic properties. Together, our findings suggest that geometric 
constraints and developmental variations in regional transcriptional 
profiles may conspire to shape both the complex topological prop-
erties and specific spatial embedding of macroscale brain network 
architecture.

METHODS
Data
We used data from the HCP, randomly selecting images for 100 un-
related participants (49 females, age mean ± SD: 28.79 ± 3.67). Data 
were acquired on a customized Siemens 3 T Connectome Skyra 
scanner at Washington University in St. Louis, MO, USA, using a 
multishell protocol for the diffusion weighted imaging with the 
following parameters: 1.25-mm3 voxel size; repetition time (TR) = 
5520 ms; echo time (TE) = 89.5 ms; field of view (FOV) of 210 mm 
by 180 mm; 270 directions with b = 1000, 2000, 3000 s/mm2 (90 per 
b value); and 18 b = 0 volumes. Structural T1- weighted data were 
acquired with 0.7-mm3 voxels, TR = 2400 ms, TE = 2.14 ms, and an 
FOV of 224 mm by 224 mm (40, 63). A total of 100 participants were 
used because of the computational burden of running multiple dif-
ferent models for each participant’s network.

Connectome mapping
The HCP data were processed according to the HCP minimal pre-
processing pipeline, which included normalization of mean b = 0 
images across diffusion acquisitions and correction for echo-planar 
imaging susceptibility and signal outliers, eddy current–induced 
distortions, slice dropouts, gradient nonlinearities, and participant 
motion. The details of this pipeline are provided in more detail else-
where (40, 64). T1-weighted data were corrected for gradient and 
readout distortions before being processed with FreeSurfer (40).

To define network nodes, we parcellated the brain into 100 re-
gions of approximately equal size. This parcellation was generated 
by randomly subdividing the fsaverage template surface. We only 
considered cortical regions for the parcellation as our approach to 
registering and aligning fetal brains did not extend to noncortical 
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areas. The parcellation was then registered from the template sur-
face to the surface of each participant using a spherical registration 
procedure implemented in FreeSurfer (65), where it was converted to 
a volumetric image for subsequent network generation. We focus 
here only on the left cerebral hemisphere when performing genera-
tive modeling to follow past work (5, 24, 25, 28) and to reduce com-
putational burden. While there are many ways to parcellate human 
brain imaging data, we took a pragmatic view, requiring that (i) par-
cels were of approximately equal size, because variations in regional 
size can affect many nodal properties such as node degree; and 
(ii) the resulting networks were small enough that they could be 
modeled with sufficient computational efficiency, because of the 
large number of model iterations that we ran. Examining how model 
performance varies across different parcellations and data processing 
strategies is an important extension of the current work.

Deterministic tractography was performed using the fiber assign-
ment by continuous tractography (FACT) algorithm (66) as imple-
mented in MRtrix3 (67). The algorithm propagates streamlines in the 
direction of the most colinear fiber orientation estimated within the 
voxel in which the streamline vertex resides. We defined one fiber 
orientation in each voxel by estimating the diffusion tensor using itera-
tively reweighted linear least squares (68) and then calculating the pri-
mary eigenvector of water diffusion. A total of 10 million streamlines 
were generated for tractography, with a maximum curvature of 45° per 
step. Streamline seeds were preferentially selected from areas where 
streamline density was underestimated with respect to fiber density 
estimates from the diffusion model (69). Anatomically constrained 
tractography was used to further improve the biological accuracy of 
streamlines (70). To create a structural connectivity matrix, stream-
lines were assigned to each of the closest regions in the parcellation 
within a 5-mm radius of the streamline end points (71), yielding an 
undirected 100 × 100 binary connectivity matrix (density, 0.14 ± 0.01).

Mapping developmental changes in cortical geometry
To estimate developmental changes in cortical size and shape, we 
obtained MRI scans from a public database of fetal MRIs (42, 43) 
acquired from 21 to 38 weeks GA. Most evidence suggests that most 
axons form in this period, with nearly all interregional connections 
being formed by birth (72). We therefore restricted our focus to this 
developmental window, but note that our framework can be flexibly 
extended to include estimates of postnatal cortical geometry.

