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Abstract 

Background:  Measures of hip muscle morphology and composition (e.g., muscle size and fatty infiltration) are 
possible with magnetic resonance imaging (MRI). Standardised protocols or guidelines do not exist for evaluation of 
hip muscle characteristics, hindering reliable and valid inter-study analysis. This scoping review aimed to collate and 
synthesise MRI methods for measuring lateral hip muscle size and fatty infiltration to inform the future development 
of standardised protocols.

Methods:  Five electronic databases (Medline, CINAHL, Embase, SportsDISCUS and AMED) were searched. Healthy or 
musculoskeletal pain populations that used MRI to assess lateral hip muscle size and fatty infiltration were included. 
Lateral hip muscles of interest included tensor fascia late (TFL), gluteus maximus, gluteus medius, and gluteus 
minimus. Data on MRI parameters, axial slice location, muscle size and fatty infiltrate measures were collected and 
analysed. Cross referencing for anatomical locations were made between MRI axial slice and E-12 anatomical plasti-
nate sections.

Results:  From 2684 identified publications, 78 studies contributed data on volume (n = 31), cross sectional area (CSA) 
(n = 24), and fatty infiltration (n = 40). Heterogeneity was observed for MRI parameters and anatomical boundaries 
scrutinizing hip muscle size and fatty infiltration. Seven single level axial slices were identified that provided consistent 
CSA measurement, including three for both gluteus maximus and TFL, and four for both gluteus medius and minimus. 
For assessment of fatty infiltration, six axial slice locations were identified including two for TFL, and four for each of 
the gluteal muscles.

Conclusions:  Several consistent anatomical levels were identified for single axial MR slice to facilitate muscle size and 
fatty infiltration muscle measures at the hip, providing the basis for reliable and accurate data synthesis and improve-
ments in the validity of future between studies analyses. This work establishes the platform for standardised meth-
ods for the MRI assessment of lateral hip musculature and will aid in the examination of musculoskeletal conditions 
around the hip joint. Further studies into whole muscle measures are required to further optimise methodological 
parameters for hip muscle assessment.
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Background
Magnetic resonance imaging (MRI) has been used to 
assess skeletal muscle morphology and composition for 
over four decades [1–3]. Assessment of skeletal muscle 
with MRI can contribute to improved understanding of 
normal responses to physical activity and changes asso-
ciated with healthy ageing, muscle injury, and pathology 
[1, 4]. Advancing MRI technologies, including a range of 
faster, higher resolution techniques continue to emerge 
with the aim of improving visualisation and quantifica-
tion of muscle characteristics [5–7].

The use of MRI to evaluate hip muscle morphology 
and composition in healthy and musculoskeletal pain 
populations is becoming more common. Interest in hip 
muscle size and quality is driven by the knowledge that 
the muscles spanning the hip joint contribute to hip 
joint forces [8–10]. The capacity of a muscle to generate 
force has been linked to its size, including cross sectional 
area (CSA) and volume [11, 12]. Hip joint forces have, in 
turn, been associated with joint health, pain and/or other 
symptoms [13, 14]. How the size and quality of muscles 
spanning the hip joint contribute to hip joint forces is an 
area of particular interest [8–10].

The lateral hip muscles including the gluteus maximus, 
gluteus medius, gluteus minimus and the tensor fascia 
latae (TFL) generate forces around the hip joint for both 
movement and stability, particularly in single leg stance 
and during gait [15–18]. In people with musculoskeletal 
hip pain, several studies have demonstrated muscle atro-
phy and increased intramuscular fatty infiltration of the 
lateral hip muscles when compared to age-matched con-
trols and asymptomatic contralateral limb [19–25]. As 
such, muscle size and fatty infiltration present as possible 
targets for interventions. Preliminary evidence indicates 
that these muscles can respond to exercises targeting the 
hip and other regions [26–28]. Further work assessing 
size and adiposity of these muscles will help to establish 
the most responsive type and dose of exercise to use, as 
well as the relationship to symptom recovery.

Recent systematic reviews have highlighted hetero-
geneity and inconsistencies in published MRI methods 
designed to assess muscle size and composition of the 
lateral hip muscles [7, 17, 29]. Common to all studies 
remains the challenges of accurately differentiating and 
consistently measuring the borders of individual muscles 
on conventional MRI which may lead to difficulties in 
comparing results. For the lateral hip muscles, the indi-
vidual gluteal muscle borders are difficult to identify at 

the region between the upper border of the acetabulum 
and the superior tip of the greater trochanter [26, 30]. 
The use of high-resolution E-12 anatomical plastinates 
alongside MRI, may improve the ability to visualise ana-
tomical regions by comparing and identifying key fea-
tures at specific locations [5, 31, 32]. Currently, there is 
an urgent need for robust and reproducible MRI meth-
ods for identifying, measuring, and interpreting hip mus-
cle images, particularly to enable comparison of results 
across studies and data pooling.

The primary aim of this review was to define standard-
ised MRI methods for assessing lateral hip muscle size 
and fatty infiltration. A secondary aim was to provide 
illustrative anatomical comparisons between MRI and 
high-resolution E-12 anatomical plastinates using stand-
ardised locations as determined from the literature to 
improve visibility of muscle borders.

Method
This review followed the PRISMA guideline exten-
sion for scoping reviews [33, 34] and was prospectively 
registered on the open science framework platform 
(https://​osf.​io/​5nyuq/).

Search strategy
Five electronic databases (Medline, CINAHL, Embase, 
SportDISCUS and AMED) were searched from incep-
tion up to Nov 1st 2021. No language limits were placed. 
Search terms were mapped to three main concepts; (i) 
Magnetic resonance imaging, (ii) lateral hip muscles 
(i.e., TFL, gluteus maximus, gluteus medius and gluteus 
minimus) and, (iii) muscle morphology and composi-
tion (i.e. muscle size and fatty infiltration). Synonyms 
within each concept were mapped to subject headings, 
where possible, or searched under title, abstract and/or 
keywords. Results within each concept were combined 
with ’OR’ and between concepts combined with "AND" 
(Additional file 1).

