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Experimental demonstration of highly reliable
dynamic memristor for artificial neuron and
neuromorphic computing

See-On Park® "2, Hakcheon Jeong® "2, Jongyong Park'2, Jongmin Bae' & Shinhyun Choi® 1

Neuromorphic computing, a computing paradigm inspired by the human brain, enables
energy-efficient and fast artificial neural networks. To process information, neuromorphic
computing directly mimics the operation of biological neurons in a human brain. To effec-
tively imitate biological neurons with electrical devices, memristor-based artificial neurons
attract attention because of their simple structure, energy efficiency, and excellent scalability.
However, memristor's non-reliability issues have been one of the main obstacles for the
development of memristor-based artificial neurons and neuromorphic computings. Here, we
show a memristor 1R cross-bar array without transistor devices for individual memristor
access with low variation, 100% vyield, large dynamic range, and fast speed for artificial
neuron and neuromorphic computing. Based on the developed memristor, we experimentally
demonstrate a memristor-based neuron with leaky-integrate and fire property with excellent
reliability. Furthermore, we develop a neuro-memristive computing system based on the
short-term memory effect of the developed memristor for efficient processing of sequential
data. Our neuro-memristive computing system successfully trains and generates bio-medical
sequential data (antimicrobial peptides) while using a small number of training parameters.
Our results open up the possibility of memristor-based artificial neurons and neuromorphic
computing systems, which are essential for energy-efficient edge computing devices.
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rtificial neural networks (ANNs) have shown their

effectiveness in various fields such as autonomous cars,

finding new drugs, designing circuits, or predicting pro-
tein structures!~*. Powered by today’s elaborate complementary
metal-oxide-semiconductor (CMOS) based computing pro-
cessors, ANNs can accomplish highly complex tasks. However,
ANNSs running in a conventional von Neumann architecture
computer (e.g., graphics processing units (GPUs)) cannot reach
the efficiency of a biological neural network due to the bottleneck
of big data transfer>. To substitute the conventional ANNs,
neuromorphic computing hardwares, which imitate the operation
of the brain and the biological neural network, have been
extensively studied. The conventional CMOS-based neuro-
morphic hardware uses complex CMOS circuitry to imitate the
neuronal activity®. However, CMOS-based complex circuitry
limits scalability and increases energy consumption. Thus, it is
difficult to reach the efficiency of a biological neural network
using CMOS-based neuromorphic hardware”.

Memristors, instead of the CMOS-based circuit, have been
widely studied as a new candidate for neuromorphic hardwares.
Memristors are emerging memory devices that store informa-
tion in the form of the resistance by changing the internal
distribution of oxygen anions or metal cations®°. They are a
promising candidate for an artificial neuron devices for
neuromorphic hardwares because of their great scalability,
high energy efficiency, fast speed, small footprint, and simple
fabrication process. Previous studies have developed several
memristive artificial neurons and proved that memristors
are proper devices for efficient artificial neurons>710:11,
Short-term (volatile) memristors have been widely used to
represent a leaky-integrate and firing (LIF) property of a bio-
logical neuron, instead of being used for a synapse. Short-term
memristor-based artificial neurons have been used for various
neuromorphic computing systems such as neuro-memristive
computings and spiking neural networks (SNNs)10:12-14,

Despite these advantages, the current memristor-based artifi-
cial neuron has several limitations. Various studies have proven
the feasibility of memristor-based neurons by unambiguously
showing neuronal operations. Among them, diffusive memristors
(SiONy:Ag) or Mott memristors (NbO, or VO,) have been
extensively studied as artificial neuron devices”-1415, The diffusive
memristor type neurons are fast and have high on/off ratio, and
the Mott memristor type neurons have acceptable uniformity and
fast speed. However, the diffusive memristor type neurons have
uniformity issues, and the Mott memristor type neurons require a
large operation current (~mA) and have small on/off ratio. In
general, memristors usually suffer from large variation problems
and unreliable switching®%16. These reliability problems degrade
the memristor-based neuron’s characteristics and make it difficult
to build a large-scale memristor-based neuromorphic computing
hardware. Even though reliable memristors may exist, it is diffi-
cult to operate a memristor-based cross-bar array without other
components, such as selectors and transistors, because undesired
current paths, which are called sneak paths, hinder the reliable
read and set/reset operations in a memristor cross-bar array®. In
addition, the low on/off ratio increases the complexity of the
peripheral circuit that is needed to distinguish the small con-
ductance change of the memristor, and high current requirement
(~mA) increases energy consumption. To overcome these bot-
tlenecks, development of a new memristor that satisfies all of the
requirements is warranted.

Here, we propose a transistor-free 1R structure memristor
that consists of a metal oxide with gradual oxygen concentra-
tion that are fabricated in low-temperature environments for
a memristor-based artificial neuron and a neuro-memristive
computing system construction. We demonstrate that this

memristor performs with high yield in array form (~100%),
obtains self-rectifying behavior, has high temporal/spatial uni-
formity (1.39% and 3.87%, respectively), high endurance with-
out degradation (>10°), high speed (10 ps), high on/off ratio
(>2000), and uniform decaying time constant in the array.
Based on these ideal properties, we show that the developed
memristor-based artificial neuron possesses the leaky-integrate
and fire (LIF) characteristic, which is the key characteristic of a
biological neuron. The developed neuron has high spatio-
temporal uniformity, which is one of the essential features
for building a reliable memristor-based neuromorphic hard-
ware. In addition to the demonstration of the artificial neuron,
we build a neuro-memristive computing system by using the
memristors as leaky-integrate neurons. The developed neuro-
memristive computing system can deal with sequential
data, which can provide further complications compared
to temporal data processing. With the developed neuro-
memristive computing system, antimicrobial peptides (AMPs),
the anti-bacterial elements in the innate immune system, are
utilized. The neuro-memristive computing system trained by
AMP data successfully learns the complex amino-acid grammar
of AMPs and generates new AMPs.

