Table 4.
Algorithm | Training Accuracy |
Testing Accuracy |
Miss Classification Rate | Run Time (Seconds) |
---|---|---|---|---|
K-Nearest Neighbour | 81.86 % | 77.06 % | 0.229 % | 1.7730 |
Logistic Regression | 90.88 % | 90.20 % | 0.097 % | 3.4950 |
Support Vector Machine | 90.88 % | 90.20 % | 0.097 % | 0.1274 |
Naive Bayes | 89.68 % | 90.72 % | 0.092 % | 0.1034 |
Decision Tree | 94.23 % | 92.52 % | 0.074 % | 0.0056 |
Random Forest | 95.35 % | 95.36 % | 0.046 % | 1.2365 |
Gradient Boosting | 97.24 % | 96.90 % | 0.030 % | 2.1504 |