The fetal scans are released as group average templates of scans 
available at each time point. For each brain, we manually segmented 
the T1-weighted images using ITK-snap (73) to label the white matter 
mask, as existing automated segmentation algorithms suffer from 
poor accuracy because of the inherently poor tissue contrast in fetal 
images. Surfaces were constructed from the white matter mask and 
smoothed using a heat kernel smoothing algorithm (74) and up-
sampled by a factor of 4 (using four-split spline interpolation) to 
ensure that an adequate number of vertices were available to per-
form the surface-based registration. For each extracted surface, we 
estimated maps of sulcal depth and projected the surface to a sphere 
using FreeSurfer (version 5.3).

To match these prenatal surfaces to the adult cortical surfaces, 
we used the MSM algorithm (44). MSM matches an input and ref-
erence surface via their spherical projections. The algorithm warps 
the vertices on the input surface to maximize the similarity between 
a specified feature (in the case of this study, sulcal depth) of the two 
surface meshes while also minimizing the extent of this distortion 

(44). In addition, higher-order clique reduction was used to improve 
surface regularization (45). This approach was used to register each 
fetal surface to the MNI305 average surface template (fsaverage). 
More specifically, to prevent any bias due to the direction of regis-
tration (75), we took the average result of the registration of the fetal 
to the adult and the adult to the fetal surfaces (i.e., the mean coordi-
nates of corresponding pairs of vertices in the two registrations 
were taken). This procedure allowed us to register the adult parcel-
lation to each fetal surface, thus enabling us to track the spatial loca-
tion of each network node through development.

To ensure the accuracy of our cortical surface model, we calcu-
lated cortical surface area and interregional fiber distance distribu-
tions at each time point. The total surface area of each fetal brain 
showed an approximately linear increase over time (Fig. 2B). These 
values and trends are similar to those found in other studies report-
ing surface area changes in this developmental period (75). Changes 
in estimated fiber distance for all possible pairs of brain regions are 
shown in Fig. 2C and confirm that distances between nodes gradu-
ally increase throughout development.

Estimating wiring costs
A true estimate of neuronal wiring costs requires a full consider-
ation of the metabolic resources required to form and maintain 
connections between neurons. The data required for such consider-
ation at the level of the entire brain are currently unavailable. As a 
proxy, most investigators use the physical distance of a connection 
to index wiring cost, under the assumption that longer connections 
require greater cellular material and physical space and thus con-
sume greater metabolic resources (2). Most studies in the field have 
approximated connection distances using the Euclidean distance 
between brain regions (5, 24, 25, 28). This approach can underesti-
mate actual fiber distances, as Euclidean distances do not account 
for the complex geometry of the cortex and do not track actual fiber 
trajectories through the white matter volume. This is an especially 
pertinent consideration when assessing developmental changes in 
wiring costs, as the formation of sulci and gyri represents a promi-
nent geometric change that may significantly alter distances between 
cortical areas over time. We thus aimed to estimate actual fiber 
distances more accurately in our analysis by approximating the 
physical paths between brain regions that pass through the white 
matter volume.

While it is straightforward to measure the length of reconstructed 
tracts, our models require wiring cost estimates for all possible con-
nections, including those that have not been empirically constructed, 
across different developmental time points. We therefore used the 
following procedure to generate these estimates. First, we down-
sampled the cortical surface using MATLAB’s reducepatch command 
(fig. S9A) so that only 15% of the original number of vertices remain 
(fig. S9B). This step preserves the shape of the brain but ensures ef-
ficient computation. Second, for each vertex in the downsampled 
surface model, we found a corresponding point located 0.1 mm in-
terior and perpendicular to the surface (this step avoids precision 
issues that can occur in subsequent steps; fig. S9C). Third, we used 
ray tracing to draw a line segment between every pair of subsurface 
points and assess whether this segment intersects the original sur-
face mesh (fig. S9, D and E). Fourth, a direct vertex connection ma-
trix, L, was defined where each element Luv indicated the Euclidean 
distance between vertices u and v if a line segment that did not in-
tersect the surface could be drawn between their corresponding 
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subsurface points; otherwise, Luv = 0. Last, Dijkstra’s algorithm was 
run on the L matrix to find the shortest distance to connect each 
vertex through the interior of the surface (fig. S9F). We then took 
the average distance between all pairs of vertices in regions of inter-
est i and j to estimate the minimum possible fiber distance between 
each region and node. Note that the actual distances of fibers be-
tween regions are likely larger as they will be affected by factors such 
as fiber volume, ventricles, and subcortical structures. Our approach 
nonetheless offers a more accurate approximation of actual fiber 
distances than Euclidean distances.