Results
Characteristics of gradual TiO,-based memristor. The
memristive device with gradual TiOy layer is fabricated via an
anodizing process (see “Methods” section), as shown in Fig. 1a. The
device shows only a 1.39% temporal variation (o/p) during 125
consecutive DC cycles without current compliance (see Fig. 1b).
The I-V curve also shows that the device has a high rectifying ratio
of 10* and high on/off ratio larger than 103. This high rectifying
ratio (current at Vie,q/current at —V,.,q) prevents the selector-less
cross-bar array from the sneak path current problems (see Sup-
plementary Fig. 1), and the high on/off ratio (>103) reduces the
peripheral circuit burden to discriminate the conductance change,
which are the major bottlenecks in conventional memristor cross-
bar arrays. Because of the forming-free nature of the device, where
the forming process usually damages the devices’ performance!”?,
the device in the memristor cross-bar array achieves high endur-
ance of more than 10° cycles without any degradation of the
electrical performance (see Fig. 1c and Supplementary Fig. 2).
These forming-free and compliance current-free properties of
gradual TiO, memristors make the device more suitable for neu-
romorphic hardware in edge devices with simple circuit designs!$.
The gradual TiO, memristor shows exceptionally uniform resistive
switching with only a 3.87% spatial variation (o/pt) from 30 ran-
domly selected devices, as shown in Fig. 1d. The memristor device
also exhibits a low temporal variation of about 1.67% (o/p) during
50 cycles of 200 consecutive set pulses (4.5 V, 10 ps) and read pulses
(1.5, 100 ps) (see Fig. 1e). These results show the high uniformity
of the developed device, which has been a significant bottleneck for
various memristor devices. The uniform 40 ms time constant (1)
during the self-decaying process is also achieved with a low tem-
poral variation of 3.86% (o/p), which is one of the key points for a
reliable artificial neuron and neuro-memristive computing system.
Finally, all 400 devices from a 20 x 20 cross-bar array (see
Supplementary Fig. 3) are measured to show spatial uniformity
in terms of time constant and conductance change as a function
of the number of applied pulses. The uniformity of the decaying
time constants from a cross-bar array is shown in Fig. 1f. The
time constants measured from the 400 memristors are ~40 ms,
which is similar to the time constant calculated from the stand-
alone device shown in Fig. le. This means that all the devices in
an array operate uniformly, and due to the self-rectifying
behavior, the read process is not disturbed by the sneak path
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Fig. 1 The structure of gradual TiO, memristor and its electrical characteristics. a Schematic of Pt/gradual TiO,/Ti memristor structure showing gradual
oxygen concentration in the TiO, layer. b Consecutive 125 -V sweep curves of the device showing very small temporal variation (1.39%) during the cycles.
¢ Endurance test showing 5 x 106 consecutive set/reset pulse without degradation. d Spatial variation (3.87%) calculated through DC voltage sweep in the
30 stand-alone devices. e Fifty consecutive cycles of the pulsed response of a single stand-alone device. A single cycle is composed of 200 set pulse

responses (4.5 V, 10 ps) and following self-decaying during 200 ms with a 40 ms decaying time constant. f A 2D map for the decay time constant of 400
devices in a 20 x 20 cross-bar array. g Analog conductance change in a 20 x 20 cross-bar array with O, 4, 8, 12, and 16 set pulses (4.5V, 100 us). h A 3D

representation of the conductance change along with the set pulses.

problem. Even though the device cannot serve as a long-term
memory due to the short-term characteristics, the short-term
memory characteristic with excellent uniformity makes the
developed memristor suitable for artificial neuron and neuro-
memristive computing. As shown in Fig. 1g, the device changes
its conductance from 55nS to 1200 nS (on average) with small
spatial variations by applying 16 write pulses. To show the
potentiation of the memristors with only 16 pulses, a longer set
pulse (4.5V, 100 ps) is used, and the memristor conductance is
measured by read pulses (2 'V, 100 ps). The conductance map as
a function of the device’s location in the optical image of the
array shows uniform distribution conductance change, as

shown in Fig. 1h. The conductance changes during the 16
pulses are represented in Supplementary Fig. 4.

Insulator thickness modulation in gradual TiO,. A cross-
sectional transmission electron microscopy (TEM) image of a
gradual TiO, memristor is shown in Fig. 2a. A thin gradual TiOy
layer (about 30 nm) is sandwiched by the top electrode (TE) and
the bottom electrode (BE), showing a simple structure of the
developed memristor. As shown in Fig. 2a, the anodized TiOy
layer does not have any porous features, even though the ano-
dizing technique is widely used to form nanoporous TiO, by
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Fig. 2 Effects of gradual oxygen concentration in TiO, switching layer. a A cross-sectional TEM image of the gradual TiO, memristor. b TOF-SIMS
depth profile results of anodized TiO,. ¢ TOF-SIMS depth profile results of sputtered TiO,. d A schematic representation of the switching mechanism
of the gradual TiO, memristor. e Size dependency of the gradual TiO, memristor. The memristors with four different sizes (5 x5, 10 x 10, 20 x 20, and
50 x 50 [um?]) are fabricated on the same wafer. The current is measured at 1V at a low resistance state (LRS) during the linear voltage sweep

from OV to 4 V. f An activation energy (E5) calculated from the time constant under various temperatures. The time constant decreased when the
temperature increased, and the activation energy calculated from the change of the decay time along the temperature implies that the resistive switching

and short-term dynamics originate from the oxygen anions in TiO,.

anodizing the Ti film in a fluoride-rich electrolyte. The time of
flight secondary ion mass spectrometer (TOF-SIMS) results reveal
the difference between the anodized TiOy layer and the radio
frequency (RF)-sputtered TiO, layer. As shown in Fig. 2b, for an
anodized TiOy layer, the oxygen concentration and TiO, con-
centration gradually decrease from the top (Pt/TiOy interface) to
the bottom (TiO,/Ti interface), while the Ti concentration
increases. However, these concentration gradients are not
observed for the sputtered TiO, layer (see Fig. 2c). This is because
the anodizing process is a top-down oxidation process; therefore,
the upper Ti layer undergoes longer oxidation and becomes an
oxygen-rich insulating TiO, layer, while the bottom Ti layer
experiences a shorter oxidation time and forms an oxygen-
deficient metallic TiO, layer. This oxygen gradient effectively
controls the thickness of the insulating region and results in
resistive switching with a large on/off ratio of the anodizing TiOy
layer, while the sputtered TiO, layer cannot effectively change the
thickness of the insulating region due to uniform oxygen con-
centration and shows a low on/off current ratio and a non-
uniform switching characteristic (see Supplementary Fig. 5).