The search strategy was modified according to the 
specifications of each database. Manual citation track-
ing and reference checking of included articles was per-
formed. Ahead of print lists of journals included in the 
study were screened for additional studies. Grey litera-
ture, such as internal reports and conference proceed-
ings, were searched for further eligible studies.

Titles and abstracts of studies retrieved from the data-
bases, as well as those identified from reference-checking 
and citation-tracking, were screened for eligibility by two 

Keywords:  Hip muscles, Magnetic resonance imaging, Muscle morphology, Muscle fat infiltration, Manual 
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reviewers (ZP and CS). Any disagreements in the eligi-
bility of a study were discussed and a consensus reached 
with the aid of a third reviewer (AS). The final yield was 
exported into Covidence online software (www.​covid​
ence.​org) for eligibility screening against inclusion and 
exclusion criteria.

Inclusion/exclusion criteria
Studies with participants of any age and either healthy or 
musculoskeletal pain populations were included. People 
with cancer, neuromuscular and neurological conditions, 
were excluded as well as those undergoing cosmetic sur-
gery. All MRI investigations which assessed lateral hip 
muscle size and/or fatty infiltrate were included. Stud-
ies were excluded if muscles were assessed as a group 
rather than reported individually (e.g., gluteals) and if 
using other imaging modalities (e.g., ultrasound) without 
comparison to MRI. In line with previous publications 
establishing regions of interest in axial images [5, 31, 35], 
studies using axial MRI slices for size and fatty infiltration 
measures were included. All published peer-reviewed 
studies were included; opinion pieces/editorials, system-
atic reviews, narrative reviews, conference abstracts and 
single case studies were excluded.

For our secondary aim, axial MRI images were com-
pared to E12 anatomical plastinate sections at corre-
sponding anatomical levels to illustrate differences, and 
thus identify regional morphology. The E12 anatomical 
plastinate sections used in this study are part of the anat-
omy collection, in the WD Trotter Anatomy Museum at 
the University of Otago. Approval to use images of the 
E12 plastinate sections was granted by the Department of 
Anatomy, University of Otago. Digital photographs were 
acquired of selected E12 specimens that were appropriate 
for the anatomical regions included in this study.

Risk of bias (quality) assessment
The primary aim of this review was to report MRI meth-
ods rather than individual study results. As such, and 
in line with the PRISMA extension for scoping reviews 
(PRISMA-ScR) checklist [34, 36], a risk of bias assess-
ment was not conducted.

Data extraction
A standardised data extraction form was used to extract 
data relating to the individual study characteristics (study 
purpose, design [37], population, sample size). Coun-
tries and institution affiliations of corresponding author 
were recorded. Details on MRI parameters (e.g. scanner 
field strength, manufacturer, MRI sequence, slice selec-
tion & thickness), specific lateral hip muscles assessed, 
and details of size (volume and CSA) and fatty infiltration 
outcomes were collected by two authors (ZP and NF). 

Any discrepancies were discussed between authors and 
conflicts resolved by a third author (AS) if required.

Intraclass correlation coefficient (ICC) and the kappa 
coefficient (k) statistic are frequently used as a measure 
of intra- and inter-rater reliability and were collected 
to assess consistency of the MRI methodology between 
included studies [38, 39]. ICC values were interpreted as 
values less than 0.5 as poor reliability, 0.5 -0.75 as mod-
erate reliability, 0.75 -0.9 as good reliability, and values 
greater than 0.90 as excellent reliability [38]. Kappa coef-
ficient were interpreted as values ≤ 0.20 as none to slight, 
0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as 
substantial, and 0.81–1.00 as almost perfect agreement 
[40]. Other measures of reliability were not collected.

Analysis/ synthesis
Descriptive statistics were used to summarize find-
ings across studies for MRI parameter and anatomical 
locations for regions of interests. Data for muscle size 
were grouped into volume and CSA. Fatty infiltration 
measures were grouped into qualitative and quantita-
tive methods. Qualitative measures could include the 
Goutallier classification system [41], which grades mus-
cle according to the relative amount of fatty tissue that is 
present, progressing from 0 (regular muscular tissue, no 
intramuscular fat) to 4 (more fat than muscle), and the 
Quartile classification [42] which also adopts a 5-step 
grading system (0%, 25%, 50%, 75% or 100%) to define 
the percentage of fatty tissue that is present. Quantitative 
measures could include various calculations incorporat-
ing fat-value pixels.

Anatomical levels for measuring CSA and fatty infil-
tration were collected. When a single anatomical level 
contained multiple anatomical features, the most eas-
ily identifiable and distinguishable anatomical feature 
on axial MRI slice was extracted. Axial MRI DIXON 
sequence images and E12 anatomical plastinate sections 
were cross referenced. Anatomical levels were compared 
on a 3D MRI image.

Results
The initial search identified 2,684 studies, from which 
1,614 duplicates were removed with a further 813 
removed after title and abstract screening. An additional 
176 were removed following full text screening, which 
resulted in 78 studies from 81 publications that met the 
inclusion criteria (Additional file 2 and 3).

Trends in publication of MRI studies: 1992 to 2020
Frequency of publication of MRI studies has increased 
steadily since 1992, growing from one study [43] to 12 
in 2020 [44–55] (Fig.  1A). Across the included studies, 
17 countries were represented: Australia (n = 16), Japan 

http://www.covidence.org
http://www.covidence.org
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(n = 11), Germany (n = 10), USA (n = 10), United King-
dom (n = 7), Switzerland  (n=5), Finland (n = 4), France 
(n = 3), Netherlands (n = 3), Spain (n = 3), China (n = 2), 
Turkey (n = 2), Canada (n = 1), New Zealand (n = 1), 
Norway (n = 1), Poland (n = 1). Twelve institutions fea-
tured across two studies, and four institutions featured 
in more than two studies (Charité University Medicine, 
Germany n = 9 [42, 56–62]; La Trobe University, Aus-
tralia [19, 21, 22, 63] n = 4, Royal National Orthopaedic 
Hospital, UK n = 3; The University of Queensland, Aus-
tralia n = 3 [23, 24, 63]) A range of study designs were 
used including nine randomised controlled trials, 33 pro-
spective cohort, 10 retrospective cohort, 15 case–control 
and 10 case series study designs (Fig. 1B).