Transcriptomic data
We constrained our generative models using transcriptomic data from 
the AHBA, which comprises 3702 spatially distinct tissue samples 
taken from six neurotypical postmortem adult brains (52). Across 
these brains, samples from 58,692 probes—distributed across corti-
cal, subcortical, brainstem, and cerebellar regions—quantify the 
transcriptional activity of 20,737 genes. As only two of the brains in 
the dataset sampled the right hemisphere, we exclusively focused 
our analysis on the left cortex. The preprocessing procedures ap-
plied to these data are described in detail elsewhere (5, 53). Briefly, 
genes were assigned to probes using the Re-Annotator toolbox, re-
sulting in 45,821 probes and a corresponding 20,232 genes being 
selected. Samples annotated to the brainstem and cerebellum were 
removed, and then intensity-based filtering was used to exclude 
probes that did not exceed background noise in more than 50% of 
samples. From the remaining 31,977 probes and 15,746 genes that 
survived filtering, a representative probe for each gene was selected 
on the basis of the highest correlation to RNA sequencing data in 
two of the six brains. Samples were classified on the basis of their 
hemisphere (left/right) and structural assignment (cortex/subcortex) 
assigned to regions of the 100-node parcellation by (i) generating a 
parcellation for each donor-specific brain and (ii) assigning samples 
to the closest region that matched their hemisphere and structural 
assignment within 2 mm of the parcellation voxels. Any samples 
assigned to subcortical or left regions were removed. Gene expres-
sion measures were normalized within each region by first applying a 
scaled robust sigmoid normalization for every sample across genes 
and then for every gene across samples. This normalization yields 
estimates of the relative expression of every gene across regions 
when controlling for donor-specific differences in gene expression. 
By averaging the normalized expression measures in each region 
across donor brains, we obtained a matrix of expression values for 
10,027 genes in 99 regions (1 region was removed as no samples could 
be assigned to it; all models that were directly compared to CGE 
models also had this same node removed from the networks they 
were run on). We focused on a subset of 1634 genes that have pre-
viously been identified as expressed in human brain tissue (51). To 
quantify CGE for each pair of regions, we estimated the Pearson cor-
relation between the normalized expression measures of the 1634 genes 
available after pre-processing.

The gene expression measures that we used were obtained in adult 
specimens and the resulting CGE estimates may not directly reflect 
the expression in the developing brain. While many genes show ne-
otenous expression patterns (76), many others show highly variable 
expression patterns through development (77). Present transcriptional 
atlases of the developing human brain lack the anatomical coverage to 
allow estimation of whole-brain CGE profiles (60), although analyses in 
mouse indicate a predictable scaling rule in the distance dependence 

of CGE throughout development (78). As the coverage of these atlases 
improves, developmentally varying CGE estimates could be readily 
incorporated into the growth class of models introduced here.