To be more specific, the oxygen vacancy gradient enables
resistive switching with a self-decaying property (see Fig. 2d).
When a positive bias is applied to TE while grounding BE, oxygen
anions shift from TiOy near BE to TiO4 near TE. TiO4 near BE
loses its oxygen and the metallic TiO, region increases. Therefore,
the effective thickness of insulating TiO, decreases, the reduced
effective insulating thickness increases the overall device’s
conductivity, and the device becomes a low resistance state
(LRS). However, when a negative bias is applied to TE, oxygen

anions in oxygen-rich TiOy near TE shift to TiO, near BE. The
effective insulating thickness expands again, and the device
becomes a high resistance state (HRS) (see Supplementary Fig. 6).
The LRS to HRS transition (reset) occurs without external
stimulus due to the diffusion of oxygen anions, which results in
short-term (volatile) memory effects with about 40 ms time
constant.

To demonstrate that the device switches its resistance state
through the oxygen anion shift in the overall TiOx bulk, the
currents from memristors of different sizes are compared, as
shown in Fig. 2e. During the linear voltage sweep, the current of
the memristor at 1V (LRS) is read. The results show that the
current increases as the size increases. When the memristor
operates through a conductive filament, the memristor does
not show size dependency, as the locally formed filament
conducts almost all of the current regardless of the device’s
size. However, when the memristor switches its resistance
through the overall bulk, the size affects the current. The size
dependency in the results verifies that the gradual TiO4
memristor operates by modulating the oxygen anion distribu-
tion in the overall TiO, bulk. In Supplementary Fig. 7, the
device current reduces as the device size decreases due to the
non-filamentary nature of the device. Moreover, it does not
significantly change other properties such as decaying speed
and potentiation ratio, which means that the device is scalable
without performance degradation.

Furthermore, by calculating activation energy (E,) from the
decaying time constants under several elevated temperatures
from 323K to 423 K, we have proven that the oxygen anion
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movement across the whole TiO, bulk dominates resistive
switching (see Fig. 2f). The calculated activation energy (E,) is
about 0.21 eV, which is similar to the activation energy of the
ionized oxygen vacancy in polycrystalline H,O-rich TiO,!°. The
calculated activation energy of the gradual TiO, memristor is
much smaller than the oxygen diffusion activation energy
(1.05 eV) in rutile Ti0,20, This is because H,O molecules, used
during the anodizing process, significantly reduce the activation
energy!'®. Moreover, in the anodized TiO, layer, it is observed
that the upper region of the TiOy; has a fully amorphous
structure while the bottom region has a polycrystalline
structure, because polycrystalline metallic Ti concentration is
much higher in the bottom region of the TiO, layer (see
Supplementary Figs. 8, 9). The oxygen activation energy is low
in the case of the amorphous phase?!, thus the gradual TiO;
layer has much smaller oxygen anion activation energy
compared to the rutile TiO, layer. This small activation energy
allows the oxygen anions to easily move along the bias and
induces resistive switching with a large on/off ratio and short-
term memory effect. All of these results demonstrate that
resistance switching in gradual TiO, is induced by the
movement of oxygen anions across the whole TiOy bulk, unlike
other filamentary-type memristors.

Reliable LIF neuron with gradual TiO, memristor. A biological
neuron receives spike signals from presynaptic neurons and inte-
grates the signals into its membrane potential (see Fig. 3a). When a
neuron receives spikes in a certain interval, the neuron’s membrane
potential is elevated. Once the membrane potential exceeds the
threshold potential, the neuron sends spikes (an action potential) to
its post-synaptic neuron. However, because the neuron has leaky-
integrate property, the membrane potential goes back to its original
potential (a resting potential) if the presynaptic neuron stops
sending spikes and the membrane potential does not reach
the threshold. The leaky-integrate and fire (LIF) neuron model
elaborately describes these biological neuron’s properties?2.

To demonstrate the gradual TiOy-based memristor as an
artificial neuron device, the gradual TiO, memristor-based LIF
neuron is constructed with a parallel capacitor and a serial
resistor (see Fig. 3b, c¢). The parallelly connected volatile
memristor and capacitor operate as a LIF neuron’s soma, where
the biological neuron integrates spikes and makes an action
potential when the membrane potential reaches the threshold.
The resistor (or non-volatile memristor), that serves as a
synaptic weight, is serially connected to the gradual TiO,-based
volatile memristor and capacitor!%14, To examine the neuron
operation without non-ideality factors from the synapse device,
a fixed resistor is utilized. The resistance is low if the synaptic
weight is high, and the resistance is high if the synaptic weight
is low. If the parallel capacitor integrates enough charges from
presynaptic spikes in a certain time interval, the capacitor
voltage becomes high enough to potentiate the volatile
memristor. For example, the LIF neuron operation of the
gradual TiO, memristor-based artificial neuron with a 47 kQ
resistor and a 10nF capacitor is shown in Fig. 3b. After
applying two presynaptic voltage pulses, the neuron reaches the
threshold voltage and fires.

The artificial neuron’s characteristics in terms of input spike
frequencies are investigated in Fig. 3d, e, and f. The two different
frequency spike trains (3200 Hz and 1600 Hz) are applied to the
memristor-based artificial neuron. When the frequency is high,
the neuron fires within three spikes. However, the neuron does
not fire if the input spike frequency is low at 1600 Hz. This is
because the developed neuron has leaky-integration property, and
the capacitor voltage does not reach the threshold voltage.