Patient and non‑patient populations
Twenty-three studies across 25 publications investigated 
hip related musculoskeletal pain (e.g., hip osteoarthritis, 
lateral hip pain and intra-articular hip joint pathologies) 
(Fig.  1C). Three studies examined non-hip related mus-
culoskeletal pain which included low back pain [64, 65] 
and patellofemoral joint osteoarthritis [66]. Twenty-nine 
studies, across 33 publications, used healthy compari-
son groups and 26 studies explored one of three surgical 

presentations (i.e., total hip arthroplasty, hip arthroscopy 
and surgical correction for hip dysplasia) (Fig. 1C). Glu-
teus medius was the most frequently assessed lateral hip 
muscle (Fig. 1D). Fifty-four studies measured muscle size 
and 40 studies investigated fatty infiltration (Table 1).

Measurement of muscle size and quality
Thirty-six studies reported the profession of the 
individual(s) interpreting MRIs and calculating size and 
fatty infiltration measures. The most frequently cited 
professionals were radiologists (31 studies) with 15 stud-
ies reporting radiologists with further training in mus-
culoskeletal presentations. Other health professionals 
included orthopaedic surgeons and physiotherapists. Ten 
studies [44, 65, 67–74] reported years of experience for 
those who interpreted the MRIs, which ranged from 1 to 
28 years.

ICC or kappa scores were reported in 33 studies (42%). 
For size measures, ICC scores reflected moderate to 
excellent reliability, with data ranging from 0.75 to 1.00 
for intra-reliability and 0.70 to 0.99 for inter-reliability. 
Fatty infiltration ICC values indicated moderate to excel-
lent reliability with scores ranging from 0.75 to 0.99 for 
intra-rater reliability and 0.70 to 0.99 for inter-rater 

Fig. 1  Individual study characteristics: A Publication year of individual studies B Individual study designs C Populations used across individual 
studies D Lateral hip muscles assessed across individual studies * Incomplete year (January to November’01); RCT Randomised control trial, Msk 
musculoskeletal
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Table 2  Volume measurement outcomes for individual studies

Citation Muscle segmentation:
Manual/ automatic

Volume
Full/partial

Software used Equation

Ackland et al. 2019 [66] Semi-automatic Full
(excl. fat)

Amira FEI
(V 5.3.3, FEI Visualization Sciences 
Group)

Estimated from CSAs, multiplied 
by slice thickness, normalised to 
body weight

Amabile et al. 2017 [104] Manual Full Imaging software developed by 
researchers’ institution

“Volume” was normalized to 
subject height

Belzunce et al., 2020 [52] Automatic
&
Manual

Partial
(excl. top & bot-
tom extremes, 
& fat)

Simpleware ™

(V 2018.12, ScanIP)
Estimated from CSAs

Belzunce et al., 2021 [91] Automatic Full Simpleware ™

(V 2020.6, ScanIP)
Estimated from CSAs, normalised 
to body weight

Cowan et al., 2019 [19] Manual Full 3D-DOCTOR
(Able Software Corp.)

Estimated from CSAs, multiplied 
by slice thickness

Dorado 2020 et al., 2020 [51] Manual Full Slice O’matic
(V 4.3, Tomovision Inc)

Estimated from CSAs

Flack et al., 2012 [73] Semi- automatic Full
(excl. fat)

OsiriX package
(V 2.7.5)

Estimated from CSAs, multiplied 
by slice thickness

Franettovich Smith et al., 2017 
[135]

Manual Full OsiriX package
(V 5.7)

Estimated from CSAs, multiplied 
by slice thickness

Grimaldi et al., 2009a [23]
Grimaldi et al., 2009b [24]

Manual Full Osiris package
(V 4.19)

Estimated from CSAs, multiplied 
by slice thickness

Handsfield et al.,2014 [105] Manual Full Software written in Matlab
(The Math works Inc.)

Estimated from CSAs with nor-
malised to body mass & height

Homma et al., 2019 [107] Manual Full ZedHip
(Lexi Co., Ltd.)

Estimated from CSAs, multiplied 
by slice thickness

Jaegers et al., 1992 [43]
Jaegers et al., 1995[124]

Manual Full Obex
(Cerebrum)

Estimated from CSAs

Koch et al., 2021 [26] Manual Partial ITK‐Snap Software
(V 3.6)

Estimated from CSAs

Kubo et al., 2019 [126] Manual Full Osirix package
(DICOM image analysis)

Estimated from CSAs, multiplied 
by slice thickness

Loureiro et al., 2018 [76] Semi-automatic Full Mimics Estimated from CSAs

Makridis et al., 2014 [127] Manual Full NR Estimated from CSAs, multiplied 
by slice thickness

Marcon et al., 2016 [89] Semi-automatic Full (excl. artifacts) Myrian 1
(Intrasense)

Estimated from CSAs

Mastenbrook et al., 2017 [128] Semi-automatic Full Analyze 11.0
(AnalyzeDirect, Inc.)

Estimated from CSAs

Miller et al., 2020 [50] Manual Full DICOM software
(V 2.2.0, Horos)

Estimated from CSAs, multiplied 
by slice thickness, normalised to 
body mass

Miokovic et al., 2011 [62] Manual Full ImageJ
(V 1.38x)

Estimated from CSAs

Montefiori et al., 2020 [55] Semi-automatic Full Mimics
(V 20.0, Materialise)

Estimated from CSAs

Reito et al., 2016 [131] Manual NR NR “Muscle atrophy was assessed 
as a decrease in volume and 
the appearance of fatty change 
relative to the contralateral, non-
operated side.”