It is well documented that the level of transcriptional coupling 
between two regions declines as an approximately exponential func-
tion of the distance between them (20, 21, 53, 78). This spatial auto-
correlation is physiologically meaningful and may be fundamental 
to the relationship between gene expression and brain connectivity 
(21). However, it can also be informative to disentangle CGE esti-
mates from their distance dependence. We therefore incorporated two 
types of CGE estimates into our generative models: (i) CGE esti-
mates corrected for their intrinsic spatial autocorrelation (cCGE) and 
(ii) uncorrected, raw CGE estimates (uCGE). The cCGE estimates 
were obtained by fitting an exponential function with the form 
r(D) = p1e−dp2 + p3, where p1 = 1.12, p2 = 0.012, and p3 = −0.29 for the 
random parcellation [distance along the cortical surface d was used 
to calculate this function, as done in (53); the Schaefer parcellation 
used the coefficients p1 = 0.67, p2 = 0.012, and p3 = −0.07]. The re-
siduals of this fit were used in the modeling as cCGE values, which 
for each pair of regions was defined as cCGEij = CGEij − r(Dij). The 
cCGE and uCGE estimates were remapped to the positive range by 
adding a constant, c = 1, to all values, to ensure that our models did not 
return negative connection probabilities. The scaling exponent  
applied to CGE estimates in our models serves to strongly weight 
pairs of regions with positive compared to negative CGE values.

Microstructural profile data
In addition to transcriptional coupling, we investigated two mea-
sures of MPC between regions. One used histological data from the 
BigBrain atlas (48), a Merker-stained 3D volumetric histological recon-
struction of a human brain (MPCHIST). Following Paquola et al. 
(49, 54), we constructed 50 equivolumetric surfaces between the white 
and pial surface boundaries and then sampled the intensity values 
along these surfaces at each vertex. MPCHIST was then obtained by 
taking the partial correlation of regional mean intensity profiles 
while controlling for the cortex-wide mean intensity profile (as with 
the CGE models, MPC results are transformed into the range 0 to 2). 
MPCHIST can thus be interpreted as a measure of interregional sim-
ilarity in variations of cell density and size through the cortical depth.

To estimate MPCT1/T2, we applied a similar approach to the T1/
T2-weighted ratio obtained with in vivo MRI in an independent 
sample of 197 unrelated healthy adults from the HCP. For each in-
dividual, 12 equivolumetric surfaces between the inner and outer 
cortical surfaces were constructed and used to sample T1/T2 values 
across each vertex (49). MPC was then calculated as with the BigBrain 
atlas, and an average was taken across all individuals to obtain a 
single MPCT1/T2 data matrix. To the extent that the T1/T2-weighted 
ratio indexes intracortical myelin (50), MPCT1/T2 can be interpreted 
as an indirect measure of interregional similarity in myeloarchitec-
tonic variations through the cortical depth. Both MPCHIST and 
MPCT1/T2 show subtle distance-related trends that are not easily ac-
commodated with bulk corrections. We therefore consider only raw, 
uncorrected estimates in our analyses.

Generative modeling
Basic model characteristics
Several different types of generative models for connectomes have 
been proposed (16). We focus here on the cost-topology trade-off 
model, as defined in Eq. 1, which has been extensively studied in the 
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context of human brain networks (5, 24–26, 28). The model defines 
a relation between wiring cost (e.g., Dij) and topology (e.g., Tij) that 
influences the probability of forming an edge between two nodes i 
and j. Edges are added one at a time to the network, with the topol-
ogy value being recalculated at each iteration and connection scores 
updated accordingly. The model is iterated until the number of edges 
in the synthetic networks matches the empirical data.

Following prior work (5, 24–26, 28), we focus here only on mod-
eling the binary topology of the connectome. While previous work 
has identified an initial set of connections that act as a seed for the 
model (25, 26, 28), we initiate our models from an empty connection 
matrix to avoid imposing arbitrary structure on the model network. 
Another distinction between our implementation and past work is 
that we used an exponential penalty for the wiring cost term in our 
models, whereas others have used a power-law form (5, 26, 28) or 
have evaluated both exponential and power-law penalties (24, 25). 
We focus on an exponential penalty for two reasons. First, there is 
ample empirical evidence that, across different species and resolu-
tion scales, the connection probability between pairs of neural ele-
ments shows an approximately exponential decay as a function of 
their distance, the EDR (17–21, 79). Our approach thus offers a natural 
comparison to this extant literature. Second, the scale invariance of 
the power law preserves relative connection distances as a function 
of global changes in brain size, which precludes an opportunity to 
study how developmental changes in cortical geometry and associ-
ated wiring costs influence connection probabilities in the model, 
estimated as outlined below.
Estimating connection probabilities
The model defined in Eq. 2 is used to determine the probability of 
forming a connection between two nodes. It is important to note 
that ij is not itself the actual connection probability but rather indi-
cates a connection score, such that higher values (indicating more 
viable connections) are more likely to result in a connection. The 
advantage of using ij as a connection score rather than a direct prob-
ability is that it allows the model to be formulated such that density 