Furthermore, in a biological neuron, the neuron easily fires
when it receives spikes from a strongly connected presynaptic
neuron, while it requires much more spikes to fire when the
presynaptic neuron is weakly connected. This biological
phenomenon is emulated in our artificial neuron by modifying
the synaptic weight from the serial resistor (see Fig. 3b, g-i).
When an artificial neuron is composed of a gradual TiOy
memristor, a serial resistor (47k(Q), and a parallel capacitor
(10 nF), three presynaptic spike pulses are needed to make the
neuron fire (see Fig. 3b). If the serial resistance increases to
94 kQ), that represents a weak connection to the presynaptic
neuron, the artificial neuron needs six consecutive spikes to fire
(see Fig. 3g). On the other hand, if the serial resistance
decreases to 23.5 kQ) representing a strong synaptic connection,
the artificial neuron fires within two spikes as shown in Fig. 3h.
In a human’s biological neural network, the synaptic weight is
long-term potentiated when the post-synaptic neuron fires just
after the presynaptic neuron fires, because it means the post-
synaptic neuron’s firing event is strongly related to the
presynaptic neuron’s firing. This biological phenomenon is
called a “Hebbian learning rule”, and this is considered as a
basic learning mechanism of biological neural networks23. The
results show that the memristor-based artificial neuron behaves
as the biological LIF neuron, and therefore, it can be utilized for
reliable neuromorphic processors with biological learning rules.

To build a reliable neuromorphic processor with memristor-
based neurons, highly reliable neuron operation is required. In
Fig. 3j, k, the gradual TiO, memristor-based artificial neurons
show similar neuron responses, which means the proposed
memristor-based artificial neuron has low device-to-device
variation. The identical spike trains are applied to the randomly
selected 22 artificial neurons, and the outputs of the neurons are
shown in Fig. 3j. Every neuron operates in the same manner,
without any noticeable differences. Moreover, we also test the
cycle-to-cycle uniformity by applying the same pulse train
50 times to a single artificial neuron (see Supplementary
Fig. 10). The response of the artificial neuron is not significantly
different, demonstrating its low cycle-to-cycle variation. The
low variation of the artificial neuron originates from the reliable
switching behavior of the gradual TiOy memristor.

To further investigate the characteristics of the gradual TiOy
memristor-based artificial neuron, the artificial neuron’s responses
are measured in terms of presynaptic spike amplitude and
presynaptic spike width (see Supplementary Figs. 11, 12). As
shown in Supplementary Fig. 11, the artificial neuron does not fire
with a small amplitude of the presynaptic spikes (2.5 V), but it fires
with a large amplitude of the spikes (>3.5V). In Supplementary
Fig. 12, it is demonstrated that the neuron can operate with a short
pulse (40 ps). Moreover, the artificial neuron’s responses with
different combinations of the circuit components are measured; (1)
different capacitance values and (2) different capacitance and
resistance values while keeping the same RxC value (see
Supplementary Figs. 13, 14). The developed artificial neuron has
a great tunability to adjust the threshold, by changing the parallelly
connected capacitor or the serially connected resistor.

The gradual TiO, memristor-based neuron demonstrates
superior device-to-device and cycle-to-cycle uniformity, tunabil-
ity, low spike current (10-35pA), high off-state resistance
(~100 MQ), and an acceptable speed (>40 ps). The comparison
table for various memristor-based artificial neurons is shown in
Supplementary Table 1.

Neuro-memristive computing for AMP generation with gra-
dual TiO, memristor cross-bar array. Here, based on the short-
term memory effect of the gradual TiO, memristor, the
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Fig. 3 Gradual TiO, memristor-based LIF neuron. a An illustration of a biological neuron and the analogous memristor-based artificial LIF neuron. b The
LIF neuron operation of the developed memristor-based artificial neuron. Applied spike train condition: 4 V, 200 ps width, and 50 ps interval. € The
schematic of the circuitry used for the gradual TiO, memristor-based artificial neuron. d-f The output of the artificial neuron along with different
presynaptic spike frequencies (3200 Hz (d) and 1600 Hz (e)), and the illustration of the experimental setup. During the test, the pulse amplitude and width
are fixed (4 V, 200 ps). g-i The output of the artificial neuron along with the different synaptic strengths (different resistors). When the synaptic strength is
weak (large resistance (g)), the artificial neuron fires within six spikes, while it requires fewer spikes when the synaptic strength is strong (small resistance
(h)). j, k The outputs of the 22 different artificial neurons demonstrate low variation of the gradual TiO, memristor-based artificial neuron.
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developed memristor is used as a leaky-integrator to build a
neuro-memristive computing system which processes sequential
data. When the voltage pulse train is applied to the short-term
memristor, the conductance state of the device at a specific time
is determined simultaneously by a pulse at that time and pulses
in the near past around the device’s decaying period, similar to
a membrane potential of a neuron. This dynamic response of
the short-term memristor about the pulse train can be utilized
as a sequential/temporal data processor that separates the dif-
ferent sequential or temporal data, which requires complex
calculations to process with software algorithms. Based on the
sequential/temporal data processing ability of short-term
memristors, a simple neural network, which is called a read-
out function, can easily learn the input data with a very small
number of parameters compared to conventional long short-
term memory (LSTM) model?4-26,

Similar approaches to process sequential/temporal data with
volatile memristors!>13-27-29 have been extensively studied, but
there have been several limitations. For example, large variation
and unreliable switching of the memristor disturb the training
of the system, and prevent the neuro-memristive computing
system from being used for inference tasks because every
memristors will respond differently to the same input and the
readout function must be re-trained for every different
memristors. Other endemic problems of memristors such as
sneak path and low on/off ratio also impede the realization of
efficient neuro-memristive computing based on the memristor
cross-bar array.