Rothwell et al., 2019 [132] Manual Full OsiriX Lite
(V 8.0.1, Pixmeo)

Estimated from CSAs, multiplied 
by slice thickness, normalised to 
body mass & height

Sakamaki et al., 2011 [133] Manual Full NR Estimated from CSAs, multiplied 
slice thickness

Semciw et al., 2016 [63] Manual Full Sante DICOM Editor (Santesoft) Estimated from CSAs, multiplied 
slice thickness
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reliability. However kappa coefficient scores were only 
performed for fatty infiltrate and demonstrated a greater 
variety of scores spanning from fair to almost perfect 
agreement among studies. Kappa scores ranged from 
0.72 to 0.93 for intra-rater and 0.23 to 0.94 for inter-rater 
reliability (Table  2). No study reported scan to rescan 
reliability.

MRI parameters
The MRI parameters of all studies are summarised in 
Table  1. Two MRI field strengths were reported, 1.5 
Tesla and 3 Tesla. A wide range of MRI sequences were 
used across the studies, with many incorporating several 
sequence types, both T1- and T2-weighted, with and with-
out fat suppression. Slice thickness ranged from 0.5 mm to 
15 mm, with 16 studies (20.3%) not reporting slice thick-
ness. Acquisition time ranged from 2  h 32  min [75] to 
1 min 29 s [76].

All studies that reported patient positioning specified 
a supine position with legs extended and hips in neutral, 
except three studies [45, 62, 77] that used pillows under the 
knees for comfort, and two studies [44, 46] placing the hips 
into internal rotation.

Muscle size measures
Lateral hip muscle volume was measured in 31 studies 
and CSA was measured in 24 studies, (Tables 2 and 3). For 
volume measures, manual segmentation techniques were 
most frequently used (77.4%) compared to automated. For 
CSA, all studies used manual segmenting techniques.

Volume measurement outcomes
Whole muscle volume was calculated for 28 studies 
(90.3%), while two [26, 52] measured partial muscle vol-
ume. To calculate volume, all studies incorporated sums 

of CSA estimates. Seventeen (54.8%) studies also incorpo-
rated slice thickness and five (16.1%) normalised calcula-
tions to either individual height or mass (Table 2).

Cross‑sectional area measurement outcomes and axial 
anatomical slice location
Five studies calculated CSA from multiple slices either by 
using the mean derived from several consecutive slices or 
assessing CSA at two predetermined locations (Table 3). 
Single axial slices were chosen at a pre-determined ana-
tomical locations for all other studies except for two 
studies [78, 79], which measured at the single slice with 
the greatest CSA for the individual muscle.

Seven anatomical levels were identified as locations 
where CSA can be measured for the lateral hip mus-
cles (Figs. 2, 3 and 4). These include i) anterior superior 
iliac spine (ASIS) [59, 80, 81] ii) half way between the 
iliac crest and the superior tip of the greater trochanter 
[67] iii) anterior inferior iliac spine (AIIS) [59] iv) upper 
border of the acetabulum [46, 82, 83] v) superior tip of 
the greater trochanter [45, 70, 77, 84–87] vi) lower bor-
der of the acetabulum [25, 82, 83] and vii) lesser tro-
chanter [57, 81].

When comparing MRI images to E-12 anatomical plas-
tinates (Figs.  3 and  4), the E-12 anatomical plastinates 
provide better visualisation of muscle borders. At levels 
AIIS and the upper border of the acetabulum, the mus-
cle borders between gluteus medius and piriformis are 
better visualised on the E-12 anatomical plastinates with 
detail of individual muscle fibre directions demarcating 
the individual muscles (Fig. 5). For levels at superior tip 
of greater trochanter and below, the TFL border is bet-
ter visualised on the E-12 anatomical plastinates against 
neighbouring muscle borders including the gluteus 
medius and rectus femoris.

CSA Cross Sectional Area, Excl. Excluding, GMax Gluteus Maximus, NR Not Reported, V Version

Table 2  (continued)

Citation Muscle segmentation:
Manual/ automatic

Volume
Full/partial

Software used Equation

Skorupska et al., 2016 [65] Manual Full ITK-SNAP
(V 2.2.0)

Estimated from CSAs, multiplied 
by slice thickness

Springer et al., 2012 [59] Manual Full Vitrea 2
(V 4.1.2.0)

Estimated from CSAs

Sugisaki et al., 2018 [106] Manual Full OsiriX
(V 2.4)

Estimated from CSAs, multiplied 
by slice thickness, normalised to 
body mass

Tran et al., 2021 [121] Manual Full The MathWorks, Inc., Natick, MA, 
United States

Estimated from CSAs, multiplied 
by slice thickness

Winkler et al., 2018 [61] Manual Full PACS workstation
OsiriX

Estimated from CSAs

Zacharias et al., 2016 [22]
Zacharias et al., 2018 [21]

Manual Full
(excl. fat)

Sante DICOM editor Estimated from CSAs, multiplied 
by slice thickness
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Table 3  Cross sectional area measurement outcomes for individual studies

CSA Cross Sectional Area, TFL Tensor Fascia Latae, Gmax Gluteus maximus, GMed Gluteus Medius, GMin Gluteus Minimus, NR Not Reported, V Version

Citation Muscles Manual/ automatic Single/multiple slice Software used

Arokoski et al., 2002 [82] TFL
GMax
GMed
GMin

Manual Single slice NR

Emery et al., 2019 [86] TFL Manual Multiple
CSA measured for four consecutive slices and 
mean was used

DICOM

Homma et al., 2019 [107] GMax
GMed

Manual Multiple
CSA measured at two anatomical levels

ZedHip
(Lexi Co., Ltd.)