can be strictly controlled, which is important because many topo-
logical properties depend on the number of edges in the network.

Edges are preferentially sampled according to the edge’s own  
value, divided by the sum of all other possible  values (i.e., the scores 
for all other edges that could possibly be formed), which we term Pij. 
A single edge is selected at each model iteration according to the 
probability Pij, and this procedure is repeated until the desired num-
ber of edges has been added into the network.
Accurately modeling cost-topology trade-offs
The models that we consider here form connections probabilistical-
ly and one at a time according to a specific set of wiring rules. The 
simplest such model that we evaluate considers only spatial factors 
driven by an EDR

      ij   = exp(−   D  ij  )   (6)

Under this model, connections are formed at random, subject to 
the constraint that the connection decays exponentially as a func-
tion of the distance between two nodes.

Trade-off models commonly studied in the literature include a 
topological term and have the general form as described in Eq. 1, 
i.e., ij = exp(−Dij) × Tij

 (note that in this form, we add ∈ = 10−6 
to Tij to prevent any edges from obtaining an undefined value). The 
topological term Tij is intended to counteract the distance penalty 
imposed by the exponential function if a given connection augments 
the topological complexity of the connectome. Under this multipli-
cative formulation of Eq. 1, the influence of the distance and topo-
logical terms on ij is modified via a nonlinear (power-law or 
exponential) function. This formulation influences how topology 
and distance terms interact. Specifically, it has the practical effect of 
ensuring that the topological term only influences the connection 
probabilities of short-range connections. As an example, Fig. 6A 
shows the dependence of ij on the connection distance, modeled 
using an exponential decay for Dij. The parameters for the distance 
term were selected from results obtained here or in previous work 

Fig. 6. Practical demonstration of multiplicative and additive formulations of the trade-off model. (A) ij values calculated over distance with varying values of Tij
 

under a classical multiplicative formulation (e.g., Eq. 1) with an exponential distance penalty. (B) ij values calculated over distance with varying values of Tij
 under a 

classical multiplicative formulation with a power-law distance penalty. (C) ij values calculated over distance with varying values of Tij
 under our new additive formulation 

(e.g., Eq. 2) with an exponential distance penalty. For the multiplicative formulation, changes in Tij
 (which could be due to changes in either Tij or ) practically only affect 

short-range connections (A and B). Under the additive formulation (C), variations in Tij can influence ij over a broader range of distances.
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(25). For a given distance penalty, different values of Tij
 only influence 

the connection score, ij, for connections shorter than 55 mm. The 
effect is exacerbated when using a power-law penalty on the dis-
tance term (Fig. 6B). It is thus very difficult for the topological term 
to overcome the strong penalty on long-distance edges because the 
topological term is implemented as a nonuniform multiplicative 
scaling factor across different values of distance. This behavior does 
not align with a cost-value trade-off, in which the topological value 
of an edge should counteract its wiring cost, even over long distanc-
es. Interpretation of the model’s parameter estimates is ambiguous 
because of the complex interdependence of model parameters and 
the fact that they exert two effects in the model: (i) They control the 
relative relations between different values within a given term, and 
(ii) they control how the different terms scale relative to each other. 
Because both objectives need to be achieved with the same nonlin-
ear function, it is difficult to disentangle the extent to which either 
is being fulfilled.