The gradual TiO, memristor, however, shows several ideal
characteristics such as high uniformity, high on/off ratio, and
self-rectifying property, and it can be integrated in a cross-bar
array structure having high scalability. Therefore, to realize an
efficient neuro-memristive computing system without the
mentioned problems, the sequential data processing abilities
of highly reliable gradual TiO, memristor are examined in
Fig. 4. All experiments are conducted in a 20 x 20 gradual TiOy
memristor cross-bar array, where a single cell size is 5 x 5 pm?.
First, for sequential data analysis, the pulse trains for the
combination of 4-bit sequence inputs are applied to the
randomly selected 24 memristors in a cross-bar array, and
the results are shown in Fig. 4a. Every memristor separates a
different combination of the input data at the final time step
(time step =4). Each memristor shows an identical and
uniform response to the 4-bit input due to the excellent
uniformity of the gradual TiO, memristor. This experiment
proves that the gradual TiOy memristor as a leaky-integrate
neuron can separate different binary sequences with high
uniformity in an array platform. It is noticeable that the devices
show high on/off ratio (~20) with only four pulses in Fig. 4a.
The maximum on/off ratio from the developed memristor’s
large on/off ratio (>2700x), as shown in Supplementary Fig. 15.

We have further investigated how the gradual TiO4
memristors process general sequence data, as shown in Fig. 4b.
Two differently ordered alphabet sequence data consisting of
eight letters (from “a” to “h”) are used with a cross-bar array, as
shown in Supplementary Fig. 16. The sequences are converted
to a pulse train and the pulse train is fed into the memristors.
The memristor assigned to the character is potentiated by the
pulse, while the others are rested and naturally decayed. Because
of the self-decaying (short-term memory) property, the latest
pulses strongly affect the memristors™ current states, while the
former pulses hardly affect the current state, as the information
is already lost due to the decaying effect!?. Therefore, the
information on sequence history can be represented as the
conductance level of the assigned memristors. The final
conductance states of all memristors are obtained at the final

time step. As shown in Fig. 4b, the outcome of the memristors
distinguishes the differently ordered alphabet sequences.

Interestingly, the duty cycle (for write pulse only) controls
the decaying speed and changes the response of the memristor
for the same input (see Supplementary Figs. 17, 18). As shown
in Supplementary Fig. 17, a high pulse width/interval (W/I)
ratio results in slow decaying speed (long decaying time
constant), while a low pulse W/I ratio results in a fast decaying
speed (short decaying time constant). The decaying time
constant can be controlled from about 15ms to 40 ms by
varying the W/I ratio, and the different decaying speed
enables the memristors to process the same input differently.
A comparison between high and low (W/I) ratio cases is
represented in Fig. 4d-f. As an example, an alphabet sequence
composed of “A”, “B”, “C”, and “D” ([firstf DDDCCBDCC
DBADBACD CB A [last]) is used, as shown in Fig. 4c. In
the sequence input, “A” is applied to the memristor at last, and
“B”, “C”, and “D” follow. However, contrary to the entering
order, “D” appears in the sequence seven times and shows the
highest frequency, while “C” (six times), “B” (four times), and “A”
(three times) follow. In the high W/I ratio (W/I ratio = 85/15)
case, the frequent inputs dominantly affect the current state of the
memristors because of the long decaying time constant (see
Fig. 4f). As a result, the most frequently appearing alphabet “D”
wins all elements. Furthermore, in the short-term (W/I ratio =
15/85) case, the recent inputs strongly affect the current state of
the memristors and preceding inputs diminish due to the short
decaying time constant. The elements at the end of the sequence,
thus, dominate the outcome and the memristor for the last input
“A” has the largest output, as shown in Fig. 4d. For the middle-
term case, memristors for the frequently appearing elements “C”
and “D” make larger output values than that of the others, but “C”
makes a larger value than “D” as “D” is mainly located at the
beginning of the sequence compared to “C” (see Fig. 4e).
Therefore, if the multiple W/I ratios are utilized for the
memristors, different outputs will be obtained from the
memristors with different W/I ratios for the same input, which
can improve the training of the readout function. As shown in
Supplementary Fig. 18, if the change of W/I ratio is larger than a
minimum required time, the change in potentiation ratio and
decaying time constant can be clearly observed.

Training and generation of neuro-memristive computing for
sequential data. AMPs are natural antibiotics that exist in living
organisms and act as antimicrobials by bursting the epidermis
of bacteria or eukaryotes (see Fig. 5a). AMPs have an important
role in the immune system of several living organisms, and
many studies have been conducted regarding their use for
development of new drugs for various diseases such as SARS
and cancer3%:31, Since AMPs are composed of one short peptide,
they have the advantage of being able to mass-produce if their
amino-acid sequences are known. The amphipathicity in which
hydrophilic groups and hydrophobic groups in a peptide coexist
in balance makes the AMP burst the bacteria. The AMPs are
aggregated and inserted into the bacterial epidermis (surface of
the bacteria). After that, because the bacterial epidermis is
hydrophobic while the environment is hydrophilic, the hydro-
phobic side of the AMP is attached to the bacterial epidermis.
The hydrophilic side of AMPs are faced with each other, and
then the aggregated AMPs finally form a pore structure across
the bacterial epidermis. Because of the pore consisting of AMPs,
the cytoplasm of the bacteria flows outside and the bacteria is
killed. This cell death process induced by AMPs is called bac-
terial lysis. However, the AMP should have a special structure,
which is formed through complex, high-dimensional basis
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amino-acid grammar32, as well as be amphipathic to interact
with the bacterial epidermis and burst it. Therefore, it rarely
makes the AMP by simply concatenating hydrophobic and
hydrophilic short amino-acid sequences. In previous studies, it
has been verified that LSTM-based neural networks could learn
AMP’s amino-acid grammar and create new potential AMP
sequences®233. However, LSTMs have too many trainable
parameters and require too much complex computing to insert

the whole network into an edge processor. Instead of LSTM, we
propose a neuro-memristive computing system based on the
gradual TiO, memristor to generate new, potential AMP
sequences.