Kawasaki et al., 2017 [75] TFL
GMed
GMin

Manual Single slice NR

Kivle et al., 2018 [67] GMed
GMin

Manual Single slice PACS Sectra
(V 16)

Malloy et al., 2019 [25] TFL
GMax
GMed
GMin

Manual Single slice Picture archiving and communication system 
workstation software

Masuda et al., 2003 [78] GMax
GMed
GMin

Manual Single slice
The maximum CSAs

Public domain imaging software package
(NIH image)

Mendis et al., 2014 [77] TFL Manual Multiple
Mean CSA was measured from 3 consecutive 
slices

Image J
(V 1.43u)

Mendis et al., 2016 [64] GMed
GMin

Manual Multiple
Mean CSA was measured from 3 consecutive 
slices

Image J
(V 1.4)

Mendis et al., 2020 [45] GMax
GMed
GMin

Manual Multiple
Mean CSA was measured from 3 consecutive 
slices

Image J
(V 1.43u)

Niinimäki et al., 2016 [129]
Niinimäki et al., 2019 [130]

GMax Manual Single slice Osirix program

Peiris et al., 2020 [46] GMax
GMed
GMin

Manual Single slice Osirix program

Rodriguez-Roiz et al., 2017 [70] TFL Manual Single slice NR

Springer et al., 2012 [59] GMed
GMin

Manual Single slice Vitrea 2
(V 4.1.2.0)

Sutter et al., 2013 [85] TFL
GMax
GMed
GMin

Manual Single slice NR

Takada et al., 2018 [80] TFL
GMed

Manual Single slice ImageJ software (National Institute of Mental 
Health)

Takada et al., 2021 [81] TFL
GMed
GMin

Manual Single slice ImageJ software (National Institute of Health, 
USA)

Takahashi et al., 2019 [79] GMax
GMed
GMin

Manual Single slice
Maximum CSAs

ImageJ software (National Institute of Health)

Tesch et al., 2005 [88] GMax Manual Single slice Computerized planimetry

Unis et al., 2013 [87] TFL Manual Single slice NR

Yang et al., 2021 [83] TFL
GMax
GMed
GMin

Manual Single slice ImageJ software
(National Institutes of Health)

Yasuda et al., 2014 [84] GMax Manual Single slice SliceOmatic software (Tomovision Incorporated)

Yuksel et al., 2009 [134] TFL
GMax

Manual Single slice NR

Zhao et al., 2020 [47] TFL NR Single slice NR
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Some same slice locations were described in multiple 
ways as these levels contained multiple identifying fea-
tures. For example the slice location at the level of the tip 
of the greater trochanter (level vi) is consistent with the 
level described as the centre of the femoral head [70, 85, 
86], and the level where the femoral head has the greatest 
CSA [45], depending on slice thickness. Other slice loca-
tions were at a pre-set distance from an anatomical fea-
ture including 20 mm distal to the proximal aspect of the 
femoral head [88] for gluteus maximus and 15 mm from 
the superior margin of the acetabulum [75] for gluteus 
medius and minimus.

Intramuscular fatty infiltration measurement outcomes 
and axial anatomical slice location
Forty studies measured intra-muscular fatty infiltration 
(Table  4). Qualitative measures of fatty infiltrate were 
used by 30 studies with the Goutallier classification being 
the most frequently used. Quantification methods, using 
a ratio of pixel intensity from fat and water images were 
used by 10 studies. This technique has become more uti-
lised over recent years.

Gluteus medius and/or gluteus minimus were fur-
ther divided into compartments in 11 studies. Gluteus 

medius was divided into three equal compartments 
(anterior, middle and posterior) by nine studies and two 
equal compartments (anterior, posterior) by one study. 
Similarly, gluteus minimus was divided into three equal 
compartments (anterior, middle and posterior) by seven 
studies and into two equal parts (anterior and posterior) 
by two studies. The TFL and gluteus maximus were not 
divided into compartments for intramuscular fatty infil-
tration measurement.

Six anatomical levels were identified as locations for fatty 
infiltration measurement of the lateral hip muscles (Fig. 6). 
Two levels were identified for TFL, four levels were iden-
tified for gluteus maximus, gluteus medius and gluteus 
minimus muscles. Four studies [53, 89–91] described quan-
titative measures of fatty infiltration for whole muscle.

Tensor fascia latae
The two anatomical levels for TFL fatty infiltration assess-
ment included the superior tip of the greater trochanter 
[85, 87] and the lesser trochanter [75, 80, 81]. The level at 
the greater trochanter was consistent with other anatomi-
cal features including the centre of the femoral head [85] 
and the fovea capitis [19, 21, 22]. The ischial tuberosity was 

Fig. 2  3-D representation of anatomical levels for CSA measurement; 1- Anterior superior iliac spine; 2- ½ way from iliac crest and greater 
trochanter; 3-Anterior inferior iliac spine; 4- Upper border of acetabulum; 5- Superior tip of greater trochanter; 6- Lower border of acetabulum; 
7- Lesser trochanter; IC- Iliac crest, GT- Greater trochanter
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described in one study [92] and can span multiple slices. 
The greatest axial CSA was described in one study [93].

Gluteus maximus
The four levels for gluteus maximus fatty infiltration 
assessment are i) the distance at one third the distance 
from the iliac crest to the superior tip of the greater tro-
chanter [19] ii) greater sciatic foramen (superior most 
part) [19, 21, 22, 42] iii) two thirds the distance from the 
iliac crest to the superior tip of the greater trochanter 
[19] iv) the superior tip of the greater trochanter [19, 94]. 
The level where the femoral head has a round configura-
tion [74] and where it has the greatest circumference [19] 
was deemed similar to the level at the greater trochanter.