To avoid these problems, we can formulate an additive wir-
ing rule as

      ij   = exp(−   D  ij   ) +    T  ij         (7)

This form allows a single parameter, , to control the importance 
of Tij relative to Dij in determining connection scores. The additive 
form of Eq. 7 ensures that, for a given value of , the impact of to-
pology is linear and consistent across all connections, as shown in 
Fig. 6C over different Tij

 and  values. Under this formulation, 
each term can vary independently, meaning that parameters can be 
selected such that long-range connections can benefit from having a 
greater Tij

 value. This formulation is more consistent with common 
notions of cost-topology trade-offs, as topology can be sufficiently 
weighted to overcome the wiring cost of a connection. Moreover,  
is readily interpretable as the relative weighting assigned to topolo-
gy versus connection distance in determining connection probabil-
ities, such that higher values indicate a stronger contribution of 
topology to ij.

To interpret  as controlling a trade-off between wiring cost and 
topology in Eq. 7, the distance and topology terms must vary on 
similar scales. We thus normalize both terms to have a maximum of 1 by 
dividing each term by its maximum over all edges that have not yet 
been added to the network. Our model formulation then becomes

       ij   =   
exp(−   D  ij  )  ─  max(exp(− D ) )   +  (     

  T  ij      
 ─ 

max( T    )
   )      (8)

Incorporating developmental changes in cortical geometry
Generative models of human brain networks have traditionally only 
considered wiring costs estimated using physical distances in the adult 
brain. These static models thus neglect the potential impact that de-
velopmental changes in brain size and shape, occurring when connec-
tions are actually formed, can have on wiring costs. To incorporate 
these developmental changes, we estimated, for each of the 18 time 
points for which we have fetal scans, a unique interregional distance 
matrix using the ray-tracing procedure described above. When taken 
with the adult data, this yielded a total of 19 time points. In prin-
ciple, our approach could be extended to include additional 
time points between birth and adulthood, but we focus here on the 
prenatal stage because this is when the bulk of interregional 

connections are formed (72, 80). We add connections to our 
model networks in distinct stages, constrained by the corresponding 
developmental time point, to approximate the effect of changes 
in brain size and shape. We thus introduce a time-varying wiring 
cost, Dij(t), which indicates the internodal distance between nodes i 
and j at time point t, yielding Eq. 3.

A critical question in this model concerns the rate at which con-
nections should be added to the model at different time points. De-
tailed empirical data to answer this question are lacking. One study 
found that expression of Growth Associated Protein 43, a marker 
of axonal growth, was highly and stably expressed between 21 and 
43 weeks after conception, suggesting that this is a period of sustained 
axonal formation (80). Studies of axonal numbers in the developing 
rhesus monkey have suggested that the number of axons increases 
linearly during gestation up until birth (72). We thus use the sim-
plest possible formulation and add connections at a constant rate at 
each time point t, but note that our framework is flexible enough to 
enable explorations of alternative developmental trajectories.
Model evaluation
Model performance was evaluated by comparing the model and 
empirical node distributions of degree, betweenness, and clustering 
and the distribution of connection distances across all edges, as in 
prior work (Fig. 1D) (24, 25). These properties are classical features 
that are often used to describe brain network topology. In each case, 
the distributions are compared using the KS statistic, which is quan-
tified as the maximal distance between the empirical distribution 
functions of two samples, in which lower values indicate greater 
similarity between distributions (i.e., between the distribution of a 
topological property in the empirical and model network). Model 
performance was defined as the maximum KS statistic observed 
across the four-benchmark metrics

   max(KS ) = max( KS  d  ,  KS  c  ,  KS  b  ,  KS  e  )   (9)

where KSd, KSc, KSb, and KSe are the KS statistic of the degree, clus-
tering, betweenness, and edge length distributions, respectively. In 
this formulation of model fit, performance is determined by the 
worst-fitting property. We used the same procedure to assess the 
performance of each model.
Model optimization
To find the optimal values for the parameters , , and , in each 
model for each participant, we used an optimization method devel-
oped previously (25), implemented as follows:

1) We selected a random sample of 2000 points in the parameter 
space defined by  (evaluated over the range −2 to 0) and  (varied 
over the range −8 to 8) and/or  (varied between 0 and 8; however, 
when no  was included in the additive formulation,  varied over 
the range 0 to 0.05 for the clu-avg, clu-max, clu-diff, deg-avg, deg-
max, deg-diff, and deg-prod models; for all others, it varied between 
0 and 8). For CGE and MPC models,  was varied over a greater 
range (CGE: −50 to 250, MPC: 0 to 50).