To simulate the neuro-memristive computing based on
the measured data from memristor arrays, we design an
entire system on a circuit level (see Supplementary Fig. 19).
The designed system’s operation is conceptually represented in
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Fig. 4 Binary and sequence input processing of the gradual TiO, memristor. a Response of 24 gradual TiO, memristors to the 4-bit inputs. The
memristors are randomly selected from a 20x20 cross-bar array. Seven different binary inputs are used (brown: [1111], yellow: [110 1], red: [0 0 O 1], sky
blue: [111 0], blue: [0 0 10], green: [10 0 0], and black: [0 0 0 01). For the input “1", the set pulse (4.3V, 50 ps) is used while the ground is maintained
for “0". The read pulse amplitude and width are 1.5V and 200 s, respectively. The gradual TiO, memristor successfully separates different binary inputs at
the last time step (4), and all devices show similar responses without severe device-to-device variations. b Experimental results of memristors’ output
separating two sequences having different orders. Memristors for past elements have smaller output currents than memristors for recent elements.

¢ Schematic of the way how a sequence input (DDDCCBDCCDBADBACDCBA) is applied to memristors. The sequence is transformed into a
pulse train and applied to the assigned memristors in order. The unit length of a single pulse (or ground) is 100 ps. The set pulse amplitude is 4 V, but only
a portion (duty cycle) of the 100 ps is elevated to 4 V; the rest of the 100 ps is grounded. The read pulse (1.5 V, 100 us) is applied between every set pulse
and rest. d-f Memristors’ output through the whole input sequence in a short-term, middle-term, and long-term memristors. The final results of each duty
cycle case show the different processing abilities of memristors with different duty cycles. The memristors process sequences with a longer time domain
along with an increase in the width/interval (W/I) ratio. The output of the long-term memristors only contains frequency information of each alphabet,
while the order information is clearly shown in the short-term memristors. The sequence with the red box below the figure represents the range of the

sequence that might affect the final output. All of the results in Fig. 4 are measured from a 20 x 20 cross-bar array.

Supplementary Fig. 20. Based on the design, the simulation of
the neuro-memristive computing having four different W/I
ratios (5/95, 10/90, 15/85, and 20/80) was tested for AMP
generation.

First, the input sequence is transformed into a 20-dimensional
(or 20-channel) vector having the same time step to the original
sequence data. Each memristor in the cross-bar array processes
the spike train from one channel (one amino-acid) among the 20
channels in the transformed input data (see Fig. 5b). In our
system design, the system consists of four groups of memristors
where each group has different W/I ratios to process the given
input data differently (see Supplementary Figs. 19, 20, and
“Methods”). To train the neuro-memristive computing system to
generate new AMPs, the training data is pre-processed first. The
target data to train the weights in the readout function is
generated from the training data. For example, for the input
sequence in Fig. 5b, the target data is made by removing the first
amino-acid “G” and adding an end cursor “@” at the end of the
sequence. Thus, the target data becomes “IGKFLHSAKKFG-
KAFVGEIMNS@”. The end cursor is used to inform the sequence
end. The first amino-acid, which is “G”, enters the memristor
cross-bar array. Every column line represents each amino-acid
used for AMP, and each row line represents a group of
memristors having the same W/I ratio, as shown in Supplemen-
tary Figs. 19, 20. When the input amino-acid is “G”, the column
line for “G” is grounded and the other columns are floating. Then,
the voltage pulses with various W/I ratios are transported from
the row line and potentiate the memristors in column “G”. After
the potentiation of memristors for “G”, a read stage is performed
by applying the read voltage to the row lines while the column
lines are grounded. The memristor cross-bar array output has
1x 80 size because each group of memristors makes a 1x 20
output and there are four groups. The cross-bar array output is an
input of the readout function, and the readout function trains the
weights based on the discrepancy between the readout function
output and the corresponding target, which is the next amino-
acid “T” in the given example. By repeating this process until the
end cursor enters the system, the neuro-memristive computing
system can learn the amino-acid grammar for the AMPs.

To compare the effect of using various W/I ratios, the four
sequence sets were compared (a training set, generation sets
from a short-term (low W/I ratio), long-term (high W/I ratio),
and a mixed case(various W/I ratios)). The short-term, long-
term, and the mixed case have the same readout function
network size and the same number of trainable parameters to
fairly compare the effect of mixed W/I ratios for data processing
without the effect of network size. The result was evaluated by
the generated output sequences’ several features (probability of

being AMP, global charge, molecular weights, and amino-acid
distribution) using an AMP prediction tool3* and a Python
package for AMP analysis3. Figure 5¢c-f show the comparison
among the training set and generation sets from short-term,
long-term, and mixed case. The AMP prediction results in
Fig. 5c show that 74.07% and 79.21% of sequences in a
generation set from the short-term and long-term case,
respectively, are predicted as AMP. Then, 84.11% of sequences
from mixed case are predicted as AMP. All probability values of
AMP in each set are represented in Supplementary Fig. 21. The
average global charge of peptides representing the overall
charge of amino-acid residues in each sequence3® of the
generation set from the mixed case is 2.32 pK, while the
sequences from the short-term and long-term cases show
3.89 pK, and 3.11 pK,, respectively (see Fig. 5d). The average
global charge value from the mixed case is similar to the
training set (2.28 pK,), which means the neuro-memristive
computing system with mixed W/I ratios can learn the complex
pattern of the given data set. The molecular weights and the
amino-acid distribution of the generated sequences from the
mixed case are also similar to the training set, as shown in
Fig. 5e, f. The different dynamic responses of memristors for
different W/I ratios help the neuro-memristive computing
system learn the complex amino-acid grammar and how to
construct amphipathic peptides by transforming the input data
into the higher dimension basis and making the training of the
readout function effective.

Finally, the 3D peptide structures of an AMP sequence in the
training set and a generated sequence with the highest
probability of being AMP are shown in Fig. 5g, h. A real
AMP and the generated sequence from our neuro-memristive
computing system both show the similar structure and
composition of hydrophobicity and hydrophilicity, which is
one of the key points of the AMP. In summary, our neuro-
memristive computing system composed of a gradual TiOy
memristor cross-bar array demonstrates the potential of
memristor-based computing for sequence type data by
successfully generating new AMPs with a small number of
parameters (only 50,520 parameters). All of these results reveal
that the gradual TiO, memristor-based neuro-memristive
computing system has great benefits regarding sequence type
input data.