Gluteus medius and minimus
Gluteus medius and gluteus minimus were frequently 
assessed individually at the same level within a study. 
The four levels for gluteus medius and gluteus minimus 

Fig. 3  Axial DIXON sequence MRI and E-12 anatomical plastinate 
comparison at anatomical levels for cross sectional area 
measurement above the hip joint. A At the level of anterior superior 
iliac spine B Halfway between the iliac crest and the superior tip of 
the greater trochanter C Anterior inferior iliac spine; square dotted 
box surrounds enlarged morphological region of interest (Fig. 4); 
1- gluteus minimus; 2- gluteus medius; 3- gluteus maximus; 4- TFL; 
5- ilium; 6- iliacus; 7- psoas major; 8- rectus abdominis

Fig. 4  Axial DIXON sequence MRI and E-12 anatomical plastinate 
comparison at anatomical levels for cross sectional area 
measurement. A upper border of the acetabulum B superior tip of 
the greater trochanter C lower border of the acetabulum D lesser 
trochanter; 1- gluteus minimus; 2- gluteus medius; 3- gluteus 
maximus; 4- TFL; 6- iliacus; 9- acetabulum; 10- piriformis; 11- iliopsoas; 
12- sartorius; 13-rectus femoris; 14- femoral head; 15- greater 
trochanter; 16- lesser trochanter; 17- vastus lateralis; 18- pectineus; 
19- adductor brevis; 20- adductor magnus; 21- quadratus femoris
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fatty infiltration assessment are i) the distance at one 
third the distance from the iliac crest to the superior tip 
of the greater trochanter [19, 67, 69, 85, 93] ii) anterior 
superior iliac spine [80, 81] iii) greater sciatic foramen 
(superior most part) [19, 21, 22, 42] and iv) two thirds 
the distance from the iliac crest to the superior tip of 
the greater trochanter[19, 56–58, 67, 69, 85, 93, 95].

Other levels described included pre-determined dis-
tances from anatomical features and included 15  mm 
superior to the upper margin of the acetabulum [75], 
three and six slices proximal to greater trochanter with 
slice thickness set at 6  mm [60], 30  mm proximal to 
greater trochanter [61]. Descriptions of levels that could 
span multiple axial slices included the level of the ace-
tabulum [75, 94] and the ipsilateral sacroiliac joint [96].

Machine learning
Overall machine learning was incorporated in 16 (20.3%) 
of the studies. For size measures, eight (25.8%) studies 
reporting volume either used automatic or semi-auto-
matic tracing methods while no study reporting CSA 
incorporated machine learning. For fatty infiltration, 10 
(25.0%) studies used machine learning to identify and 

quantify water and fat value pixels within regions of 
interest.

Discussion
This scoping review aimed to define standardised MRI 
methods for assessing lateral hip muscle size and fatty 
infiltration. When measuring size and fatty infiltration, a 
lack of detail and heterogeneity in reporting MRI param-
eters highlights the need for a consistent approach to 
reporting methods in future MRI research. We report 
seven identifiable anatomical locations for measurement 
of lateral hip muscle CSA and six identifiable anatomi-
cal locations for fatty infiltration at single slice measure-
ment. We also identified new and emerging technology 
in machine learning for automated muscle segmentation 
techniques for size and fatty infiltration measures.

MRI acquisition parameters and methodology
MRI parameters determine the quality of images that 
can influence the results of a study. The use of heteroge-
nous MRI parameters, as found in this review, can com-
plicate comparisons and future pooling of data between 
studies. Global, multi-centred collaborations aimed to 
provide MRI protocol consensus have been undertaken 
for other body regions and could be developed around 
the hip and pelvis with the aim of reducing the large 
variability in imaging parameters and wasted time on 
pilot research [97].

Measurement
Previous studies have examined the influence of rater’s 
experience in reading and interpreting MRI [98, 99]. In 
this review, radiologists were most frequently cited pro-
fessionals reading and interpreting results, with some 
studies specifying musculoskeletal radiologists to reflect 
greater experience in musculoskeletal presentations. 
Previous research has demonstrated MRI to be reliable 
for muscle size and fatty infiltration measures [6, 100]. 
Although the majority of studies, reporting ICC or kappa 
scores, stated good to excellent reliability, some stud-
ies reported fair to moderate reliability. One study [59] 
assessing size measures in a total hip arthroplasty popu-
lation found poor reliability for measuring gluteus mini-
mus size with analysis limited by prosthesis artifacts and 
poor visualisation. To overcome this limitation specific 
MRI techniques have since been developed for improv-
ing imaging around and near metal [101–103]. There 
also remains a large proportion of studies that did not 
report on reliability measures. This may reflect report-
ing bias, since poor scores would be less likely reported, 
and potentially inflate our estimate of reliability across 
the body of literature. It is recommended that future 
studies continue to measure and report reliability of 

Fig. 5  Enlarged region of interest at the level of anterior inferior 
iliac spine. A Axial DIXON sequence MRI B E-12 anatomical 
plastinate C Schematic illustration; round circle indicates feature 
of interest; Red line- gluteus minimus; Green line- gluteus medius; 
Dashed red line- partition between gluteus medius and piriformis; 
Dashed grey line- partition between gluteus maximus with both 
gluteus medius and piriformis; Red circle- highlights angles between 
partitions to help identify separation between piriformis and gluteus 
medius; Blue line- scale bar represents relative scale between images
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Table 4  Fatty infiltration measurement outcomes for individual studies

Citation Fat Infiltration 
Qualitative/Quantitative
Classification system

Divided into compartments
Yes/No

Agten et al., 2017 [68] Qualitative
G

N

Belzunce et al., 2020 [53] Quantitative
Ratio of muscle and fat value pixels

N

Belzunce et al., 2021 [91] Quantitative
Ratio of muscle and fat value pixels

N

Berber et al., 2015 [122] Qualitative
similar to G

N

Bravo et al., 2013 [90] Quantitative
Skeletal muscle lipid concentration (g /100 mL)

N

Bremer et al., 2011 [93] Qualitative
Similar to G

Y
Gmed & Gmin: AMP

Burian et al., 2020 [54] Quantitative
Using a water-fat separation algorithm

N

Chi et al., 2015 [72] Qualitative
G

N

Cowan et al., 2019 [19] Qualitative
G

Y
Gmed & Gmin: AP

De Anta-Diaz et al., 2016 [94] Qualitative
Grade 1: no fat or mild atrophy
Grade 2: moderate or severe fatty atrophy