2) At each point, which represents a specific combination of  
and  or  values, we generated a network using each of the newly 
defined parameters (thus making 2000 synthetic networks) and cal-
culate the max(KS) fit statistic.

3) Once all networks were evaluated, we used a Voronoi tessella-
tion to identify regions (cells) of the parameter space associated 
with low fit statistics. A further 2000 points in parameter space were 
preferentially sampled from each cell according to the relative 
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probability  V C c  
−b  , where VCc is the max(KS) of cell c and b controls 

the likelihood with which cells with a low max(KS) will be sampled 
[i.e., a larger value of b indicates a greater likelihood of sampling 
from low max(KS) cells].

Steps 2 and 3 were repeated five times, resulting in a total of 
10,000 points being evaluated. At each repetition, the probability of 
sampling cells with better fits is increased (going from b = 
{0,0.5,1.0,1.5,2.0}), thus converging to an approximate optimum. 
This optimization was conducted for each model fitted to each par-
ticipant’s network. An advantage of this optimization approach is 
that it allows for adequate sampling across the entire parameter 
space to visualize how changes in parameters affect the model and 
for the identification of a global (approximate) optimum (Fig. 1E).
Cross-validation
The one-parameter spatial model has lower complexity than mod-
els that include topology, which have two free parameters. Our ad-
ditive formulation has three free parameters in total. To enable fair 
comparison across models with varying complexity and to minimize 
overfitting, we developed a leave-one-out cross-validation proce-
dure to assess out-of-sample model performance and generalizability. 
For each participant s in our sample of N individuals, we generated 
synthetic networks using the best-fitting parameters obtained for 
the other N − 1 participants. We cross-validated results with respect 
to the optimal parameters for the other N − 1 participants to ac-
count for variability across connectomes and to assess out-of-sample 
performance. For each such parameter combination drawn from 
the other participants, we iterated the model 20 times to account for 
variability in the stochastic models. We took the mean fit [of the test 
statistic, max(KS)] across these 20 runs and then took the average of 
these means over the N − 1 parameter combinations as our cross- 
validated fit statistic, FCV, for each participant. This approach al-
lowed us to obtain a distribution of FCV values over participants for 
each model (Fig. 1F). Unless stated otherwise, all results are reported 
using this cross-validated fit statistic. While alternative cross-validation 
procedures are possible, we deemed this leave-one-out procedure to 
be the most computationally expedient, given the large number of 
model iterations that was required. To compare FCV across models, we 
used Bonferroni-corrected (corrected for 325 tests for comparisons 
between topological static and growth models; 120 tests for com-
parisons between physiological models), Wilcoxon signed-rank 
tests. This nonparametric test was used as FCV was not always nor-
mally distributed.

Modeling brain network topography
According to the procedures outlined above, model fits were opti-
mized for reproducing the statistical properties (node- and edge- 
level distributions) of network topology. As previously stated, the same 
distribution may be realized with different spatial embeddings, and 
it is the spatial embedding or topography that defines the roles as-
cribed to brain regions, such as which areas are network hubs. We 
thus sought to quantify the degree to which the models were also 
able to capture the spatial embedding of the same topological prop-
erties used in the model-fitting procedure, i.e., degree, clustering, 
betweenness, and mean nodal edge length. To this end, we evaluated 
the Spearman correlation between the nodal values estimated for 
each property in the empirical and synthetic networks. A high cor-
relation implies that the generative model can accurately capture 
the relative nodal rankings, and thus spatial embedding, of that par-
ticular topological measure.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm6127

View/request a protocol for this paper from Bio-protocol.
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