Discussion

In summary, we developed a 20 x20 high-density memristor
array by utilizing gradual oxygen concentration metal oxide,
which possesses high on/off ratio, excellent temporal/spatial
uniformity, self-rectification, forming-free property, compliance
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Fig. 5 Schematic of the antimicrobial operation mechanism of AMP and the evaluation of generated AMP sequences. a AMPs bursting the bacteria
epidermis by pore formation. b An illustration of the transformation of an input sequence into a 20-dimensional vector (or 20 channels) with 24-time
steps, where 20 is the number of the unique amino-acids in the input sequence with the added end cursor “@", and 24 is the length of the sequence after
adding the end cursor. ¢ The percentage of AMP sequences in the generation set from short-term (low W/I ratio), long-term (high W/I ratio), and mixed
case (various W/I ratios), respectively. d Average global charge from each sequence set. The mixed case shows a similar global charge value to the
training set, while the others do not. Inset: the total global charge value of the entire sequences in each set. e Average molecular weight from each
sequence set. The mixed case generates sequences that have similar weights to the training set. Inset: the total molecular weights of all of the sequences.
f Amino-acid distribution of each sequence set. g The 3D image of an AMP (protein data bank ID: 2mag#4) in the training set. h A predicted 3D image of
the generated AMP from the mixed case neuro-memristive computing system.

current-free property, and high yield for a memristor-based
neuromorphic system. Unlike the other existing memristors
operating with conductive filaments, our gradual TiO, memristor
switches its resistive state through oxygen migration without
strong filament formation and changes the effective insulator
thickness. It showed dynamic analog operations, such as poten-
tiation (set), depression (reset), and self-decaying. The newly
developed memristor is utilized for memristor-based LIF

10

neuron, and shows several superior characteristics such as high
uniformity, tunability, and low operation current (see Supple-
mentary Table 1). It is demonstrated that the gradual TiO,
memristor-based artificial neuron has similar features to the
biological LIF neuron by modifying the presynaptic spike or
the capacitance of the artificial neuron. Based on the
reliable characteristics of the gradual TiO, memristor-based
neuron, our results open up a path to developing a reliable
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and energy-efficient neuromorphic processor with biological
learning rules.

Furthermore, the gradual TiO; memristor cross-bar array
as a short-term, leaky-integrate neuron is used to create
a hardware-based neuro-memristive computing system. The
newly developed system learns the AMP sequences and gen-
erates new AMP candidates. To improve the performance,
different pulse width/interval ratios are utilized to effectively
process the input. Neuro-memristive computing system with
the gradual TiO, memristor having excellent uniformity could
be used for mass-production because the trained readout
function will have weights that are matched to the memristors
in every single chip!?37. Because of the reduced training cost by
substituting the recurrent layer of the LSTM into the memris-
tors, the system can be suitable for online learning with high
accuracy. The comparisons with the memristors in the previous
works for similar neuro-memristive computing systems are
shown in Supplementary Table 2. In addition, several superior
properties, including self-rectification, forming-free, low-
temperature fabrication, and high on/off ratio make the gra-
dual TiO, memristor suitable for neuro-memristive computing
system.

The proposed highly reliable memristor can be broadly used in
neuromorphic processors that handle bio-plausible neural net-
works. Further improvements such as peripheral control circuits
or non-volatile memristor arrays as synapses can be used for
several practical applications including image classifications,
speech recognitions, or real-time diagnosis with effectively
reduced energy consumption and device size.

Methods

Memristor cross-bar array fabrication. The newly developed memristor used in
this work has a simple Pt/gradual TiO4/Ti structure, as illustrated in Fig. la. The
lithography method is utilized for the bottom electrode pattern, and the width of
the electrode is 5 um. The Ti 100 nm layer is deposited by an e-beam evaporator.
After the bottom electrode deposition, the remaining photoresist is removed via the
lift-off process. Through the second lithography step, a pattern is formed on the
sample to cut off the BE-to-BE connections (Ti/TiO/Ti), which might induce
severe leakage current in the cross-bar array. The Ti 12 nm layer, which will
undergo the anodizing process, is deposited with an e-beam evaporator and is
selectively removed via the lift-off process. The sample then undergoes the ano-
dizing process to form the TiO layer with gradual oxygen concentration by oxi-
dizing the Ti 12 nm layer. The electrolyte used for the anodizing process is a NaOH
0.05M, NH4F 0.05 M mixed solution (total 0.1 M of NaOH and NH,F in H,0).
The Ti 12 nm deposited sample is connected to the power supply and is soaked in
the electrolyte. The anodizing process is done under the following conditions:
anodizing voltage = 10 V, temperature = 20 °C, and anodizing time = 1 min. After
the anodizing process, the top electrode pattern is formed through the lithography
method, and the Pt 100 nm layer is deposited by the e-beam evaporator. Finally, the
reactive ion etching method is used to remove all the exposed TiOj; every leakage
path is then removed. The whole structure of the fabricated 20 x 20 gradual TiOy
memristor cross-bar array is well described in Supplementary Fig. 22. The ano-
dizing process is used because it easily forms metal oxides with oxygen gradient,
but other deposition methods including atomic layer deposition (ALD) or reactive
sputtering could be used for fabrication of wafer-scale gradual TiOx memristor
devices.

Electrical measurement. To measure the I-V curve of the gradual TiO, mem-
ristor, Keithley 4200A-SCS, a high-performance parameter analyzer, is utilized.
The measurement system, including source measure units (SMUs) can precisely
supply DC linear voltage sweep and simultaneously measure the output current.

The pulse responses of the memristor are measured by a data acquisition tool
(National Instruments USB-6363) and a current preamplifier (DL Instruments
Model 1211). The data acquisition tool (DAQ) generates pulse trains and
simultaneously measures the output voltage, which is amplified by the preamplifier.
The following electrical experiments (the 4-bit data processing experiment and the
sequence data processing experiment) are conducted with the DAQ and the
preamplifier measurement system.

For the 4-bit data processing experiment, the 4-bit data (ex. 1010) is
transformed into the pulse train, which consists of set pulses (4.3 V, 50 ps) and
ground (0 'V, 100 ps). The pulse train is applied to the memristors in a 20 x 20
cross-bar array. After each bit (“1” or “0”) is applied to the memristor, the read
pulse (1.5'V, 200 ps) is applied to the memristor to obtain the conductance.