N

Ebert et al., 2019 [71] Qualitative
G

Y
Gmed & Gmin: AMP

Engelken et al., 2014 [42] Qualitative
G & Q

N

Kawasaki et al., 2017 [75] Qualitative
Q

N

Kheterpal et al., 2020 [44] Qualitative
G & Q

N

Kim et al., 2014 [74] Qualitative
Similar to G

N

Kivle et al., 2018 [67] Qualitative
G

Y
Gmed & Gmin: AMP

Klemt et al., 2021 [120] Qualitative
G & Q & Bal and Lowe classification

N

Koch et al., 2021 [26] Quantitative
Pixel intensity values from the fat only images and the water only images
Muscle fat index = fat/(fat + water)

Y
Gmed: AMP
Gmin: AP

Kovalak et al., 2018 Qualitative
G

N

Makridis et al., 2014 [127] Qualitative
G

N

Marcon et al., 2016 [89] Quantitative
Fat Signal Fraction % = 100 × fat /(water + fat)

N

Muller et al., 2010 [56] Qualitative
G

Y
Gmin: AMP

Muller et al., 2011a[58] Qualitative
G

Y
Gmed & Gmin: AMP

Muller et al., 2011b [57] Qualitative
G

Y
Gmed & Gmin: AMP

Peiris et al., 2020 [46] Qualitative
Grade 0: no fat infiltration
grade 1: 1–10% fat infiltration
grade 2: 11–50% fat infiltration
grade 3: > 50% fat infiltration

N



Page 21 of 27Perraton et al. BMC Musculoskeletal Disorders          (2022) 23:533 	

measurement to help guide and update the development 
of standardised MRI methods.

Size measures
Seven single level axial slices were identified that pro-
vided consistent CSA measurement, including three 
for both gluteus maximus and TFL, and four for both 
gluteus medius and minimus. There was no consensus 
on which axial slice best represents size and/or loca-
tion where size changes are most likely to occur. E-12 
anatomical plastinates did make visualisation of muscle 
borders clearer, particularly around neighbouring glu-
teus medius and piriformis, TFL and gluteus medius 
and TFL and rectus femoris. The use of E-12 anatomi-
cal plastinates in understanding and defining muscle 
borders at certain single level slices can aid future stud-
ies to correctly trace muscle borders and could help 

develop more accurate automatic, machine learning 
techniques.

Anatomical slice levels used in some of the included 
studies, where located at the very proximal or distal 
insertions of the target muscle which may not be rep-
resentative of the muscle’s overall size. For example, the 
level of the anterior superior iliac spine for gluteus mini-
mus measurement may not be the best representation 
for size as the muscle may not even appear at this level 
in some individuals. Interestingly, four studies [66, 104–
106] reported size measurements from maximum CSA 
for individual muscles. This is supported by a recent 
study [107] in healthy individuals, which compared 
greatest CSA and volume and found a positive correla-
tion for gluteus maximus and gluteus medius muscles. 
However greatest CSA may be quite different between 
individuals, pathologies and across studies. It is unclear 

Table 4  (continued)

Citation Fat Infiltration 
Qualitative/Quantitative
Classification system

Divided into compartments
Yes/No

Pfirrmann et l., 2005 [69] Qualitative
G

Y
Gmed & Gmin: AMP

Ruckenstuhl et al., 2020 [49] Qualitative
G

N

Rykov et al., 2021 [92] Qualitative
G

N

Sutter et al., 2013 [85] Qualitative
G

N

Takada et al., 2018 [80] Qualitative
G

N

Takada et al., 2021 [81] Qualitative
G

N

Thaunat et al., 2018 [96] Qualitative
G

Y
Gmed: AMP

Tran et al., 2021 [121] Quantitative
Intramuscular lipid concentration

N

Unis et al., 2013 [87] Qualitative
Presence/absence

N

Vasarhelyi et al., 2020 [48] Quantitative
Muscle/fat intensity scores

N

von Roth et al., 2014 [60] Quantitative
% fat content: “…the quotient of the number of fat-value-pixels and the number of 
fat-value-pixels added to the number of muscle-value pixels.”

Y
Gmed: AMP

Winkler et al., 2018 [61] Quantitative
% fat content = ratio of pixels of fat-value and muscle value pixels

N

Zacharias et al., 2016 [22]
Zacharias et al., 2018 [21]

Qualitative
G

N

Zhao et al., 2020 [47] Qualitative
G

N

AMP equal Anterior, Middle and Posterior thirds, AP equally divided into Anterior and Posterior, FSF Fat Single Fraction, G Goutallier classification, Gmax Gluteus 
maximus, Gmed Gluteus medius, Gmin Gluteus minimus, GSF Greater Sciatic Foramen, GT Greater Trochanter, Ifat Mean signal fat intensity, Iwater Mean signal water 
intensity, N No, Q The Quartile classification, TFL Tensor Fascia Latae, Y Yes
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at what level CSA should be calculated for the lateral hip 
muscles.

Compared to CSA, volume has a stronger correla-
tion to muscle strength [12, 108], power [109], and 
can better reflect muscle size for the entire muscle 
in both healthy and musculoskeletal pain popula-
tions [7, 12]. Additionally assessing whole muscle, 
volume can better identify regions more susceptible 
to change and can inform most appropriate levels for 
CSA [7, 110]. For example in the thigh, after a bout of 
strength training in healthy individuals, muscle size 
changes have been observed in proximal portions of 
a muscle but not around distal portions [111]. Single 
CSA measures may therefore miss potential changes, 
depending on where measurements are taken. How-
ever compared to CSA, volume calculations can be 
more time consuming when manually derived. Sup-
ported by the results of this review, there has been 
an increase in interest and development of automatic 
calculations through machine learning. This increase 
will lead to greater availability of studies for future 
pooling of data.

Fatty infiltration
For assessment of fatty infiltration, six axial slice loca-
tions were identified including two for TFL, four for each 
of the gluteal muscles. There was no consensus which 
axial slice best represents fatty infiltration and/or loca-
tion where changes are most likely to occur. We found 
that 86% of studies measuring fatty infiltration used 
qualitative, five-point Likert scales, often at a single slice. 
The most frequent Likert scale used was the Goutal-
lier classification system [41]. All studies incorporating 
quantitative methods for fatty infiltration studies have 
been published within the last 10 years reflecting it as an 
emerging technique.

We feel it is important to quantify muscle fat across 
the entire length of the muscle. This will help to identify 
locations where muscle fat accumulates in symptomatic 
groups, how it compares to asymptomatic groups, and 
where interventions like exercise may have the greatest 
effect. For example, in a study by Koch et al. [26], muscle 
fat was quantified on every slice from proximal to distal, 
and normalised to muscle length. They found that exercise 
had a significant effect on reducing muscle fat of gluteus 

Fig. 6  3-D representation of anatomical levels for intramuscular fatty infiltration measurement; 1- 1/3rd from iliac crest and greater trochanter; 
2- Anterior superior iliac spine; 3- Greater sciatic foramen; 4- 2/3rd from iliac crest and greater trochanter; 5- GT; 6- Lesser trochanter; Aqua- TFL; 
Blue- Gluteus maximus; Green- Gluteus medius; Red- Gluteus minimus; IC- Iliac crest, GT- Greater trochanter
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minimus at the proximal portion of the muscle. If mus-
cle fat was only measured in the distal portion, then the 
authors may have falsely concluded that exercise had no 
effect on muscle fat. In other regions of the body, Craw-
ford and colleagues [112] have shown that the fat content 
at lumbar segment four (L4) best represents fatty infiltra-
tion measures that reflects the entire lumbar region in 
healthy participants. Further work is needed on the hip 
muscles to clarify if specific locations are representative of 
whole muscle changes.

In addition to the specific anatomical level of loca-
tion, recent cadaver and electromyography studies have 
identified different anatomical and functional regions 
within the lateral hip muscles [30, 113, 114]. These com-
partments or regions within the individual muscle may 
be uniquely impacted by specific movements or muscle 
actions, which has relevance in musculoskeletal pathol-
ogy. For example, some studies in this review divided the 
gluteus medius and minimus muscles into either three 
equal parts (anterior, middle and posterior) or two equal 
parts (anterior/posterior) while the gluteus maximus was 
divided into upper and lower portions. Investigation and 
understanding of muscle size and fatty infiltration within 
these functional regions and portions has the potential 
to guide future interventional studies. In spinal studies 
such divisions can allow for a more specific quantifica-
tion to map the spatial distribution of fat content, which 
is increasingly showing clinical relevance as a meaningful 
parameter [112, 115–118].

MRI advances
Manual tracing techniques were used for the majority of 
size studies but can be time consuming, involving several 
hours per participant. Recent advances in MRI technol-
ogy include the development of automated tracing tech-
niques through machine learning [52]. Machine learning 
for muscle tracing as well as for automatic fatty infiltra-
tion calculation has shown to be reliable and accurate in 
other regions [119]. Automated analysis incorporating 
machine learning is more time efficient than manual trac-
ing, reducing analysis time from hours to seconds while 
still maintaining near human-level performance. However 
with limited valid and reliable automated methods, man-
ual methods for labelling muscles for size and fatty infil-
tration are currently the gold standard [52, 91]. However, 
machine learning has the potential to make the analyses 
of larger data sets more feasible, increasing the statistical 
power of future research and facilitating the translation 
of these measures to clinical practice. Although in their 
infancy, automated, machine learning methods around 
the lateral hip muscles have shown to provide reliable data 
for size and the ability to quantify fatty infiltration and 
will aid future research [26, 48, 52, 61, 91, 120, 121].

Limitations
This scoping review has limitations that should be 
considered. Firstly, this review focused on people with 
hip-related musculoskeletal pain and healthy popula-
tions, therefore the findings may not be generalisable 
to other populations such as those with neurologi-
cal or muscle disease. Secondly, we acknowledge that 
by focusing on hip-related pain and healthy popula-
tions, additional fatty infiltration classification sys-
tems described in other populations were not included 
in this review. Thirdly, in addition to low reporting of 
reliability results, multiple studies were from single 
institutions which may make overall methods seem 
more homogeneous. Therefore, caution should be 
taken when generalising our findings.

Lastly, we acknowledge that a quality assessment of 
individual studies was not conducted. This is optional 
when undertaking a scoping review [34]. Reporting 
study quality would have a greater impact on describing 
the risk of bias of outcomes, rather than informing our 
understanding of muscle size and fat measures, which 
was the primary aim of this review.

Conclusion
Whilst no consistency was found for which anatomi-
cal location(s) is(are) most appropriate and clinically 
meaningful to measure lateral hip muscle size and fatty 
infiltration, we report several identifiable anatomical 
levels for single axial slice muscle size and fatty infil-
tration. Further studies into whole muscle measures are 
required before strong recommendations can be made 
about the most suitable anatomical locations for stand-
ardised MRI single slice muscle measures and within 
muscle regions susceptible to change. Whilst auto-
mated machine learning technology is rapidly emerg-
ing with associated improvements in time efficiency, 
widespread implementation remains a challenge. 
Accordingly, there remains a need to optimise man-
ual segmentation. Overall, the findings of this scoping 
review will assist in the future establishment of a stand-
ardised method for examination of and measurement 
for lateral hip musculature using MRI.

Implications
Establishing a standardised method for MRI assess-
ment of lateral hip muscles will contribute to greater 
understanding of muscle size and fatty infiltration for 
people with musculoskeletal conditions and the devel-
opment of standardised MRI protocols. The findings 
of this scoping review will inform research in other 
clinical populations such as people with neuromuscu-
lar disease.
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