For the sequence data processing experiment, the sequence ([firstf DD D CCB
DCCDBADBACDCB A [last]) is transformed into the pulse train, which
consists of set pulses (4 V) and ground (0 V). The unit length of each set and
ground is 100 ps, but the 4 V is only applied as the amount of duty cycle
value x 100 ps, while 0 V is maintained during the rest of the 100 ps. For example, if
the duty cycle is 20%, the set pulse consists of 40 ps of the first ground, 20 us of the
4V set, and 40 ps of the last ground. The W/I ratio, in this case, is 20/80.

Neuro-memristive computing simulation for AMP generation. The training set
consists of 1554 AMP sequences, which are collected from three publicly opened
databases: the database of Anuran defense peptides (DADP)38, the antimicrobial
peptide database (APD)39, and the a database for antimicrobial peptides
(ADAM)*’, Each AMP sequence in the data set is composed of ~7-48 amino-acid
residues. All of the data are pre-processed by putting an end cursor at the end of
each sequence. The end cursor is used to represent the location for the end of the
sequence.

The simulation of the neuro-memristive computing system is done with
realistic models of the memristor’s pulsed responses for each W/I ratio. The
results of the modeling are shown in Supplementary Fig. 23. Based on the
realistic modeling of the memristor, the neuro-memristive computing system for
the AMP generation simulator is constructed with four groups of memristors
sharing same W/I ratio, where a single group consists of 20 memristors in a
cross-bar array (see Supplementary Fig. 24). To clarify the effect of using mixed
(various) W/I ratios, we also tested the neuro-memristive computing system
with a single W/I case, while maintaining the readout function size. For mixed
case, four different W/I ratios (5/95, 10/90, 15/85, and 20/80 among the total of
4V and 100 ps set pulse) are used. The memristors with different W/I ratios
process the input data differently especially in terms of the time window; thus,
the readout function easily learns the pattern in the data set. Furthermore, short-
term (low W/I ratio only) and long-term (high W/I ratio only) cases are
examined, respectively, to observe the effect of the W/I ratio on the system
performance. In the single W/I ratio cases, four groups of memristors share the
same W/I ratio (5/95 for short-term and 20/80 for long-term) and the number of
trainable parameters is equal to the mixed case.

In the training phase, the input data (AMP sequences) are fed into the
memristor cross-bar array. Each amino acid in the sequence is one-hot encoded
and is assigned to memristors; four memristors having different W/I ratios are
used for a single amino-acid. The neuro-memristive computing system
simulator learns AMP grammar by predicting the next amino-acid. If there is a
sequence, “KAIST”, for example, it is pre-processed with the end cursor “@” by
attaching the end cursor to the end of the sequence. Now, the sequence is
“KAIST@” and “K”, “A”, “T”, “S”, and “T” are the training data, and “A”, “T”, “S”,
“T”, and “@” are the corresponding targets. In this example, “K” enters the
system first, and a memristor for “K” is potentiated while the others remain in
their initial states. The outputs from the memristors are then transmitted into
the readout function. To efficiently train the readout function by using the
outputs of all four W/I ratios, the outputs from each memristor group are
differently amplified so the maximum output value of each memristor group
becomes similar. The readout function is a simple 80 x 500 x 20 multi-layer
perceptron (MLP) where the input dimension 80 comes from the number of
memristors in the group, and the output dimension 20 comes from the number
of selectable elements (19 amino-acids and 1 end cursor). The number of
trainable parameters of the whole system is 50,520 for both single and mixed W/
I ratio cases. The first and second layers have rectified linear unit (ReLU) as an
activation function for fast and efficient learning, and the third layer has a soft-
max to make the output values in the form of probability. The system picks the
next element based on the readout function output (see Supplementary Fig. 25).
Then, based on the error between the corresponding target “A” and the readout
function output, the readout function trains its weights by using a simple
machine learning algorithm (logarithmic regression). The Python toolkit Keras
is used to access TensorFlow. The same process (feed the input to the memristor
cross-bar array, feed the memristor output to the readout function, pick the next
output, and train the weight based on the error) is repeated until the training of
a sequence is finished. When the end cursor becomes the corresponding target,
the training of a sequence is finished, as there is no corresponding target for the
end cursor. Then, the memristors are reset to the initial state. This whole process
is done for every 1554 sequences. After the training iterates 50 times (50 epochs)
with the whole training data, the training phase is finished and generation starts.

Generation of the AMP sequences is started by putting the first amino-acid
(seed) in the memristor cross-bar array (see Supplementary Fig. 26). We used
the first amino-acids of each AMP in the training data as a seed for convenience.
The system predicts the next amino-acid for seed, and the selected amino-acid
becomes the second amino-acid element of the generated sequence. The sum of
the readout function output values is 1 due to the soft-max activation function.
Thus, to give variation to the generated sequences, the next predicted amino-
acid is selected based on the readout function output values as a probability
distribution. The selected amino-acid is then fed into the memristor cross-bar
array as an input, and these processes are repeated until the end cursor is
selected. If the generated sequence already exists in the training data, then the
sequence is removed from the generation set.
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Finally, we generate 1554 sequences from each case (short-term, long-term,
and mixed cases), and evaluate the properties of the sequences. CAMP, the
evaluation tool for generated sequences, is an AMP prediction tool that presents
the probability of the given sequence is AMP. In addition, the Python modlAMP
package is used to analyze the generated sequences. By using this modIMAP
package, the physical/chemical properties of the generated sequences, such as
the global charges and molecular weights, could be calculated. Finally, PEP-
FOLD 3, which provides a predicted 3D model of peptides, is used to visualize
the generated sequences*!#2. Through PEP-FOLD 3, the generated sequences
are converted into a protein data bank (PDB) data format. We visualize this
PDB data into the 3D model by using UCSF Chimera3.

Data availability
The data related to the figures and other findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The code used for the simulation is available from the corresponding author with
detailed explanations upon reasonable request.
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